
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Capture and Review of Interactive Volumetric Manipulations
for Surgical Training

Thomas Kerwin†1,2 Han-Wei Shen‡1 Don Stredney§1,2

1Ohio State University
2Ohio Supercomputer Center

Abstract
In this paper, we present a system to capture efficiently a given user’s interaction with a simulation system involving
the procedural removal of material inside a volume, and to allow for a full 3D, lossless reviewing of that interaction
at a later date. We describe an extension of this system to enable reviewing to occur at arbitrary points in the
surgical procedure. The extension uses a combination of volume snapshots and event recording to be efficient in
both time and space requirements.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications J.3 [Com-
puter Applications]: Life and Medical Sciences

1. Introduction

Simulations gain utility by the repeatability of training and
testing procedures. Ensuring uniformity in conditions of a
simulation gives a higher confidence to associations drawn
between the performances. In addition, the uniformity and
repeatability of procedures facilitates the review of individ-
ual performance. In training simulators, it is helpful to cap-
ture the interaction so that the user can evaluate his or her
own mistakes or so the instructor can point out problem
areas. In testing simulators where performance is used for
evaluation, reviewing the interaction of the user with the sys-
tem is critical for uniform, multiple evaluations and for the
reproducibility of results. Key to consistent and precise eval-
uations is the ability of the system to return similar results
under different conditions.

In interactive simulations, our experience is that while
many novices prefer immediate notification of error, more
proficient residents prefer to defer notification, and to re-
ceive feedback as a total score, perhaps with key milestones
separately ranked. The simulation environment that we have

† kerwin@cse.ohio-state.edu
‡ hwshen@cse.ohio-state.edu
§ don@osc.edu

designed requires capture of user performance for two con-
texts:

1. to capture an expert performance so that a novice may
invoke a playback of how an expert would execute the
procedure, and

2. to capture novice activities for an evaluation that can ei-
ther be statistical or interactively viewed.

This medical simulator is being developed to integrate
haptic, visual and auditory interaction in order to create
a comprehensive simulation for the dissection of temporal
bone for training purposes. The simulator uses an internal
volumetric representation of the temporal bone located in
the lateral region of the skull to emulate surgical interac-
tions. The bone is represented in the simulator by a four
channel RGBA volume. The user input for the bone drill
is accomplished by using a PhantomTM three dimensional
haptic force feedback device and a foot pedal that controls
the drill speed. Visual feedback is accomplished with direct
volume rendering. As the user drills into the bone, the bone
density of the voxels is reduced and the display is updated
with the new density values. For a detailed explanation of
the architecture, refer to Jason Bryan et al. [BSWS01].

In this paper, we describe a system which provides capture
and review of user modifications of the volumetric represen-
tation of a temporal bone. This system facilitates both of the

c© The Eurographics Association 2006.

71

http://www.eg.org
http://diglib.eg.org


T. Kerwin, H. Shen, D. Stredney / Capture and Review of Interactive Volumetric Manipulations for Surgical Training

above contexts and does so efficiently in terms of both disk
space and time. In addition, this system provides for more
rigorous deferred feedback for the more experienced while
not impairing immediate feedback for novices.

2. Related Work

As mentioned earlier, this work is an extension of the sim-
ulator by Jason Bryan et al. [BSWS01]. That simulator is
designed to run on an SGI Onyx 2 workstation. Our re-
vised system follows the same general architecture, but tar-
gets off-the-shelf PC systems with high-end graphics cards.
Other temporal bone simulation environments have been de-
veloped by the Stanford BioRobotics Lab [MSB∗04], Agus
et al. at CRS4 [JTP∗01].

Recordings of interactions can be used as data to other
forms of analysis. Studies like those of Sewell [SMB∗05]
use derived quantities of the simulation such as visibility to
quantify risk. Using a capturing system like ours would al-
low researchers pursuing similar ideas to do analysis without
collecting more expert interactions. This would be impossi-
ble with a 2D movie.

One way to record the interaction is with a 3D movie.
Extensive work has been done on various 4D volumetric
compression schemes for accelerated playback. Sohn et al.
[SBS02] use a lossy wavelet based algorithm with difference
frames based on the general algorithm found in the com-
monly used MPEG movie standard and achieve compression
ratios from 150:1 to 300:1 with root mean squared errors of
around 0.10. Wang and Shen [WS04] extend the time-space
partition tree described earlier by Shen [SCM99] with loss-
less wavelet compression to achieve compression results of
5:1 to nearly 20:1.

Unfortunately, we cannot exploit the substantial compres-
sion ratios obtained by lossy algorithms because the re-
view of the interaction will be analyzed later by the in-
structors. Any misjudgment based on artifacts produced by
lossy compression is unacceptable. Furthermore, many of
the time series volume compression schemes in the current
literature take considerable time to perform the compression.
Nguyen and Saupe [NS01], using an accelerated algorithm,
achieve compression times of around one to two minutes for
a 256MB dataset. Because this simulator is designed to be
used in an interactive environment, we want to avoid lengthy
post-processing before review.

Additionally, using 4D compression techniques would re-
quire saving every frame of interaction as a separate volume
and then processing the entire dataset at the end of the ses-
sion. In our case, the volume is modified in specific amounts
within a moving area of influence (the drill burr) rather than
modified across the entire volume. By saving the input pa-
rameters of the drilling algorithm that modifies the volume,
we can save much more space than a general method of sav-
ing raw data of the modified volume.

3. Capture and Review

The most obvious way of capturing a record of the user in-
teraction is a movie capture. This is simple to implement:
record a screen capture at the FPS desired. However, cre-
ating a two-dimensional movie of the simulation does not
capture the full range of data. Arbitrary orientation of the
dataset on review is impossible with this approach, as is us-
ing an interactive clipping plane to more precisely determine
relationships between the surgical tools and critical anatom-
ical structures. Making a fully three-dimensional movie by
simply saving the volume data is not a viable option either.
Although playback of large time series volumes is possible,
recording volumes to disk in real time is not feasible, espe-
cially with sessions regularly lasting over fifteen minutes.

3.1. Our method

The solution is to record the events, rather than the outcome,
by storing their position and time, along with all the informa-
tion needed to recreate them. To review the original interac-
tion, we use the same algorithms contained in the simulation
logic to recreate the output from the user’s input.

The events are categorized when they are captured. The
categories that events fall under include drilling events,
which save the speed and position of the drill, and state
change events, like the changing of the burr tip size. We save
these categorized events instead of raw device input to allow
more easily the use of the devices during playback.

To rigorously compare the performance of different users
on the simulation system requires a method to capture the
procedure at the moment of use. The system therefore re-
quires the abstraction of the user’s activities. Our simula-
tion system processes input from specialized input devices.
Therefore, extension was relatively straightforward. We have
employed a difference based system: instead of storing the
state of the system at every timestep, we store the difference
between timestep ti−1 and timestep ti in terms of the user
events that precipitated the data change between those two
states. The general steps of this system are as follows:

1. User presses record button
2. Events are captured while user interacts with the system
3. User presses end record button
4. Event list is processed and snapshot volumes are created
5. Processed event list is saved for later review

3.2. Cueing

Cueing is an essential feature of a good capture and review
system. It allows a reviewer to go to a specific time in an
interactive session and start reviewing from that time step.
Without cueing, the reviewer would need to watch the entire
procedure multiple times when he or she is only interested
in re-examining specific sections.

A potential drawback of the system described to this point

c© The Eurographics Association 2006.

72



T. Kerwin, H. Shen, D. Stredney / Capture and Review of Interactive Volumetric Manipulations for Surgical Training

is that when a cue point is selected, the system must, in ef-
fect, “fast forward” through the event list from the beginning
to the time point specified by the user. The volume must
be modified for every drilling event that interacts with the
volume during review. Assuming drilling events will be dis-
tributed evenly in time throughout the sequence, the time it
takes to cue to time T increases linearly: O(T ). Our system
improves the performance to a worst case of O(logT ).

We do this by using a sequence of snapshot volumes that
can be used to jump ahead to defined points. The internal
representation of the snapshot volume list contains pairs con-
sisting of a filename and a time stamp. To start the playback
from a time t, we need to find the right entry from the ones
in this list (see figure 3), by finding the filename with the
largest timestamp that is less than t. If none are found, then
t is before any recorded snapshots and no more loading of
data is needed. This operation can be done with a binary
search, resulting in a O(logn) performance penalty, where n
is the number of snapshot volume entries in the list. When
the snapshot volume entry is found, we fetch the volume
from disk and load it into memory.

After finding the snapshot volume x, we also need to
find the events that, when replayed, will take the dataset
from sequence time time(x) to time t. This is a subse-
quence of the list E of all user events. This subsequence is
{e1,e1 + 1 . . .e2 − 1,e2} where e1 is the first element in E
after the snapshot’s timestamp and e2 is the last event occur-
ring before time t.

After finding these events and their positions in the list, we
process all the events between them in chronological order:
not in actual clock time, but as fast as the system can allow.
The goal is to get the dataset to a replica of its state at time
t so that the user can review the interaction in actual time
starting from time t.

As mentioned earlier, this procedure takes only O(log t)
time to execute: the binary searches are O(log t) and the time
taken to replay the user events after the snapshot is loaded is
bounded depending on the decision function discussed in the
next section. In practice, the time taken to load the snapshot
volume and play back the individual drilling events over-
whelms the time taken to search the list, giving nearly con-
stant time performance.

3.3. Snapshot capture and storage

An important component of a system that allows users to
jump to arbitrary timestamps using snapshots is the proce-
dure of taking and storing those snapshots. Our system is
designed to run on standard PC systems, and capturing sev-
eral gigabytes of data per simulation session can quickly be-
come unmanageable in a typical medical teaching environ-
ment. Therefore, to store the snapshot volumes efficiently,
we use both difference volumes and compression. Calculat-
ing both of these during simulation is too expensive and, in

our tests, interferes with the interactivity of the simulator.
This is unacceptable, so we need to do this in a short post-
processing step.

Even with a limited number of volume snapshots, record-
ing the entire volume every so often could add up to a large
data size during a long interaction. To reduce the data storage
needed, we use a difference volume technique. In the simula-
tor, even though we have many voxels around the dissected
area for spatial reference and realism, only a particular re-
gion in the volume is commonly modified. Consequently,
we can save a great deal of space by encoding a snapshot
volume by saving the difference between the current voxel
opacity and the original opacity.

This encoding should not be confused with the type of dif-
ference encoding found in, for example, the MPEG standard.
An example of this type of compression applied to volumet-
ric movies is described by Guthe and Straßer [GS01]. In that
case, the decoding of a frame x requires the information from
frame x−1. In our case, we take differences from the dataset
at timestamp 0. Therefore, in order to decode a difference
volume at time g, we require just that difference volume and
the original volume. If we had implemented the difference
encoding for the volumes in a similar way as the MPEG
standard, we would need to load many difference volumes
to get to our initial cueing position instead of just one.

At the beginning of the interaction session, the system
stores a copy of the volume for later comparison. The times
that the snapshot volumes are taken are determined by a de-
cision function. This decision function (call it D) must obey
two requirements (also see figure 4):

D(t) > D(t−1) where there is no snapshot at t (1)

D(t) = 0 where there is a snapshot at t (2)

In other words, the function is non-decreasing until a snap-
shot volume is taken, at which time it resets. This is meant to
be a measure of both the amount of difference from the last
snapshot, and the time it would take to process events from
the last snapshot. The goal is to choose a function that will
decide to save snapshot volumes when it will take less time
to load the difference volume from disk than it will to pro-
cess the raw events in sequence to replicate that state from
an earlier timestamp.

The decision function we use for this project is based on
the number of voxels modified. For each drilling event, we
calculate this number. If no voxels are modified, it takes very
little time to process. If some voxels are modified, the burr
kernel must be subtracted from an area of the volume, which
is a significant performance hit for the simulator, and is the
most demanding task besides rendering. Furthermore, the
size of a difference volume is related to the modified voxels:
if the number of modified voxels is too large, the difference
volume loses compressibility. We compress the volume after
differencing using the open source zlib library.

c© The Eurographics Association 2006.

73



T. Kerwin, H. Shen, D. Stredney / Capture and Review of Interactive Volumetric Manipulations for Surgical Training

Test 1 Test 2
interaction time 117 180
processing time 9.656 16.344

fast cueing 5 5.032
slow cueing 15 25.2

Figure 1: Fast vs. slow cueing. Times are in seconds.

4. Results

The development platform used for these results is an Athlon
64 3200+ with 2GB of RAM. The dataset used is a processed
CT scan stored as a 128x256x512 four channel volume.

The use of the snapshot volumes decreases times when
jumping ahead to a section of the interaction review by a sig-
nificant amount, as seen in the figure below. In these tests,
we gave the cueing algorithm the time index at the end of
the interaction. The slow cueing row gives times for which
the algorithm used the naïve approach where every event is
played back. The fast cueing refers to our accelerated algo-
rithm. Much of the time in the fast cueing is taken by the
initial load of the volume, which takes about 2.5 seconds for
both cueing algorithms. The time taken for decompression
of the volume is only about 100 milliseconds.

The compression for the difference volumes is quite good.
In test two above, five difference volumes were saved to disk
with file sizes ranging from 123KB to 203KB. Given the un-
compressed datasize of 16MB per volume, this shows com-
pression ratios of 80:1. The file sizes increased as the times-
tamp associated with them increased. This is not surprising,
since the difference from the original volume increases as
the user drills away more of the bone. Still, most of the bone
structure is untouched, generating many zeros and allowing
very high lossless compression.

The size of the saved event list file ranges from 200KB to
500KB, and will increase as the time of interaction with the
simulation increases. This is a required file for both types
of cueing. As a comparison, a 2 minute long movie of a
3D interaction at 15 frames per second would have 1800
frames and would require more than 28GB of data uncom-
pressed. We store the same information in one 500KB event
file and five difference volumes of around 200KB each, to-
taling 1.5MB. This is equivalent to a compression ratio of
more than 19000:1.

5. Conclusion and Acknowledgments

By capturing the user’s interaction with the simulation, we
can play back the interaction for expert reviewers and po-
tentially use the data for automatic scoring systems and fur-
ther research into drilling techniques and statistical analysis.
Also, the framework we have described allows us to demar-
cate snapshots in the future with semantic meaning, giving
a reviewer the option to skip to a stage in the surgery, rather

than to a time four minutes from the start. The optimization
metric would have to be altered to take into account logi-
cal separations in the procedure, either through explicit com-
mands by the user or implicit information from heuristics or
machine learning techniques.

This work is supported by grants NIH NIDCD 5R01-
DC006458-02 and NSF RI-CNS-0403342. The authors
would like to thank Dr. Gregory Wiet at Children’s Hospital–
Columbus for his continued support and feedback. Thanks
also go to Irene Giller and Bill Kerwin for their helpful edit-
ing suggestions.

References

[BSWS01] BRYAN J., STREDNEY D., WIET G., SES-
SANNA D.: Virtual temporal bone dissection: a case study.
In IEEE Visualization (2001), pp. 497–500.

[GS01] GUTHE S., STRASSER W.: Real-time decompres-
sion and visualization of animated volume data. In IEEE
Visualization (2001).

[JTP∗01] JOHN N. W., THACKER N., POKRIC M.,
JACKSON A., ZANETTI G., GOBBETTI E., GIACHETTI

A., STONE R., CAMPOS J., EMMEN A., SCHWERDT-
NER A., NERI E., FRANCESCHINI S. S., RUBIO F.: An
integrated simulator for surgery of the petrous bone. In
MMVR (2001).

[MSB∗04] MORRIS D., SEWELL C., BLEVINS N.,
BARBAGLI F., SALISBURY K.: A collaborative virtual
environment for the simulation of temporal bone surgery.
In Conference on Medical Image Computing and Com-
puter Assisted Intervention (2004).

[NS01] NGUYEN K. G., SAUPE D.: Rapid high quality
compression of volume data for visualization. Comput.
Graph. Forum 20, 3 (2001).

[SBS02] SOHN B.-S., BAJAJ C., SIDDAVANAHALLI V.:
Feature based volumetric video compression for interac-
tive playback. In Proceedings of the 2002 IEEE sym-
posium on Volume visualization and graphics (2002),
pp. 89–96.

[SCM99] SHEN H.-W., CHIANG L.-J., MA K.-L.: A fast
volume rendering algorithm for time-varying fields using
a time-space partitioning (tsp) tree. In IEEE Visualization
(1999), pp. 371–377.

[SMB∗05] SEWELL C., MORRIS D., BLEVINS N.,
BARBAGLI F., SALISBURY K.: Quantifying risky behav-
ior in surgical simulation. In MMVR (2005).

[WS04] WANG C., SHEN H.-W.: A Framework for Ren-
dering Large Time-Varying Data Using Wavelet-Based
Time-Space Partitioning. Tech. Rep. OSUCISRC-1/04-
TR05, Department of Computer and Information Science,
The Ohio State University, 2004.

c© The Eurographics Association 2006.

74


