
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

GPU-Assisted Raycasting for Cosmological
Adaptive Mesh Refinement Simulations

Ralf Kaehler1, John Wise2, Tom Abel2 and Hans-Christian Hege1

1Zuse Institute Berlin, Germany
2Kavli Institute for Particle Astrophysics and Cosmology/Stanford University, USA

Abstract

In the recent years the advent of powerful graphics hardware with flexible, programmable fragment shaders en-
abled interactive raycasting implementations which perform the ray-integration on a per-pixel basis. Unlike slice-
based volume rendering these approaches do not suffer from rendering artifacts caused by varying sample dis-
tances along different ray-directions or limited frame-buffer precision. They further allow a direct realization of
sophisticated optical models.
In this paper we investigate the applicability of GPU-assisted raycasting to block-structured, locally refined grids.
We present an interactive algorithm for artifact-free, high-quality rendering of data defined on this type of grid
structure and apply it to render data of time-dependent, three-dimensional galaxy and star formation simulations.
We use a physically motivated emission-absorption model to map the computed temperature and density fields to
color and opacity.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation–Vieweing Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism–
Raytracing

1. Introduction

Nowadays astrophysics, in particular cosmology, probably
like no other scientific area, is more and more depending
on time-dependent, numerical 3D simulations, since for the
most relevant research problems explicit analytical solutions
do not exist and direct experiments are unfeasible. In order to
interpret and verify such simulations, it is important to com-
pare the results to observed image data. Interactive, photo-
realistic visualization thus becomes an important tool. It al-
lows the scientist to change parameters, e. g. the viewpoint
as well as the shading model, on the fly to get an intuitive
impression of the overall structure of the data. Furthermore
it supports meaningful visual comparisons of different sim-
ulations.

Adaptive techniques are vital in this type of simulation
since many length scales must be considered to accurately
model the physical phenomena, which can range from sev-
eral 10,000 light years (dynamics of the proto-galaxies) to
several light hours for evolving stellar objects in certain re-

gions. A specific adaptive approach for solving partial dif-
ferential equations that is popular in astrophysics is called
AMR (Adaptive Mesh Refinement). It was introduced by
Berger et al. in the ’80s [BO84]. The basic idea is to combine
the simplicity of structured grids and the advantages of lo-
cal refinement by recursively overlaying regions of a coarse
initial structured grid with grid patches of increasing resolu-
tion.

In this paper we present an interactive GPU-assisted
raycasting algorithm for high-quality volume rendering of
block-structured, locally refined grids like octrees or AMR
hierarchies. In contrast to hardware accelerated, slice-based
approaches our algorithm does not suffer from rendering ar-
tifacts due to limited frame-buffer precision or varying slice
distances at boundaries of different resolution levels. We ap-
ply it to render three-dimensional galaxy and star formation
simulations, which follow the hydrodynamics and gravity
of gas and dark matter from the density fluctuation 400,000
years after the big bang. Based on these simulation data the

c© The Eurographics Association 2006.

103

http://www.eg.org
http://diglib.eg.org


Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

influence of the first stellar objects within these galaxies on
the surrounding gas is computed in a preprocessing step.
The resulting temperature and density fields are processed
by the GPU-assisted volume rendering algorithm that com-
putes emission and absorption coefficients at each location
within the data volume and allows to interactively adjust the
relevant rendering parameters.

In the next Section we will review related work in the
field. In Section 3 we sketch the grid structure on which
the field variables are defined. Next will describe the GPU-
assisted raycasting approach for locally refined structured
grids (Section 4). In Section 5 we give some details about
the cosmological simulations and specify the emission-
absorption model we used to render the simulation data.
We end with a comparison of the method to hardware-
accelerated slice-based approaches in terms of image quality
and rendering performance.

2. Related Work

Slice-based hardware-assisted volume rendering using 3D
textures hardware was introduced by Cullip and Neumann
in 1993 [CN93]. The underlying idea is to map the data vol-
ume to a 3D-texture, respectively a stack of 2D-textures and
exploit graphics hardware to extract and blend a set of axes-
or viewpoint-aligned slices to approximate the volume ren-
dering integral.

The basic algorithm has been extended for multi-
resolution data in [LHJ99, WWH∗00, KH02]. Other acceler-
ation techniques and also sophisticated optical models have
been realized for slice-based approaches, see e. g. [KPHE02,
EKE01, GWGS02].

Though slice-based approaches allow for interactive ren-
dering of even larger data volumes, they suffer from several
disadvantages, that might lead to visible artifacts: first the
slice distance for perspective projection varies along differ-
ent directions. Further currently hardware accelerated blend-
ing is only supported for 16-bit (or less) float render targets
and thus the rendering performance is reduced drastically if
32-bit render targets are used, see e.g. [YNCP05]. This is es-
pecially problematic for adaptive grids, since in these cases
usually wide viewing angles are required and a large number
of highly transparent slices have to be blended.

Though the precision problem should be solved for fu-
ture generations of graphics hardware, another source of ar-
tifacts for slice-based rendering of adaptive grids remains.
It is due to small regions at slice edges at level boundaries,
where the sample distance changes from one slice to another.
Weiler et al. addressed this problem in detail in [WWH∗00].
They presented an algorithm to detect these problematic re-
gions and render the corresponding slice parts with the cor-
rect opacity that corresponds to the actual sample distance in
these regions. However, since this approach requires connec-
tivity information between adjacent cells and the resolution

of adjacent blocks might differ by an arbitrary number of
refinement levels the proposed solution is cumbersome for
AMR data.

With the advent of programmable graphics hardware that
supports flexible fragment programs, it became feasible to
perform a ray-integration on a per-pixel based at interac-
tive frame rates, as described in [RGW∗03,KW03,SSKE05].
In this approach the data volume is converted to a 3D tex-
ture and a fragment program is executed for each pixel that
is covered by the projected bounding box of the data vol-
ume. The ray is parameterized in texture coordinates and the
integral can be computed as for software implementations.
This approach has been adopted for the rendering of large
datasets, see for example [HQK05]. In this approach the
data domain is decomposed into subvolumes that are sorted
and processed front-to-back according the actual viewpoint.
GPU-assisted raycasting is very attractive for adaptive grids,
since it does not suffer from the rendering artifacts men-
tioned above, which limits the achievable image quality for
this kind of data using slice-based methods.

A software-based raycasting approach for AMR data has
been proposed in [WOK∗03]. Photorealistic volume visu-
alization of planetary and reflection nebulae has been pre-
sented in [MHLH05]. In this approach the aim was to model
the 3D shape of nebulae based on 2D image data, rather than
to render simulation data of the galactic nebula formations.
In particular the authors present an approximation for multi-
ple scattering events based on a multi-resolution method.

3. The Grid Structure

The basic idea of AMR is to combine the simplicity of struc-
tured grids with the advantages of local grid adaption. In this
approach the computational domain is covered by a set of
coarse, structured subgrids Γ0

l=0...n ⊂R3. The union of these
subgrids is called the root level Λ0 :=

⋃n
m=0 Γ0

m.

(a) (b) (c)

Figure 1: Refinement process for AMR schemes: Cells that
require refinement are determined using local error crite-
ria (a) and clustered into separate subgrids (b), which cover
the regions with higher resolution. This process is recur-
sively continued until each cell fulfills the error criteria (c).

During the computation, local error estimators are utilized
to detect cells that require higher resolution. These cells are
covered by a set of rectangular subgrids. Unlike in finite el-
ement approaches, these subgrids do not replace but rather

c© The Eurographics Association 2006.

104



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

overlay the refined regions of the coarse base grid. The equa-
tions are advanced on the finer subgrids and this refinement
procedure recursively continues until all cells fulfill the con-
sidered error criterion, giving rise to a hierarchy of nested
refinement levels, as shown in Figure 1.

x11x01

x00 x10

Γ1
0

Γ2
0

Γ1
1

Γ1
2

Γ0
0

h0
1

h1
1

Ω00

Figure 2: Two-dimensional example of a structured AMR
grid. The root level Γ0

0 is refined by three subgrids Γ1
0,Γ

1
1,Γ

1
2

that generate the refinement level Λ1. Λ1 itself is refined by
one subgrid Γ2

0.

The mesh spacings of the finer grids are recursively de-
fined by~hl := (hl−1

0 /r,hl−1
1 /r,hl−1

2 /r). The positive integer r
denotes the so-called refinement factor, and~h0 = (h0

0,h
0
1,h

0
2)

is the mesh spacing of the root grid. In principle this factor
r can differ for each direction and each level, but in order
to simplify the notation we assume that it is constant. In the
AMR approach, cells are either completely refined by cells
of the next finer grid or remain completely unrefined. Each
coarse cell can be decomposed into a set of r3 cells of the
next finer discretization. In the following the union of all
level l subgrids Γl

m=0,1,2... is called refinement level Λl or
just level l, compare Figure 2. By construction these levels
are nested: Λl+1 ⊆ Λl ⊆ Λ0.

4. The GPU-assisted Raycasting Approach

The outline of the GPU-assisted raycaster for structured
adaptive mesh refinement data is as follows:

• First the hierarchy of nested refinement levels is decom-
posed into blocks of disjoint, axis-aligned blocks that
cover only cells from the same level of resolution.

• The blocks are traversed front-to-back in a view-
consistent order and rendered separately into an offscreen
render buffer. The resulting contribution from each block
to the final image is stored in a offscreen render target.

• After all blocks are processed the offscreen target is ren-
dered into the frame-buffer.

In the next subsections the single steps are discussed in more
detail.

4.1. Space Partitioning

In order to take advantage of the GPU-assisted raycasting
approaches the data volume should be processed block-wise,

with blocks consisting of cells from the same resolution
level. Rendering the separate subgrids directly would result
in severe rendering artifacts. This is because of facts: In the
AMR approach the patches of finer subgrids do not replace
but rather overlap regions of coarser levels, so refined re-
gions of the data volume would be rendered multiple times.
It is further not possible in general to traverse the subgrids
separately in a view-consistent order, due to the nesting of
the refinement levels and the fact that subsets of the grids
might form visibility cycles.

We therefore decompose the data domain into axis-
aligned blocks Bl

m ⊂ Λl with

(Bl
i ∩Bl

j) = /0 ∨ (Bl
i ∩Bl

j)⊂ (∂Bl
i ∪∂Bl

j) for i 6= j

that consist either of cells that are refined by subgrids, or
of cells which are not further refined. Each block is pro-
cessed separately during the rendering phase, so it has to
be ensured that no subsets of the blocks build visibility cy-
cles for any viewpoint. In [KH02] a decomposition scheme
is proposed that fulfills these constraints. In particular the
resulting blocks are arranged in a kD-tree structure, allow-
ing an efficient determination of the view-consistent order
for each viewpoint. The resulting decomposition consists of
three types of nodes:

• nodes representing areas of the computational domain
which cover only cells that are further refined,

• nodes that contain only cells that are unrefined and repre-
sent leaves of the decomposition tree

• and nodes that contain refined and unrefined cells; these
nodes are used to traverse the tree in a view-consistent
order.

Notice that no data from the original AMR hierarchy is
copied, but only bounding box information and pointers to
the original data are stored in the kD-tree. Once a node is
rendered for the first time, see next subsection, a 3D-texture
is allocated on-the-fly for the subgrid the node refers to and
the texture name is stored for later rendering passes. This
ensures that only those textures needed for the actual view-
point are generated. Furthermore it allows to keep the data
of the original hierarchy out-of-core and just load it once it
is required for the rendering.

We employ nearest-neighbor interpolation for cell-
centered AMR data and trilinear interpolation for vertex-
centered data. In the first case the texels are aligned with
the centers of the cells, while in the second one they are
aligned with the vertices of the grid. To avoid artifacts orig-
inating from discontinuities between adjacent subgrids for
trilinear interpolation, adjacent texture-blocks share a row of
data samples at their common boundary faces and the data
at dangling nodes has to be replaced to the interpolated texel
values of the abutting, coarse texture.

c© The Eurographics Association 2006.

105



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

Figure 3: Three time-steps from a star formation simulation rendered with the optical model presented in Sect. 5.1, that
maps density and temperature fields to emission and absorption coefficients. The dark regions in the middle image result from
non-illuminated gas that absorbs large amounts of light from behind it.

4.2. Raycasting the Subgrids

The GPU-accelerated raycasting of the separate blocks is
based on the single-pass approach described in [SSKE05]. In
this approach first the 3D data texture and colortable texture
are generated, respectively bound to different texture units.
Next the front faces of the block’s bounding box are ren-
dered into an offscreen 2D RGB-floating point texture. The
texture coordinates of the vertices are set identical to the ver-
tex coordinates in order to access object space coordinates
in the fragment shader. Within the fragment shader the ray
direction in object space coordinates is computed for each
pixel. Next the ray-entry point and the direction vector are
transformed to texture coordinate space and the raycasting is
performed. The data values are obtained via texture lookups
and mapped to color and opacity via the colortable. Finally
the resulting color and opacity of the each ray-segment are
blended according to the front-to-back blending equation

Cdst = Cdst +(1−αdst)αsrcCsrc ,

αdst = αdst +(1−αdst)αsrc .

In order to meed the requirements for rendering the multi-
resolution block-structured data, we modified this approach.
To prevent multiple computation of the ray direction for pix-
els that are contained in the projected screen space of multi-
ple subgrids, we initially render the front-faces of the enclos-
ing bounding box of the rendered subgrids, compute the ray
direction for these pixels and store them in a separate texture
that is used to lookup the ray directions when the separate
subgrids are processed. When processing a block, for each
ray the blended color and opacity from the last ray-segment
are required as initial values. According to the specification
of the OpenGL framebuffer_object extension [FBO] reading
from the texture that is bound as a texture target is currently
undefined. However, it worked in our scenario, so we addi-
tionally bound the texture render target onto a texture unit,
in order to access it within the fragment shader.

Alternatively one could copy the area required from the
render buffer in a separate rendering pass by binding the pre-
vious texture target, rendering the front-faces of the bound-
ing box and loading a fragment shader that just copies
the color and opacity information into a separate buffer.
This buffer would be additionally bound as a texture in the
raycasting pass to provide the initial values for each ray-
segment.

In order to increase the rendering performance the sample
distance along the ray is adapted to the actual resolution of
the precessed block. Therefore corrected opacity values are
precomputed according for the step size that is used for each
refinement level according to

αi(l) = 1− (1−αi(0))
1
rl . (1)

Here αi(0) are the opacity values used for the root level and r
is refinement factor of the hierarchy. These values are stored
as l separate 1D-RGBA-textures, one for each level of re-
finement. In general the last interval for each ray-segment
will only be a fraction of the actual interval extension used
for the integration. Artifacts due to wrong opacity values for
these intervals are avoided by computing the correct value
for the last integration interval on-the-fly.

More details about the implementation of the renderer will
be given at the end of subsection 5.1.

5. The Application Scenario

Recently several studies (see [ABN02, BCL02]) established
that the first stars in the universe were massive, about 100 so-
lar masses, and were formed when the universe was only 200
million years old. These stars form isolated in their host gas
cloud, in contrast to stars in clusters that we see in the local
universe. Due to their large mass, these first stars are very
luminous, which lead to intense heating and ionization of
the adjacent regions. The first star calculations are ab initio,

c© The Eurographics Association 2006.

106



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

Figure 4: The image sequence shows the effect of wavelength dependent absorption used in the optical model. From left to
right the absolute amount of absorption was increased, resulting in a reddening of the resulting color.

i.e. without any assumptions, and follow the hydrodynamics,
gravity, and chemistry in a cosmological environment. The
simulations end at the birth of the first star and do not follow
its impact on the host gas cloud.

It was argued that radiative transfer in a cosmological
sense would best split the highly anisotropic point sources,
such as stars, from diffuse sources, such as recombinations
of electrons and ions in dense regions. For the point sources,
ray tracing is an effective way of accurately calculating the
evolution of ionized regions. Abel et al. [AWB06] have suc-
cessfully coupled an adaptive ray tracing scheme [AW02]
into the AMR code enzo [BL97]. By doing so, they were
able to precisely follow the radiation of the first star, whose
radiation drives a shock through the surrounding gas that ef-
fectively expels the majority of it. At the end of the star’s
life, this gas is traveling outward at 30 km/s, and the gas up
to 5,000 light years away have been ionized by this one star.
The adaptive ray tracing scheme splits rays in the framework
of HEALPix as they venture farther from its source to guar-
antee each grid cell in the hydrodynamic simulation contains
at least 5 rays. This ensures that all relevant cells are sam-
pled well. Furthermore it results in efficient ray tracing close
to the source when not many rays are needed for a consistent
calculation.

We use the GPU-assisted raycaster presented above to in-
teractively render the output of this raytracing step. It is ba-
sically the resulting temperature and density distribution of
the gaseous matter within the proto-galaxy. In the next sub-
section we describe the physically motivated optical model
that was used to map the data to emission and absorption
coefficients.

5.1. The Optical Model

In order to render the datasets, we must map the temperature
to physical colors in the same manner as observational data.
In telescopic observations, light is passed through various fil-

ters with a transmission function Ti(ν) and post-processed
to create color images. The most common filters, Johnson
U, B, V, R, and I, are shown in Figure 5; however any other
choice of filters is possible. We can utilize the temperature
field to create a realistic colormap. A parcel of gas with a
temperature T emits a blackbody spectrum,

Bν (ν ,T ) =
2hν3

c2
1

exp(hν/kT )−1
, (2)

where ν is frequency, h = 6.673 × 10−27 erg·s is the Planck
constant, c is the speed of light, and k = 1.38 × 10−16 erg
K−1 is Boltzmann’s constant. Now we can convolve Bν with
a choice of three filters that correspond to RGB values. The
flux Fi in the ith filter, where i ∈ [1,2,3], is

Fi =
∫

BνTi dν .

We normalize Fi by evaluating F̃i = Fi
max(F1,F2,F3)

so that
the filter with the maximum flux has a value of 1. For ex-
ample, to represent realistic colors to the human eye, we
choose the R, V, and B filters to represent RGB so that
RGB = [F̃0(R), F̃1(V ), F̃2(B)]. To get the final emission co-
efficient we scale this term by the normalized gas density

ρ

ρmax
present at the voxel location.

In addition to emission, the scattering of light by parti-
cles larger than its wavelength λ can affect the incoming
light. For the correct absorption properties detailed mod-
els are needed that must be adapted exactly to the type of
simulations considered. E.g. the ionized regions need to be
treated differently than non-ionized regions. For the latter
one wavelength independent Compton scattering is appro-
priate. Such level of detail is beyond the scope of the cur-
rent work. We rather use Rayleigh scattering for the whole
computational domain as an attempt towards physical based
rendering. This is motivated by the fact at the time when the
first stars formed there was no dust present in the intergalac-
tic medium. It was not produced until the first generation
stars ended in supernova explosions. As a result, in our ap-

c© The Eurographics Association 2006.

107



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

Figure 5: Transmission functions T for Johnson U, B, V,
R, I filters. These filters are most common when conducting
astronomical observations.

plication area the particle diameter of the medium is very
small compared to the wavelength of the light that is scat-
tered, respectively absorbed. So Raleigh scattering applies
in our case (instead of Mie scattering which would become
relevant if the particles would be bigger than 1

10 of the light
wavelength).

According to the Rayleigh law the intensity of the scat-
tered light is proportional to density and λ−4. Thus blue
light is scattered more strongly than red light. A prime ex-
ample of this process is the atmosphere scattering the Sun’s
radiation and causing the sky to be blue. To consider scat-
tering, we correct the incoming blackbody emission by the
scattering light intensity in the line of sight of the observer
for the three different dominant wavelengths. Multiple scat-
tering would change the appearance of our rendered objects
as soon as it starts to scatter significant amounts of photons
into the line of the sight. In the low density, dust free envi-
ronment of the first proto-galaxies multiple scattering events
have a low probability and thus we do not take them into
account.

We precompute the color emission (without the density
weighting) and the absorption coefficients for each level
and stored them in 1D floating point textures. The density-
weighting is performed on-the-fly. Since 6 floats have to be
stored after the integration of each segment in order to ac-
cumulate the 3 color and 3 absorption values, we use two
32-bit floating point 2D RGB-textures as render targets to
store the intermediate results of the raycasting passes. The
two scalarfields for density and gas temperature are stored as
2-channel (GL_LUMINANCE_ALPHA) 3D-textures with
one byte per channel.

6. Results

The algorithms have been implemented as extensions to
Amira [SWH05], an object-oriented, expandable 3D data vi-
sualization system developed at ZIB.

#sub-grids GPU-Raycasting Slice-based
Data I 65 19 fps 59 fps
Data II 670 7 fps 23 fps
Data III 4100 1 fps 4 fps

Table 1: The first column denotes number of subgrids, the
second one frame-rates for the GPU-assisted raycasting and
the last one the frame-rate for the slice-based approach.

We tested the presented approaches on a standard PC sys-
tem (Pentium 4, 3.0 GHz, 2 GByte Main Memory) that was
equipped with a NVIDIA GeForce 6800 GT graphics card
with 256 MByte of graphics memory. OpenGL was used as
the graphics API and the fragments shaders have been im-
plemented with the OpenGL Shading Language. For gen-
erating the rendering targets we used the OpenGL frame-
buffer_object extension [FBO], since it is available on Win-
dows and Linux systems.

We compared the performance and image quality of the
GPU-assisted raycasting approach with a slice-based vol-
ume renderer. In this case we used a standard emission-
absorption model with three color and one alpha channel
that is realized via a user defined colortable. For the GPU-
assisted raycasting approach we performed early ray termi-
nation, if the alpha component exceeded 0.99. We used three
datasets with an increasing number of subgrids for the com-
parison. The number of cells at the root level was 323, 643,
respectively 1283 for the examples. The sampling distance
was increased for each level of resolution and was about
half the actual cell size. Information about the number of
subgrids as well as the performance numbers are given in Ta-
ble 1. For all examples the size of the viewport was 760x700.
The performance of the raycasting method was about 30% of
the one obtained with the slice-based renderer. Renderings of
the datasets are shown in Figure 7.

Figure 6 shows a comparison of the image quality of
the two approaches. Though opacity corrections according
to Equation 1 have been applied, the middle image shows
severe rendering artifacts for the refined regions. These
stem from insufficient framebuffer precision during blend-
ing the highly-transparent slices and from small regions at
slice edges at level boundaries, where the sample distance
changes from one slice to another, see Section 2. Since 32-
bit floating-point precision is used in the raycasting approach
and the rays are computed on a per-pixel basis, no artifacts
are visible in the right image.

Examples of the emission-absorption model presented in
Section 5.1 are shown in Figure 3 and 4. The first one shows
three timesteps of the time-dependent star-formation simu-
lation described in Section 5, while the latter one points out
the effect of the wavelength dependent absorption model.

c© The Eurographics Association 2006.

108



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

Figure 6: A comparison of the image quality of slice-based (middle) and GPU-assisted raycasting (right) approaches. The
left images shows the bounding boxes of the refined region of an adaptive simulation. The middle image show severe render-
ing artifacts for these regions, due to insufficient framebuffer precision to correctly blend the highly-transparent slices. Since
floating-point precision is used in the raycasting approach, no artifacts are visible in that case.

Figure 7: Galaxy formation simulations that were used to compare the rendering performance of the slice-based and GPU-
assisted raycasting approach.

7. Conclusions and Future Work

In this paper we presented a frame-work for high-quality, in-
teractive volume rendering of data defined on locally refined,
block-structured grids. We chose a GPU-based raycasting
approach that does not suffer from the drawbacks affect-
ing the image quality of hardware-accelerated slice-based
methods. It has superior image quality compared to slice-
based methods and directly supports the implementation
of advanced optical models, like the wavelength-dependent
emission-absorption model used for rendering the cosmol-
ogy simulation data. Though the performance of the GPU-
based approach is only about 30% of the slice-based method
for the tested datasets, this performance penalty is expected
to decrease for future generations of graphics hardware.

There are several ways the extend the work presented in
this paper. Pruning of tree-traversal based on local error cri-
teria as well as empty space leaping should speed up the ren-
dering performance considerably.

Internally the simulation computes the densities for the
different components of the gas separately, so it would be
interesting to use this data directly and apply measured ex-
tinction curves for the different compoments. Further for
other kind of simulations, e.g. scenarios with dust present in
the intergalactic medium, the effects of multiple scattering
should be investigated, e.g. based on the approach described
in [MHLH05].

8. Acknowledgements

This work was partially supported by the Max-Planck-
Institute for Gravitational Physics (Albert-Einstein Insti-
tute), Potsdam/Germany and the NSF CAREER award AST-
0239709 from the National Science Foundation.

We thank Malte Clasen (Zuse Institute Berlin) for fruitful
discussions.

c© The Eurographics Association 2006.

109



Kaehler et al. / GPU-Assisted Raycasting for Cosmological AMR Simulations

References

[ABN02] ABEL T., BRYAN G. L., NORMAN M. L.: The
Formation of the First Star in the Universe. Science 295
(Jan. 2002), 93–98.

[AW02] ABEL T., WANDELT B. D.: Adaptive ray tracing
for radiative transfer around point sources. Monthly No-
tices of the Royal Astronomical Society 330 (Mar. 2002),
L53–L56.

[AWB06] ABEL T., WISE J. H., BRYAN G. L.: The
HII Region of a Primordial Star. Astrophysical Letters
(2006).

[BCL02] BROMM V., COPPI P. S., LARSON R. B.: The
Formation of the First Stars. I. The Primordial Star-
forming Cloud. Astrophysical Journal 564 (Jan. 2002),
23–51.

[BL97] BRYAN G. L., L. N. M.: A Hybrid AMR Appli-
cation for Cosmology and Astrophysics. In Workshop on
Structured Adaptive Mesh Refinement Grid Methods, IMA
Volumes in Mathematics No. 117 (1997), Chrisochoides
N., (Ed.), pp. 165–+.

[BO84] BERGER M. J., OLIGER J.: Adaptive mesh re-
finement for hyperbolic partial equations. Journal of
Computational Physics 53 (1984), 484–512.

[CN93] CULLIP T., NEUMANN U.: Accelerating volume
reconstruction with 3D texture mapping hardware. Tech.
Rep. TR93-027, Department of Computer Science at the
University of North Carolina, Chapel Hill, 1993.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (2001), pp. 9–16.

[FBO] OpenGL Framebuffer-Objects Specification.
http://oss.sgi.com/projects/oglsample/registry/EXT/frame
buffer_object.txt.

[GWGS02] GUTHE S., WAND M., GONSER J.,
STRASSER W.: Interactive rendering of large vol-
ume data sets. In VIS ’02: Proceedings of the conference
on Visualization ’02 (Washington, DC, USA, 2002),
IEEE Computer Society, pp. 53–60.

[HQK05] HONG W., QIU F., KAUFMAN A.: Gpu-based
object-order ray-casting for large datasets. In Proceed-
ings of Fourth International Workshop on Volume Graph-
ics (2005), pp. 177–240.

[KH02] KÄHLER R., HEGE H.-C.: Texure-based Volume
Rendering of Adaptive Mesh Refinement Data. The Visual
Computer 18, 8 (2002), 481–492.

[KPHE02] KNISS J., PREMOZE S., HANSEN C., EBERT

D.: Interactive translucent volume rendering and procedu-
ral modeling. In Proceedings of IEEE Visualization 2002
(2002), IEEE Computer Society Press, pp. 109–116.

[KW03] KRUGER J., WESTERMANN R.: Acceleration
techniques for gpu-based volume rendering. In VIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03)
(Washington, DC, USA, 2003), IEEE Computer Society,
p. 38.

[LHJ99] LAMAR E. C., HAMANN B., JOY K. I.: Mul-
tiresolution techniques for interactive texture-based vol-
ume visualization. In IEEE Visualization ’99 (San Fran-
cisco, 1999), Ebert D., Gross M., Hamann B., (Eds.),
IEEE, pp. 355–362.

[MHLH05] MAGNOR M., HILDEBRAND K., LINTU A.,
HANSON A.: Reflection nebula visualization. In Proceed-
ings of Visualization 2005 (2005), IEEE, pp. 255–262.

[RGW∗03] ROETTGER S., GUTHE S., WEISKOPF D.,
ERTL T., STRASSER W.: Smart hardware-accelerated
volume rendering. In VISSYM ’03: Proceedings of the
symposium on Data visualisation 2003 (Aire-la-Ville,
Switzerland, Switzerland, 2003), Eurographics Associa-
tion, pp. 231–238.

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T.,
ERTL T.: A simple and flexible volume rendering frame-
work for graphics-hardware-based raycasting. In Fourth
International Workshop on Volume Graphics (Washing-
ton, DC, USA, 2005), pp. 187– 241.

[SWH05] STALLING D., WESTERHOFF M., HEGE H.-
C.: Amira: A highly interactive system for visual data
analysis. In The Visualization Handbook (2005), Hansen
C. D., Johnson C. R., (Eds.), Elsevier, pp. 749–767.

[WOK∗03] WEBER G. H., OEHLER M., KREYLOS O.,
SHALF J. M., BETHEL W., HAMANN B., SCHEUER-
MANN G.: Parallel cell projection rendering of adap-
tive mesh refinement data. In Proceeding of the IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics (Los Alamitos, California, 2003), Koning A.,
Machiraju R., Silva C. T., (Eds.), IEEE, IEEE Computer
Society Press, pp. 51–60.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN

C., ZIMMERMAN K., ERTL. T.: Level-of-detail volume
rendering via 3D textures. In IEEE Volume Visualization
and Graphics Symposium 2000 (2000), pp. 7–13.

[YNCP05] YUAN X., NGUYEN M. X., CHEN B.,
PORTER D. H.: High dynamic range volume visualiza-
tion. Proceedings of IEEE Visualization 2005 (2005),
327–334.

c© The Eurographics Association 2006.

110


