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Abstract

Based on the finding that refraction imposes significantly higher demands onto gradient filters than illumination
and shading, we evaluate the family of spline filters as a good alternative to the cubic filters, which so far have
served as the gold standard of efficient yet high-quality interpolation filters in present visualization applications.
Using a regular background texture to visualize the refractive properties of the volumetric object, we also describe
an efficient scheme to achieve the effects of supersampling without incurring any extra raycasting overhead. Our
results indicate that splines can be superior to the Catmull-Rom filter, with potentially less computational over-
head, also offering a convenient means to adjust the extent of lowpassing and smoothing.

1. Introduction

An integral component in the visualization of discrete data
are the filters used for interpolation and derivative estimation.
While the interpolation filter determines the geometric accu-
racy of the object estimated from the sampled data, the deriv-
ative filter affects its perceived accuracy. The latter is due to
the derivative’s involvement in the shading computation,
which appears in its unit-length form as the normal vector.
Inaccurate normals will result in the depiction of false struc-
tures and patterns on the rendered object surface. While the
modulation of the normal vectors was exploited to generate
fictitious patterns in bump mapping [B78], this is clearly not
intended in a typical visualization where one desires to illus-
trate the truth. In more recent research, the derivatives have
also been used to estimate the geometry itself, by determining
the exact position of an isosurface via locating extreme points
in the first derivative and zero-crossings in the second deriva-
tive [A84][KKHO02].

The importance of the accuracy of gradient estimation,
over that of the interpolation process, has been reported in
various research papers [BLM96][MMMY97]. There it was
found that gradients estimated with a filter based on a cubic
polynomial, such as the Catmull-Rom spline, achieve satis-
factory shading results. While larger, higher-order filters esti-
mate even more accurate derivatives [MMMY97], they tend
to incur excessive computational expense in the rendering
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process. For these reasons, the Catmull-Rom spline is gener-
ally perceived a good compromise between computational
effort and accuracy, especially when high-quality rendering is
the goal. On the other hand, first-order filters, as embodied by
the trilinear function, are used when rendering speed is the
main focus. Its simplicity also enables a general implementa-
tion in graphics hardware. The corresponding linear deriva-
tive filter is popular for the same reasons. Finally, the non-
negativity of trilinear filters also allows an efficient analytic
root finding mechanism to determine the exact location of an
iso-surface [PPLSHS99].

The Catmull-Rom spline, a member of the family of cubic
convolution filters, is the unofficial standard for high-quality
rendering in visualization. This is well justified if one is only
interested in illumination and shading effects. However, our
research indicates that Catmull-Rom spline filters are insuffi-
cient for high-quality rendering of refractive effects since here
the error is multiplied by the length of the redirected ray
before it hits an opaque surface. For example, while the
refraction of a ray within a thin lens is less sensitive to the
quality of the gradient estimation, due to its small path length
in the refractive medium, these adverse effects are much more
dramatic when the refracted ray passes through a full sphere.

For this reason, we have given renewed attention to the
topic of derivative estimation, but with a second goal to pre-
serve computational efficiency. In our study, the visualization
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of an object’s refractive properties was the main goal, since
these cannot be visualized by shading alone. While curvature
can be depicted using non-photorealistic techniques [[FP97],
these techniques do not apply to depict refractive properties in
the general case. Instead, we chose to visualize an object’s
refractive properties by the way in which they distort the
image of a known regular pattern placed on the other side,
such as a flat plane textured with a checkerboard.

While the Marschner-Lobb (ML) function is an excellent
means to assess and visually convey the quality of filters, it is
nevertheless a rather artificial function in the sense that even
dramatic error images obtained with the ML function do not
necessarily lead to poor results in practical shading scenarios.
Refraction, on the other hand, is a much more demanding task
in that regard, exposing even small filter infidelities at no
mercy. For this reason, we conducted our filter study using
refraction to highlight the effects of various gradient filters.
To that end, we find that filters based on quadratic and cubic
B-splines, which, so far, have received little attention in the
domain of visualization research, show superior results to
Catmull-Rom spline filters, with the added benefits of smaller
or equal computational cost. A secondary effect is that they
allow a means to control the amount of data smoothing before
the densities and gradients are estimated. This is done by prior
computation of a coefficient volume, which, however, only
has to be done once, unless the volume densities themselves
are modified.

But even small refractive errors can lead to visible artifacts
when the ray passes through a sufficiently long distance
before it hits the textured wall on the other side. Pixel super-
sampling [W80] is a popular technique to overcome these
defects, replacing them by blur and noise. However, pixel
supersampling increases the rendering effort significantly,
even when pyramidal rays [A84] or other object-space ray
aggregation or refinement constructs are employed. In our
case, since we seek to gauge refractive object properties by
the way they distort a simple pattern in the background, we
can devise an acceleration techniques that defers the super-
sampling all the way to the pattern sampling stage, while pre-
serving at good accuracy the local distortion of the (virtual)
supersampling grid.

Our paper is structured as follows. First, in Section 2, we
give a brief discussion of preliminary work in gradient esti-
mation and refraction in the field of volume visualization.
Then, Section 3 presents theory related to splines and their
properties. In Section 4, we discuss the different aspects of
our approach and its study. Finally, Section 5 reports on
results, and Section 6 ends with conclusions.

2. Related Work

Much work has been done on filter design in volume ren-
dering. Moller et al. [MMMY97] developed a design
approach based on a Taylor-series expansion which, apart
from interpolation, also considers derivative estimation, while
Bentum et al. [BLM96] employs the frequency domain to
design these filters. Unser et al. [UAE93a][UAE93b] promote
the use of B-Splines for the interpolation of discrete data and
give a recursive method to estimate, from the native volume
data, the coefficients that comprise the volume data used for
interpolation. Li and Mueller [LMO04] propose a frequency-
space approach for resampling, using the FFTW system for
fast Fourier transforms.

Refraction has been the subject of much interest early on in
computer graphics, where Kay [KK86] was the first to apply
Snell’s law to model this optical effect. Soon after, Whitted
[W80] produced the now famous image of floating transpar-
ent balls over a checkerboard to show off his recursive ray
tracing framework. In that paper, adaptive supersampling was
also used to resolve high-frequency areas, but this approach is
expensive. To overcome these problems, Amanatides [A84]
developed the concept of cone tracing, where slender cone
rays extend from each pixel, with an initial diameter the size
of the pixel. These cone rays are then distorted at refractive
and reflective surfaces. This requires a polygonal representa-
tion, which we could locally obtain using the estimated nor-
mal vectors. Instead, we use an alternative, simpler approach,
since in volume visualization the frequency band is bounded
from above by the grid resolution and therefore the object size
and detail are bounded as well. Assuming these locally
smooth conditions, we defer the supersampling to the 2D
background image space.

More recently, Rodgeman and Chen [RCO01] discussed the
subject of refraction in volumetric datasets at great detail.
They use a discrete ray tracing approach, and in that context
they discuss several measures designed to provide the mate-
rial densities on both sides of a material interface required by
Snell’s law in order to compute the refraction angle. In
another paper [RC04], the same authors employed regularized
anisotropic nonlinear diffusion to quantify distortion and
improve image quality. The method bears some similarity to
the non-linear raytracing approach described by Groller et al.
[G95], which illustrates the effects of continuous dynamically
and chaotic fields by visualizing the way in which they bend
the light rays traversing it. This approach was later extended
by Weiskopf et al. [WSE04] using a GPU-based implementa-
tion. Here, the step size of the rays is adaptively adjusted to
conform to their local curvature. Such an approach could also
be performed in the case of the discrete datasets we are deal-
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ing with, but the estimation of accurate gradients to guide the
rays would still be required.

In our current application, we do not expect our discrete
density fields to vary to the extent of chaotic behavior. Rather,
the motivation of this paper lies in the evaluation of gradient
filters and the resolving of sampling issues related to non-reg-
ular ray ensembles, using refraction as an application where
these effects are showcased exceedingly well. In contrast to
[RCO1][RCO4], our approach finds the exact location of an
isosurface using a root finding approach and therefore runs at
unit step size. Once this interface is found, we employ the
interpolated normal to find the materials on either side, using
a transfer function mapping that only captures a limited num-
ber of materials. A companion paper [LMOS5] then uses the
insights gained from this study to describe a practical ray cast-
ing system for the visualization of volumetric datasets with
refractive isosurfaces.

3. Spline Filters

3.1. General background on filters

Discrete datasets represent scalar data on grids and interpo-
lation filters must be employed to obtain samples at off-grid
positions or to calculate gradients there. The simplest filter for
gradient estimation is the central difference filter. The main
advantage of this filter is its computational simplicity, but it
may produce inferior reconstruction quality. The Catmull-
Rom spline is more complex and is commonly used as a high-
quality, yet sufficiently efficient, interpolation filter. However,
as we shall see, it still fails to generate satisfactory results
when employed in applications with extremely high require-
ments, such as refraction, in which a highly accurate gradient
filters is needed to determine the exact direction of refracted
rays.

To interpolate a value f{x) at some arbitrary coordinate
x € R? , we can use a linear combination of coefficients ¢ i

) = Y egb(x—k) (1)
k

The implementation is called interpolating if c, is always
equal to the grid value f, when evaluated at the point k € 77,
On the other hand, the implementation is called noninterpo-
lating, if ¢, does not have to be equal to the grid value f, .

For interpolating filters, to satisfy the requirement of exact
interpolation at the grid points, the basis function for interpo-
lating filter must vanish for all integer arguments, except at
the origin, where it must assume a unit value. Both the trilin-
ear and the Catmull-Rom spline filter fall into this category.
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In the case of noninterpolating filters, we do not need to
put constraints onto the basis functions, which gives us more
freedom in their design. Instead, to enable exact interpolation
at the grid points, the non-interpolating filters determine the
coefficients in a prefiltering step. One of the most widely used
non-interpolating basis function is the B-spline.

3.2. Non-interpolating filters

With well-behaved basis functions, prefiltering for coeffi-
cients establishes a one-to-one correspondence between f
and the sequence of coefficients, ¢, . From these coefficients,
the desired value f{x) can be determined. Further, non-inter-
polating filter functions can be transformed to their equivalent
interpolating functions, which builds a bridge between inter-
polating and non-interpolating functions in the same domain.
For the multi-dimensional case, we assume that the basis
function ¢ is separable, that is, the data can be processed in a
separable fashion, row-by-row, column-by-column, etc.

3.2.1. Determining the coefficients

In the non-interpolating case, to ensure an exact interpola-
tion of the sample points,

fko = Z ckbko—k @)
keZ!

where b, = ¢(k). Given the basis function, this constraint
gives rise to a linear system of equations of unknown coeffi-
cients ¢, . One can solve this problem with any efficient
solver of a linear system of equations [TUO03][TBU00][U99].
Another way to look at the constraint equation is to realize its
equivalence to discrete convolution:

fi, = (*b),, 3)

Therefore, the sequences of coefficients ¢, can be obtained
by convolution of the sequences f;, with the convolution-
inverse b

e, = (b7 i, “)

3.2.2. Cardinal representation

We can write interpolating functions by expressing non-
interpolating basis functions in terms of their equivalent inter-
polating basis functions:

o0 o0

) = b= 0)= 3 fiby k)

®)

As derived in [UAE93a], the equivalent interpolating basis
functions are given by:
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3.3. B-splines

The B-spline is one of the most widely used non-interpo-
lating filters and has numerous advantages over popular inter-
polating filters. It derives from the well-known property that
any polynomial spline can be represented as a weighted sum
of shifted B-spline basis functions and is therefore character-
ized by the discrete sequences of its B-spline coefficients.
There is a whole family of basis functions created from B-
splines [3" ,of order n :

n+1

= Z G et o

|
n: ]
j=0

where p(x) is the unit step function
0, if(x<0)
ux) =4 7 ®)
1, if(x>0)

The cubic B-Spline, which has a continuous second deriva-
tive, is often used in practice. Its expression is given by:

%|x|37|x|2+§ if0<p <)

B(x) = ©)

—é|x|3 +1x? = 20 +§' it (1<lx<2)

0 if (2<x)

The cardinal representation of the cubic B-spline has a decay-
ing oscillation that looks similar to the (optimal) sinc function
(the dotted lines in Fig. 1). Comparing the frequency response
(see Fig. 1a) of the cubic convolution filter embodied by the
Catmull-Rom spline and the cubic B-spline (n=3), it is clear
that the cubic B-spline has a much better pass-band and stop-
band behavior and is therefore superior to Catmull-Rom
spline.

For signals that are corrupted by noise, an exact B-spline
interpolation not necessarily yields the most adequate contin-
uous signal approximation. In this case, a more favorable
approach is to employ the smoothing B-spline in place of the
regular B-spline [UAE93a][UAE93b] (see Fig. 1a for the fre-
quency response of a cubic smoothing B-Spline). The global
smoothness of the interpolating function can so be controlled.
The coefficients are determined such that the sum of interpo-
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Figure 1: Frequency responses of (a) B-Spline, (b) B-
Spline 3 and smooth B-Spline 3, (c) derivative B-Spline.

lating errors at the sample points and the penalty imposed by
the non-smoothness of the interpolating function is mini-
mized. A free parameter, A, is available to control the relative
importance of the two, and thus can be used to determine the
amount of lowpassing. The method establishes a compromise
between the desire for an approximation that is reasonably
close to the data and the requirement on the function to be suf-
ficiently smooth. The choice of A depends on which of these
two conflicting goals is given the greater importance. The
same recursive technique can also here be implemented to
compute the coefficients, with as few as four operations per
sample value. Fig. 1b shows the frequency response of a few
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smoothing cubic spline filters for various A . We observe, as
A increases, the pass band is reduced and pushed towards
lower frequencies, effectively smoothing the interpolation.

The curves denoted Prefiltering and No-prefiltering in
Fig. 1b denote the frequency responses of the cubic B-spline
filter with and without prefiltering the data, respectively (i.e.,
with and without replacing the original data points by the
coefficients computed by (4)). Not surprisingly, the pass band
for the filter without prefiltering is also reduced to a level
between the smoothing spline with A =0.1 and A =1. This
explains why using a cubic spline without prefiltering
smooths or blurs the data, which has been reported by a num-
ber of authors. In fact, the prefiltering is necessary to reach
the sharp transition at the Nyquist rate in the frequency
response.

4. Application of Refraction

Refraction is the bending of a light ray as it passes across
the boundary of two media. Snell’s law is the most commonly
used refraction equation to represent the bending:

n;sin@; = n,sin0, (10)

where 0, is the angle of incidence, 0, is the angle of refraction,
n; is the refraction index of the incident medium and 7, is the
refraction index of the refractive medium.

As mentioned in the intro-
duction, refraction poses spe-
cial challenges on  the
visualization of  discrete
datasets. In the following we
analyze the problems at suffi-
cient detail and devise solu-
tions.

Figure 2: Poor result
obtained with the cubic
gradient filter, which is
the derivative of the Cat-
mull-Rom filter
[BLMY6].

4.1. Problem description

Fig.2 shows a refracting
glass sphere in front of a check-
erboard pattern. When light
passes across this sphere, it
bends its direction due to refraction. Although we use Brent’s
root-finding function [B73] to determine the accurate position
of the isosurface, there is still a considerable amount of alias-
ing in the result. There are two main reasons for this, as is
explained next.

First, refraction is very sensitive to gradient calculation.
Even a minor error in the computed angle of gradient direc-
tion will cause the refracted light to stray far away from the
correct location in the background image. The gradient is esti-
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mated by the density function in the volume, however, points
in the data set are discrete-valued sampling points, which may
not be able to represent the continuous density function
strictly. Thus, even if an analytic function was sampled into
the grid, storing the sample points in the dataset as truncated
integers will result in rounding errors. On the other hand, real-
world data sets, such as medical datasets, may be noisy, which
will also lead to artifacts in the gradient calculation. The
refraction process will accentuate any of these imperfections
tremendously. Thus, a good gradient filter with just the right
amount of smoothing and anti-aliasing is much desirable for
high-quality refraction.Secondly, part of the aliasing stems
from the sampling of the background texture at a rate lower
than the Nyquist frequency requirement.

Fig. 3 shows a
one-dimensional
analysis of this pro-
cess. For this, we
slice one plane
along the x-y plane
and view it from
the vertical z-direc-
tion. Obviously, at
the two ends of the
line, the rays bent at
a much larger angle
than the rays in the
middle of the line. This leads to the background image being
sampled below the Nyquist rate at these locations. One way to
overcome this problem is to use supersampling to increase the
sampling rate. But this slows ray tracing considerably, since
one needs to shoot more rays per pixel and compute the aver-
age.

Input light Image Plane

air

Object
Glass Sphere

Background

)—Under-Sampled«FGoodf‘ﬁnder-Sampledf‘

Figure 3: Refraction causes under-
sampling.

4.2. Solutions for gradient computation

In refraction, the gradient filter puts special importance on
the smoothness of the interpolated function. A smoothly inter-
polated function can ensure that gradients evaluated at two
very close points on the isosurface are close in value. There-
fore two parallel rays interacting with the isosurface on these
two neighboring points, after refraction, can still follow near-
parallel paths. This will effectively lead to a smooth image of
the background texture, as seen through the refracting object.

Fig. 1a shows the frequency responses for the cardinal Cat-
mull-Rom spline filter and several B-spline filters. Although
the B-Spline requires a calculation of the coefficients first,
this is just a one time procedure, whose outcome can be used
repeatedly. We observe, based on the frequency response, that
even the quadratic B-Spline (B-Spline 2) has a better fre-
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quency response than the Catmull-Rom spline filter, although
cubic Catmull-Rom spline is more expensive than B-Spline 2
(due to its wider extent), both for interpolation and for gradi-
ent calculation. With increasing order, the B-Spline becomes
increasingly close to the ideal low-pass filter, the box at /=0.5.
Fig. 1c shows the frequency responses for the gradient (deriv-
ative) filters based on the Catmull-Rom spline and B-Spline.
From these plots, we can draw the same conclusions than
those been drawn from interpolation counter parts shown in
Fig. 1a.

The most interesting filter in this figure, at least for our
purposes, is the smoothing B-Spline. It is a filter that fits well
for the application of refraction, since here we require a good
filter that also has tunable smoothing and anti-aliasing capa-
bilities. We mentioned before that the B-Spline without pre-
calculating the coefficients is usually thought of as erroneous,
since it blurs the images. But we find that in the case of refrac-
tion, which is extremely sensitive to variations in the gradient,
the smoothing effect of non-prefiltering is actually a positive
aspect. Fig. 1b compares the B-Spline with and without prefil-
tering. Globally, the B-Spline with prefiltering is much closer
to the ideal low-pass filter. However, in the stop band, the B-
Spline without prefiltering will suppress the aliases to the
largest degree, since it smooths the image and begins to
decrease earlier. This means that the B-Spline without prefil-
tering will curb noise, smooth the data and decrease the alias-
ing to a minimal level. Therefore, both the B-spline with
smoothing and the B-Spline without prefiltering constitute
good gradient filters for refraction calculations. The latter rep-
resents an efficient choice since it does not require the calcu-
lating of coefficients.

4.3. Solutions for Undersampling

Supersampling is a
natural solution to the
problem of undersam-
pling. It shoots a
matrix of rays per
pixel, possibly with
jitter, and averages
the result. Its down-
side is excessive cost.
We propose a new
method, named post-
refraction supersam-
pling, to save the larg-
est part of the computational cost for the ray tracing while
retaining the supersampling quality. Our method does not
need to trace more rays, and it only performs the supersam-
pling on the background texture.

Image Plane

Map to real position

Intermediate

Position Image Background
Mapped image

Figure 4: Post-refraction super-
sampling.

The key idea is to use space coherence of a group of neigh-
boring points. Once we know the shape of the refracted pic-
ture, we can do the supersamping on this known pattern.
Fig. 4 illustrates the steps of post-refraction supersampling.
The algorithm keeps a record of each pixel's background posi-
tion in an intermediate image A, which is of the same size than
the original image. Then for each point p, we take the closest
8 points in A4, get their positions which maps them to the back-
ground mapped image B. The number of 8 can be increased in
case a higher sampling rate is needed. This tells us the
refracted shape of the nine original points. This shape gives us
the structure of the refraction-distorted pattern, which is what
we really like to know. Finally, based on this intermediate
image, we sample it by taking the intermediate points between
the 8 neighbors and the center point, p. Following we do a
low-pass filter convolution among the center point and the
intermediate points. The result will be the supersampled den-
sity for p. The advantage of this algorithm is that by tracking
the ray's background position, we know the shape of a group
of neighboring points. This gives us an imprint on how far the
refraction distorted the original background image, without
the cost of the actual supersampling.

5. Experiments

To locate the exact location of the iso-surface for low order
filters, such as central difference and trilinear, we use the ana-
Iytical methods described in [PPLSHS99]. For the Catmull-
Rom Spline and B-Spline filters on the other hand, we use
Brent’s iterative root finding method [B73] since at these
higher function order no analytic root can be found. Brent’s
method works most efficiently for B-splines due to the non-
negativity property of the B-spline basis function. The B-
Spline is implemented on the method by Unser et al.
[UAE93b], who gives an efficient recursive algorithm for the
prefiltering of the coefficients, in (4). Its computational load
for the cubic B-spline only consists of two additions and mul-
tiplications per produced coefficient. Next, we will compare
the central difference filter, the analytical gradient estimator
based on a trilinear filter [PPLSHS99], and the gradient (i.c.,
derivative) filters [BLM96] based on the Catmull-Rom spline
and the B-Splines of order 2 to 6, respectively.

5.1. Gradient filters

To evaluate the different 3D gradient filters, we examined
two datasets, a transparent smooth sphere with the back-
ground set to a checkerboard, and the standard filter testbed,
the Marschner-Lobb dataset, described in [ML94]. We used a
constant-valued sphere with a Gaussian fringe.

Because the Gaussian filter equation and the Marschner-
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Figure 5: Gradients computed along one circle on the smooth sphere, with average error angle(up to 360). (a. perfect, b. central
difference, c. trilinear-analytical, d. Catmull-Rom Spline, e. B-Spline 2, f. B-Spline3-smooth A =1, g. B-Spline 3, h. B-Spline 4,
i. B-Spline 5, j. B-Spline 6, k-o0. B-Spline without prefiltering, order 2 to 6)

Figure 6: Gradients computed along one circle on the M-L. dataset, with average error angle. (a. perfect, b. central difference,
c. trilinear-analytical, d. Catmull-Rom Spline, e. B-Spline 2, f. B-Spline 3, g. B-Spline 4, h. B-Spline 5, i. B-Spline 6)

Lobb function are well known, for both of the experiments,
the difference between the ideal gradient and the estimated
gradient by the filters can be accurately compared and investi-
gated. In the smooth Gaussian sphere, we slice it with a plane
and then choose 180 points on a circle uniformly, that is, there
is one point for every two degrees. In the Marschner-Lobb
experiment, we slice the dataset along a plane which is paral-
lel to the z-axis and pick points on a circle in the same way
than in the sphere experiment.

Since for both of the testbeds, the density on the chosen
circle is decided only by the distance between the point and
the center of the circle, the shape of the ideal x, y gradients is
either a sine or a cosine curve (see Fig. 5a). In Fig. Sb-o all
such sine-shaped curves are due to the estimated gradients,
while the plots immediately above each such curve show the
angular error between the computed and accurate normals,
and the number indicates the average error.

Since refraction requires a smoother gradient, due to the
reasons discussed in Section 4.1, we also add the smooth B-
Spline 3 (Fig. 5f) and several B-Splines without prefiltering
(Fig. 5k-0). We observe, for the sphere dataset, that the Cat-
mull-Rom spline produces actually worse gradient results
than the trilinear-analytical estimator as well as central differ-
encing, and the B-Spline 2 to 6 (with pre-filtering) do not
improve the gradient either. This is reasonable since the data
have (round-off error) noise, and the better the filter the lesser
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is smoothed out (see Fig. 1a). On the other hand, without pre-
filtering, the B-Spline produces much better gradients since it
has better smoothing properties (see Fig. 1a), which we
require in this case. The smooth-BSpline-3 offers the best
results - in Fig. 5f the curve of the smooth B-Spline-3 with
A=l almost matches the analytical curve, with an angular error
of less than 0.01. Finally, Fig. 7 presents the actual sphere
refraction images, obtained with the different gradient filters.
Here the smooth-B-Spline-3 shows the cleanest results, but
the B-Spline without prefiltering is also able to produce a
clear depiction of the distorted background.

The Marschner-Lobb test dataset, on the other hand, since
it has a lot of high frequency information, requires a gradient
filter that faithfully preserves the high frequency information
inside the dataset. Here, no smoothing is required. As Fig. 6
shows, the Catmull-Rom spline filter exhibits almost the same
error than central differencing and trilinear-analytical, and the
average error angle is around 6.10. But for the B-Spline, with
the order increasing from 2 to 6, the produced gradient more
and more matches the ideal analytical gradient curve. The
average error angle decreases from 3.69 to less than 0.01.
Finally, the rendered results of the Marschner-Lobb dataset
are shown in Fig. 9. We observe that even the B-Spline 2
yields better renderings than the Catmull-Rom spline filter.
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5.2. Post-refraction supersampling

Although in Fig. 7, with a smooth gradient filter, the dis-
torted background of the sphere is close to ideal, there are still
some jaggies along the edges of the distorted checkerboard,
especially in the sphere’s periphery. Post-refraction supersam-
pling can overcome this problem. In Fig. 8, we compare the
images obtained with traditional supersampling and with our
fast post-refraction supersampling. The runtimes are also
shown, with speedups nearly the degree of supersampling.

6. Conclusions

‘We have demonstrated, using refraction as a showcase, that
the B-Spline filter achieves superior results, compared to the
traditional Catmull-Rom filter, for the estimation of gradients
from discrete data. It does so at the same computational cost
for the B-Spline-3, which has the same support, or at 3/4 of
the cost for the B-Spline-2, which has a full spatial support of
3.0. While B-Splines do require the computation of coeffi-
cients from the raw densities, to be used in the interpolation
process instead, this is only required once as long as the densi-
ties are not modified, which is unlikely for pure visualization
purposes. We have also demonstrated that the B-spline allows
one to balance smoothing with grid sample interpolation
fidelity. This is beneficial in the presence of noise, round-of
errors, and other artifacts incurred in the sampling of the orig-
inal data. We verified these findings using the rigorous analyt-
ical Marschner-Lobb dataset, where smoothing is not
required. Our post-refraction supersampling scheme, on the
other hand, helps to overcome irregular sampling of the back-
ground texture in a cost-effective way.
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B-Spline 3 B-Spline 6 B-Spline 3 w/o prefil.
Figure 7. Refracted results of the Sphere.

Central Difference, 9.9 ms Catmull-Rom spline, 11.5 ms B-Spline 3, no prefiltering, 10.5 ms Smooth B-Spline 3, 10.5 ms

Central Difference, 2.3 ms Catmull-Rom spline, 2.8 ms B-Spline 3, no prefiltering, 2.6 ms Smooth B-Spline 3, 2.6 ms

Figure 8: Compare refraction result of sphere: (a) traditional super sampling, (b) post-refraction super sampling.

Catmull-Rom spline B-Spline 2 B-Spline 3 B-Spline 6

Figure 9: Rendering result of Marschner-Lobb.
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