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Abstract

Multi-dimensional Transfer Functions (MDTFs) are increasingly used in volume rendering to produce high qual-
ity visualizations of complex data sets. A major factor limiting the use of MDTFs is that the available design tools
have not been simple enough to reach wide usage outside of the research context, for instance in clinical medical
imaging. In this paper we address this problem by defining an MDTF design concept based on improved histogram
display and interaction in an exploratory process. To this end we propose sorted histograms, 2D histograms that
retain the intuitive appearance of a traditional 1D histogram while conveying a second attribute. We deploy the
histograms in medical visualizations using data attributes capturing domain knowledge e.g. in terms of homogene-
ity and typical surrounding of tissues. The resulting renderings demonstrate that the proposed concept supports a
vast number of visualization possibilities based on multi-dimensional attribute data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Viewing algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques – Interaction techniques; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism – Color, shading, shadowing, and texture;

1. Introduction

Visualization applications are often faced with great chal-
lenges in form of advanced user objectives and complex
data sets. A good example is medical imaging where the di-
agnostic assessments require precise information while the
data sets are problematic; they may have uncalibrated scale,
noisy features or overlapping tissue value ranges. Moreover,
a clear trend is that multi-variate data sets are becoming
more common, such as dual source volumes from the com-
ing generation of Computed Tomography (CT) modalities.

An approach that has been employed to achieve these ad-
vanced visualizations is Direct Volume Rendering (DVR)
using Multi-Dimensional Transfer Functions (MDTFs).
Even though MDTFs have been successfully applied in some
cases, there are prohibitive drawbacks in other situations.
First of all, the complexity of the design tools is a major
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obstacle for wide-spread acceptance in non-research envi-
ronments. For instance, the requirements from the medical
imaging field are extremely demanding: the time available to
achieve the visualization is merely a few minutes while the
diagnostic question requires far from trivial Transfer Func-
tions (TFs). A second drawback is that there are still many
visualization tasks that cannot be achieved by the previously
proposed methods.

The concepts of this paper are based on our experience of
clinical DVR usage. A first insight is that the largest potential
to both enhance visualization quality and simplify user inter-
action lies in fully exploiting the user’s domain knowledge
of the data set and the task at hand. Furthermore, there are
clear disadvantages with fully automatic methods, e.g. static
TF presets. When exploring the data set by changing and re-
fining the visualization, more information can be obtained.

The first part of our design concept for MDTFs is the
sorted histogram, consisting of a traditional 1D histogram
where the data values are sorted and colored according to a
second attribute. Figure 1 shows an initial example. Com-
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Figure 1: Benefit of sorted histograms. Left: This synthetic
data set consists of two parts with overlapping Gaussian dis-
tributions. Middle: An ordinary histogram does not reveal
that there are two objects. Right: A sorted histogram, color-
mapped to a classifying attribute, can reveal the underlying
structure: ‘yin’ maps to blue (dark) and ‘yang’ to yellow
(light).

pared to other 2D histograms, the occurrence of intensity
values is always readily visible, enabling an at-a-glance
overview of this most important dimension. (In the his-
togram context we use “1D” and “2D” to describe the num-
ber of attributes that are shown in the histogram.) Selecting
a region in a sorted histogram is then a straightforward way
of creating a 2D TF. A useful variant is the relative sorted
histogram that displays the relative distribution of second at-
tribute values for each intensity value.

The second component of our concept is a set of classi-
fying attributes, where we employ several attributes that ef-
fectively capture domain knowledge, as complements to the
common gradient-based measures. These attributes include
range weight and local variance, and we show that they en-
able additional visualization possibilities within an MDTF.

Finally, we present a TF design process making use of the
above contributions. Employing an exploratory paradigm we
let the user dynamically define attributes, display them in
sorted histograms, select regions in the histogram that de-
fines classification criteria, and iterate this procedure. The
resulting MDTF is continuously refined based on the con-
clusions made in the process. A main advantage of this ap-
proach is that any type of classifying information can be in-
corporated in a uniform way.

2. Related work

This section will briefly review related research on MDTF
design. Two-dimensional TFs were initially proposed by
Levoy [Lev88] in 1988, suggesting that gradient magnitude
is a valuable additional attribute apart from the intensity
value. Kindlmann and Durkin [KD98] proposed a TF model
by adding the first and second derivative along the gradient
direction as extra attributes. This 3D histogram yields good
separation of material boundaries and enables a more ad-
vanced rendering. Kniss et al. [KKH02] extended this model
with TF design widgets. Another boundary enhancement is
the 2D lighting TF by Lum and Ma [LM04]. For each sam-
ple in the rendering process, a second sample is taken at an

offset determined by the gradient. In recent work Šereda et
al. [ŠVSG06] propose the LH-histogram to overcome some
limitations of intensity vs. gradient histograms. The two at-
tributes are the low and high extremes around each voxel af-
ter applying a gradient based boundary model. Furthermore,
curvature-based TFs have been shown to add visualization
possibilities [HKG00,KWTM03], e.g. separation within iso-
surfaces.

A drawback of MDTFs is the high complexity that make
them too cumbersome for most usage outside the research
context. One way to simplify the TF construction is to avoid
specification in the data domain and let the user implicitly
define the TF through more intuitive types of interaction.
One example is iterative selection in a gallery of automati-
cally generated TF variations [HHKP96, MAB∗97, KG01].
Further examples include high-dimensional TFs created
through data probing [TLM03] and interaction with a clus-
tering algorithm [TM04b]. Moreover, efficient tissue clas-
sification has been achieved through creation of additional
attributes based on straight-forward user knowledge of the
data set [LLY05].

Explicit design of MDTFs guided by 2D histograms is
employed in some of the above approaches. A typical im-
plementation displays intensity and gradient axes, where
the occurrence is color-coded [KKH02]. The LH-histogram
[ŠVSG06] has a similar 2D display. In 2D histograms the
variations in occurrence are not intuitive to perceive com-
pared to 1D histograms, where the occurrence maps to
height. Recently, Lundström et al. [LYL∗06] introduced the
α-histogram that further increases the usefulness of 1D-
histograms by amplifying spatially coherent value ranges.

Several types of attributes have been proposed for ad-
ditional TF dimensions. Gradients and second derivatives
are common [KKH02], and other boundary measures ex-
ist [ŠVSG06]. These approaches are less suitable for more
noisy data such as Magnetic Resonance (MR) images
[PBSK00] and they do not capture interior characteristics
of materials. These drawbacks are a major motivation for
the alternative attributes proposed in this paper. For multi-
variate data, MDTFs are a natural choice, both for the data
dimensions themselves as well as derived tensor measures
[KKH02].

3. Exploratory visualization

Several researchers underline the value of carrying out vi-
sualizations in an exploratory process. Tory and Möller
[TM04a] acknowledge that efforts to reduce user input may
be counterproductive. Rheingans [Rhe02] points out that the
exploration is not only useful as a way to find the best final
visualization, it also creates additional understanding during
the process. In line with these ideas, the objective for our vi-
sualization scheme is to harness the great human ability for
advanced and creative analysis, as opposed to replacing it.
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Figure 2: Static presets can lead to incorrect conclusions,
even for calibrated intensities as in this CT angiography.
Left: The rendering using the standard TF indicates a steno-
sis, pointed out by the arrow. Right: Exploring other TF set-
tings clearly shows that there is no stenosis.

In medical imaging, the problems for automated schemes
are particularly challenging since the data sets vary consider-
ably from patient to patient due to the variations in anatomy
and examination parameters. The uncalibrated scale of MR
images is another complication, hindering preset visualiza-
tion parameters. CT images have a calibrated scale, but there
are slight variations also in this case. One example is given
in figure 2, where the standard TF for this CT angiography
implied a stenosis. This diagnosis lead to an angioplastic in-
tervention, which turned out to be pointless since no stenosis
was found. When the data set was reviewed again by manu-
ally adjusting the TF back and forth, i.e. a rudimentary ex-
ploratory visualization, it became evident that the stenosis
indication was false.

We have identified four requirements that are essential for
efficient exploratory visualization schemes:

a) Effective classification features
b) Input in the domain ‘language’ of the user
c) Simple user interaction
d) Uniform framework for all types of data sets

Existing MDTF design approaches does not fully meet the
above requirements: there are many cases when intensity and
boundary measures are not sufficient as discriminators (a),
gradients and second order derivatives are not intuitive in a
non-technical context (b) and complex interaction is often
required to construct the MDTFs (c). Explicit classification
and segmentation can also be seen as a type of exploratory
visualization. They typically provide better discrimination
than general TFs (a), but commonly have limitations in inter-
activity (c) and for more difficult problems they often need
to be very specialized, i.e. there is no uniform framework
(d). It is clear that exploratory visualization still poses many
research challenges.

4. MDTF design concept

The major contributions of this paper is described in this sec-
tion. We will show that the concept presented in this paper

reduces the drawbacks of previous TF approaches and better
complies with the requirements of exploratory visualization
discussed in section 3. First, novel types of 2D histograms
are presented that can replace or act as complement to ex-
isting techniques. The following part describes attributes for
MDTFs that efficiently increase the classifying capabilities.
Then a usage work flow is presented that can accomplish
complex visualizations through simple means and finally
high-performing simplifications are described.

4.1. Histogram types

Regardless of additional attributes, the most important char-
acteristic for a voxel is always the intensity value. There-
fore, all 2D histogram variants in this paper have intensity as
the x-axis. Consider the traditional 2D histograms in figure
3. The occurrence of each combination of first and second
dimension values is mapped to a color. It is hard to do a
quick assessment to find the main characteristics of the data
set by comparing voxel clusters in terms of occurrence and
value ranges. A 1D histogram provides such an assessment
at a glance, thanks to the apparent peak structure. Moreover,
peaks in the intensity scale may be difficult to spot altogether
in the 2D case since they are smeared across the second di-
mension. Finally, many data sets have a fairly smooth dis-
tribution that makes the 2D histogram cluttered, such as the
angiography in figure 3.

Our first suggested 2D histogram type, the sorted his-
togram (fig. 4, left), is based on the idea of keeping the 1D
histogram shape, which ensures a direct understanding of the
intensity characteristics. The voxels are then sorted accord-
ing to the value of their second attribute, making high at-
tribute values end up near the top of the histogram curve.
Furthermore, the voxels are color-coded according to the
second attribute. We use a blue-green-yellow-white color
mapping, where white is the maximum value, and black
background for all examples in this paper. This paper does
not address the issue of finding the perceptually optimal
color map. The sorted histogram combines the simplicity of
the 1D histogram with the additional information of the tra-
ditional 2D histogram.

A limitation of the sorted histogram is that the 1D his-
togram curve often has very different scale across the inten-
sity value range. A logarithmic scale can help, but it may
still be hard to see changes in the distribution of second di-
mension values, which may be a sign that there is a distinct
material hidden in that range. Therefore, we also propose
a Relative sorted histogram (fig. 4, right). The histogram
always fills a rectangular space, and for each intensity (x-
axis) value, the sorted relative distribution of second attribute
values is shown. An appealing possibility is to display the
1D histogram overlayed on or above the relative sorted his-
togram to give a frame of reference.
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Figure 3: Limitation of traditional 2D histograms. Top row:
The CT tooth from [PBSK00], often used to demonstrate
boundary visualizations. Left: A data set slice. Right: The
traditional gradient-intensity histogram shows clear arcs
representing material boundaries. Bottom row: A CT an-
giography representing a typical medical data set. Left: A
data set slice. Right: The traditional 2D histogram is very
cluttered. This comparison demonstrates that traditional 2D
histograms have limited usage and that the homogeneous
materials and sharp boundaries of the CT tooth is not repre-
sentative for medical images in general.
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Figure 4: Proposed 2D histograms of the CT angiography of
figure 3. Left: Sorted histogram, a 1D intensity histogram is
sorted and colored (blue-green-yellow-white) according to
a second attribute (here: gradient magnitude). Right: Rela-
tive sorted histogram, a sorted histogram where the relative
distribution of the second attribute is shown.

4.2. Classifying attributes

Many types of attributes have been used for MDTFs in pre-
vious work: gradients, second derivatives, tensors, multi-
variate data, etc. We will extend this set with a number of
attributes derived from intensity values and/or spatial rela-
tions. Whereas gradients are good to classify boundaries,
they cannot add information on the interior of fairly mas-
sive objects such as human organs. Results from recent re-
search [LLY05, LLY] show that range weight (wr) is an ef-
fective discriminator for materials with overlapping inten-
sity ranges. The range weight stems from a simple statistical
neighborhood analysis and describes the neighborhood foot-
print in a given partial intensity range Φ:

wr(Φ,N) =
|N ∩VΦ|

|N| , (1)

where N is an arbitrary voxel neighborhood, VΦ is the set of
voxels within range Φ and |V | is the cardinality of a set V .
Range weights can act as proxies for material characteristics
that are readily available from domain knowledge: homo-
geneity, size and shape of materials, as well as proximity to
other materials.

Another type of attribute that combines intensity values
with spatial relations is local variance (σ2

n), i.e. the variance
in the neighborhood of the voxel:

σ
2
n(N) =

1
|N| ∑

v∈N

(
I(v)2 −

(
∑

v∈N

I(v)
|N|

)2
)

(2)

where I(v) is the value of voxel v. Minor materials are of-
ten invisible in the intensity histogram since the background
distribution completely covers them. The spatial coherence
level, however, may clearly distinguish them, a fact that is
exploited in the α-histogram enhancement [LYL∗06]. Thus,
tissues of interest can be defined by low variance. The oppo-
site may also be true, thin tissues like skin have higher local
variance than other elements of similar intensity.

Finally, a natural type of diversifying information is the
spatial location of materials. This has typically not been seen
as a part of TF models, whereas it is essential for many seg-
mentation schemes, for instance when users set seed points.
By incorporating geometric measures in our MDTF concept,
the power of these criteria can be utilized in the same way as
any other attribute. We use a weighted spatial distance ρ:

ρ(x) =
( 3

∑
i=1

(
ki(xi − ci)

)2
)1/2

(3)

where x = (x1,x2,x3) is the voxel position. The refer-
ence point (c1,c2,c3) is typically defined by the user and
(k1,k2,k3) are optional dimension-specific weighting fac-
tors. These measures can easily be turned into static geo-
metric models connected to data set types, e.g. body parts in
medical imaging.
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4.3. Work flow for MDTF design

For many visualization tasks the optimal rendering can only
be achieved by complex criteria in several attribute dimen-
sions, i.e. by an advanced MDTF. Attempts to directly inter-
act with all the dimensions at once is far beyond the capabil-
ities of most users. We propose a work flow where the user
works with a sequence of 2D histograms, studying one addi-
tional attribute at a time. The MDTF design process is then a
matter of switching between second attributes while keeping
the frame of reference given by the intensity x-axis. Con-
clusions made during the process will guide the choice of
upcoming attributes to study, resulting in a true exploration
of the data. The sorted histograms are particularly suitable
for this work flow, since their shape does not change when
changing second attribute. Materials are defined by direct
range selections (fig. 5) and the process can be summarized
as:

1. Define a second attribute of the 2D histogram and select
a suitable histogram type.

2. Refine the MDTF by selecting an area in the histogram,
creating a material definition criterion

3. If needed, conclude which attribute to study next and
restart from step 1.

The area selection in the histogram could be performed
with one click to set the range center and mouse move-
ments to set the range size in the two dimensions. As the
user switches the second attribute, the voxel selection will
have a new distribution for the y-axis and the user can refine
the selection (fig. 5). The selected set of voxels are clearly
marked in the histogram, as well as the boundary of the
criterion in the current dimensions. The color and opacity
for the material would typically be set in a separate control.
Our approach can be generalized into a range selection func-
tion Θ(x) (eq. 4) defined as a product of threshold functions
θi(si(x)) with value range [0.0,1.0], typically consisting of
trapezoids and ramps. si(x) is the value of variate i at posi-
tion x.

Θ(x) = ∏
i

θi(si(x)) (4)

4.4. Simplifications for high performance

A prerequisite of exploratory visualization is that the needed
second attributes are not fully known in advance. Most at-
tributes must thus be calculated dynamically. Histogram in-
teraction does not have as high demands on performance as
rendering interaction does. Nevertheless, many of the above
operations are so time-consuming that they may cause bot-
tlenecks in the work flow. To achieve reasonably accurate
approximations very fast, we derive meta-data in form of
simplified histograms for non-overlapping cubical block re-
gions in the volume. We employ the straight-forward simpli-
fication scheme in [LLYM04] to represent histograms as 12
piece-wise constant segments.

Figure 5: Transfer Function design through voxel selection
in the histogram demonstrated by a synthetic data set. The
selected voxels are shown in red (shaded), the criterion in
the currently displayed dimensions is shown by dark red
curves. Top left: Sorted histogram with a range weight as
second attribute. Top right: The user sets a criterion, se-
lecting voxels in an intensity and a range weight interval.
Bottom left: The user switches to another second attribute,
a spatial distance to a reference point. The selected voxels
form two clusters in this dimension. Bottom right: The user
sets a criterion selecting the top cluster, i.e. voxels far from
the reference point.

Using the simplified histograms, range weight and local
variance attributes can be calculated at block level. The full
2D histograms and the set of selected voxels within them
can then efficiently be computed. One possibility is to derive
individual attribute values for each voxel as a linear inter-
polation of values of the nearest blocks. Another solution is
to let all voxels in a block be approximated by the attribute
value of the corresponding block and assign voxel intensi-
ties according to the simplified histogram. Such a solution is
shown in figure 6.

Another approach for calculating range weights and local
variance with intermediate quality and performance is to re-
place the full spherical neighborhood operators by 3D cross
neighborhoods instead, see [LLY] for details.

5. Results

This section will present histogram displays and result-
ing renderings that exemplify some benefits of sorted his-
tograms. The DVR images have been created by a single-
pass, GPU-based raycaster [SSKE05] working on multivari-
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Figure 6: Histogram approximation. Left: Part of a sorted
histogram of the angiography in figure 4 with selected voxel
set (red/shaded). Right: An approximation where both the
sorted histogram and the voxel selection are estimated from
block-level meta data.

ate data represented as separate volumes. The resulting color
c of each sample is given by the range selection functions
Θm(x) (eq. 4) and transfer functions τm(s0) defined for each
material m, where s0 is the intensity sample:

c(x) = ∑
m

τm(s0) ·Θm(x) (5)

In the examples below the materials have non-overlapping
ranges, i.e. only one Θm function is non-zero at each posi-
tion. Within overlapping ranges, c should instead be set as
the average of the non-transparent materials for the sample.

In order to demonstrate the work flow of section 4.3 we
describe a potential usage scenario for the MR bile duct
examination in figure 7 and color plate figure C1. An ex-
ploratory visualization session is started by displaying an α-
histogram enhancement of the data set (fig. 7a). An unex-
pected secondary peak appears. To investigate this further,
a sorted histogram is created with the range weight (spher-
ical neighborhood, radius 3.0 voxels) for the peak interval
as second attribute (fig. 7b). The top part of the histogram
peak is then selected in order to visualize the corresponding
voxels. This makes a liver tumor appear, but also a signifi-
cant amount of non-relevant tissues such as the spleen (top
right) and other disturbing fragments (fig. 7d). Therefore,
the second attribute is changed into a spatial radius mea-
sure through a mouse click at the center of the liver tumor.
Then the tumor region can be easily selected in the sorted
histogram (fig. 7c), making the tumor clearly rendered with-
out cluttering (fig. 7e).

An important part of forensic visualizations is the study
of metal fragments since they can indicate the path of bul-
lets and if the bullet was deflected before entering the body.
Results from a virtual autopsy, usually a DVR visualization
of a CT scan of the human cadaver, is crucial to the crimi-
nal investigation. A problem is that minor metal fragments
can be overlooked since their location may be unexpected.
Using the proposed techniques in form of a range weight at-
tribute (spherical neighborhood, radius 6.0 voxels) makes it

Table 1: Error vs. performance of simplified attributes, top:
range weight, bottom: local variance. Neighborhoods – Ex-
act measures: sphere of radius 5.0 = 514 voxels, 3D cross:
radius 5 = 30 voxels, block: 83 = 512 voxels. “Block” refers
to calculation at block level, “Block & interp.” further in-
clude deriving voxel-specific values. CT tooth: 256x256x160
voxels (last slice ignored to make even blocks), MR bile:
256x256x112 voxels. Times in seconds, SNR in dB.

Range weight CT tooth MR bile
Time SNR Time SNR

Exact 97.3 ∞ 65.3 ∞
3D cross 1.83 18.3 1.39 18.0
Block 0.007 - 0.005 -
Block & interp. 0.49 12.9 0.37 15.1

Local variance CT tooth MR bile
Time SNR Time SNR

Exact 98.6 ∞ 65.4 ∞
3D cross 2.40 25.6 1.69 19.8
Block 0.007 - 0.006 -
Block & interp. 0.49 18.2 0.37 16.5

possible to highlight not only the fragments, but also a neigh-
borhood of the fragments as in color plate figure C2, making
the visual localization much more simple.

An annoying problem of CT scans is that metal regions
cause severe streaking artefacts such as those originating
from the dental work in figure 8. One effect is that a render-
ing of the skin will be very incorrect around these metallic
regions. The proposed framework provides a possibility to
separate these artefacts from real skin by studying the vari-
ance: since real skin is close to both air and other soft tissue
it has higher variance than the slowly varying surrounding
of streaking metal artefacts. Selecting high-variance voxels
(spherical neighborhood, radius 2.0 voxels) effectively re-
moves the artefacts, as seen in figure 8. Other ‘false skin’
voxels such as the bed in the background are also removed.

The approximations of range weight and local variance
based on simplified block histograms (section 4.4) have been
evaluated, see table 1. The calculation times are dramatically
reduced and the introduced error in the attribute volume is
moderate. A natural approach is to use the approximations
during histogram interaction and retrieve the exact values
when interaction stops. Figure 6 shows that the error due
to these approximations in a sorted histogram is minor.

6. Conclusions

We have presented a design concept for MDTF design, intro-
ducing sorted histograms as a convenient way of defining a
material through criteria in multiple dimensions. Even in the
case when the color mapping of the second attribute does not
reveal new information, the sorting enables efficient material
definitions through direct selection in the sorted histogram.
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Figure 7: Work flow of creating a MDTF that highlights the liver tumor, see text for details. The histograms do not show
material definitions for liver (large triangular object) or bile duct (‘tree’ at the liver center). a) An α-histogram reveals a minor
peak. b) A sorted histogram highlighting coherent tissue in the range of the peak is the first classification step. c) Non-relevant
tissue fragments are removed through another sorted histogram showing spatial distance from the tumor center. d) Rendering
using the coherence criterion only. e) Rendering with both criteria, a clear view of the tumor (low left part of the liver).

Although preliminary user reactions are positive, we need
to conduct a thorough user study in order to draw reliable
conclusions about the benefits and limitations of sorted his-
tograms as a TF construction tool.

The range weight and local variance attributes proposed
in this paper have been put to successful use as additional
variates of the data set. They have proven to accomplish vi-
sualization objectives that were not possible with previous
1D TF or MDTF approaches. The range weight is especially
useful since it can be adapted to the conclusions drawn dur-
ing the exploration. We have also shown that the measures
can be efficiently calculated using block-level meta data. A
limitation is that it is impractical to store meta data for all
block sizes, making the neighborhood-based measures less
flexible. Furthermore, we have demonstrated that geomet-
ric criteria can be treated as additional attributes, enabling a
uniform handling of all user input to the MDTF.
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