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Abstract

This paper describes an extension to the technical framework of Constructive Volume Geometry (CVG) in order
to accommodate point clouds in volume scene graphs. It introduces the notion of point-based volume object
(PBVO) that is characterized by the opacity, rather than the geometry, of a point cloud. It examines and compares
several radial basis functions (RBFs), including the one proposed in this paper, for constructing scalar fields from
point clouds. It applies basic CVG operators to PBVOs and demonstrates the inter-operability of PBVOs with
conventional volume objects including those procedurally defined and those constructed from volume datasets.
It presents an octree-based algorithm for reducing the complexity in rendering a PBVO with a large number of
points, and a set of testing results showing a significant speedup when an octree is deployed for rendering PBVOs.

Keywords: Volume graphics, volume visualization, volume scene graph, constructive volume geometry, point-
based modeling, point-based rendering, radial basis functions, ray casting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Object Modeling – Object
hierarchies; I.3.3 [Computer Graphics]: Image Generation – Display algorithms;

1. Introduction

Point-based modeling and rendering [PZvBG00, RL00] is
one of the major advances in computer graphics recently.
This collection of techniques enables direct and efficient
process of complex geometric objects represented by large
discretely sampled point clouds. As point-based rendering
techniques are fundamentally associated with the splatting
concept developed for direct volume rendering in the early
1990’s [Wes90, CM93, MY96], it is relatively straightfor-
ward to realize a splatting-based rendering system that can
handle both point clouds and volume datasets [ZPBG01].
However, this is less true for a ray-casting system that could
potentially enjoy higher rendering quality, more rendering
effects, more complex object composition, and higher level
scene representations such as volume scene graphs.

In this paper, we address several technical issues in com-
bining point clouds and conventional volume objects in Con-
structive Volume Geometry (CVG), which facilitates the
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modeling of complex objects using volume scene graphs
and the direct rendering of volume scene graphs using ray-
casting. Our contributions include:

• introducing the notion of point-based volume object
(PBVO) that is characterized by the opacity, rather than
the geometry (e.g., an isosurface), of a point cloud;

• examining and comparing several radial basis functions
(RBFs) for constructing scalar fields from point clouds,
and proposing a new RBF that offers more flexibility in
achieving a desired blending effect;

• extending several basic CVG operators to PBVOs in vol-
ume scene graphs and demonstrating the inter-operability
between PBVOs and conventional volume objects which
are constructed from volume datasets or defined procedu-
rally;

• developing an octree-based approach to the problem of
determining a subset of points that are relevant to each
sampling position in direct rendering a volume scene
graph involving PBVOs, and conducting a series of tests
showing a significant speedup when an octree is deployed
for a large PBVO.
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The remainder of the paper is organized as follows. In Sec-
tion 2, we give a brief overview of a collection of techni-
cal developments in volume graphics, implicit surfaces and
point-based techniques, which provide the basis as well as
motivation for this work. In Section 3, we introduce nec-
essary definitions for PBVOs in the framework of CVG,
and consider several RBFs, including the one proposed in
this work, for constructing scalar fields of a PBVO. In Sec-
tion 4, we discuss integration of PBVOs into volume scene
graphs, and examine the inter-operation between PBVOs and
conventional volume objects. We show the effectiveness of
specifying and constructing complex objects using primi-
tive objects defined on point clouds and volume datasets as
well as those defined procedurally. We also investigate into
the prospect of handling volume datasets in a point-based
manner. In Section 5, we address several technical issues in
rendering PBVOs and present an octree-based algorithm for
sampling a volume scene graph in ray casting. We give a
collection of testing results to aid our discussions on the per-
formance of the algorithm. Finally, in Section 6, we offer our
observations and briefly discuss possible future work.

2. Related Work

Many existing modeling schemes were designed to support
surface modeling and solid modeling [RV82]. Those which
are relevant to this work include boundary representations
(b-reps), constructive solid geometry (CSG), spatial occu-
pancy enumeration, implicit surfaces and octrees [Wat00].
There are also a number of modeling schemes capable of
representing non-solid objects, or objects whose boundary
cannot easily be determined. They include volume datasets,
particle systems, point clouds and image-based modeling.

In particular, implicit surfaces facilitate the representation
of ‘blobby models’ [Bli82], ‘meta balls’ [NHK∗85] and ‘soft
objects’ [WMW86] through scalar fields, and the composi-
tion of complicated objects from elemental field functions.
Its elegance lies in the mapping from implicit functions in
the real domain to surface-based objects primarily in the bi-
nary domain. The concept of CSG has been applied to im-
plicit surfaces [Duf92, WGG99], and the octree method has
been used for polygonizing implicit surfaces [Blo88] and
computing ray-surface intersections [KB89]. The scheme
has also been used to approximate volume datasets [HQ04].

The advances in volume visualization have produced a
collection of methods for rendering volume datasets, includ-
ing isosurfacing [LC87], ray casting [Lev88] and forward
projection [Wes90]. Volume modeling possesses more de-
scriptive power than surface and solid modeling. Though in
most cases, voxels are organized into a grid or a mesh, in
some cases, volume modeling with scattered data is neces-
sary (e.g., [Nie93]). The concept of CSG has been applied
to volume modeling through voxelization [WK93, FD98,
BMW98]. The development of Constructive Volume Ge-
ometry (CVG) [CT00] has provided a theoretic framework

for constructive volume modeling based primarily on real-
domain operations on the opacity of volume objects, rather
than Boolean operations on their geometry which is nor-
mally not explicitly or uniquely described in volume rep-
resentations. CVG also facilitates volume scene graphs and
direct rendering of such a scene graph [WC01]. The concept
of CVG has also been extended to facilitate volumetric op-
erations in implicit modeling in the form of FRep [PASS01].

In recent years, we have witnessed the rapid popu-
larization of point-based modeling and rendering. The
most significant examples of this development include Sur-
fels [PZvBG00] and QSplat [RL00]. Other important devel-
opments include [GD98,ABC∗01,SD01,ZPBG01]. In addi-
tion to the splatting approach commonly adopted in point-
based rendering, ray tracing point clouds through intersec-
tion has been examined [SJ00]. Radial basis functions for
building implicit surfaces upon point clouds and polygo-
nizing such surfaces has been studied [CBC01], which rep-
resents a shift of focus from approximating point datasets
economically to constructing point-based models directly
and faithfully. The concept of CSG has also been applied
to point-based modeling [AD04]. Recently, the use of the
point-based approach for isosurfacing volume datasets has
been investigated [ZPBG01, vHJ∗04, LT04].

It is useful to highlight the close relationships among vol-
ume graphics, implicit surfaces and point-based techniques.
Points, as modeling primitives, are extensively featured in
all three classes of techniques. Moreover, the splatting ap-
proach, originally developed in volume visualization is play-
ing perhaps a more significant role in point-based tech-
niques. The essence of field-based modeling in implicit sur-
faces is further enriched in volume graphics for facilitating
true 3D representations. This has motivated the author to ex-
amine the use of point-based objects in volume graphics.

3. Point-based Volume Object (PBVO)

3.1. Definitions

Let R denote the set of all real numbers, and E
3 denote

the 3D Euclidean space. A scalar field is a function F :
E

3 → R. Conceptually a scalar field F(p) is a volumet-
ric generalization of a surface function that models only
those points on the surface. A volumetric representation
of an object can thereby be specified as a set of scalar
fields, F1(p),F2(p), . . . ,Fk(p), that define the geometrical
and physical properties of the object at every point p in
E

3. We call such an object a spatial object. In this work,
we consider only spatial objects with four attribute fields,
namely opacity (O), red (R), green (G) and blue (B), where
O,R,G,B : E

3 → [0,1]. A spatial object is written as a tuple,
o = (O,R,G,B).

Each scalar field can be defined procedurally, or on a dis-
cretely sampled dataset. In volume graphics, it is common to
construct a scalar field from a volume dataset, where voxels
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are organized in the form of a regular 3D grid and each voxel
is associated with a value. Tri-linear interpolation is usually
used to determine the unknown values in the bounding vol-
ume of the dataset.

In a similar manner, given a point cloud, P = {p1, . . . , pn},
one can construct a scalar field by using 3D Delaunay tetra-
hedralization, and determine the unknown values in the
bounding volume of P by using bary-centric interpolation,
which is commonly used in finite element analysis. An al-
ternative approach is to consider each point pi ∈ P as a ra-
dial basis function (RBF), ω(q, pi,ri), where q is an arbitrary
point in E

3 and ri ≥ 0 is the so-called radius of influence that
defines a spherical bounding volume such that:

ω(q, pi,ri) = 0,∀q,‖ q− pi ‖> ri

where ‖ q− pi ‖ denotes the Euclidean distance between q
and pi. For a collection of data values, v1, . . . ,vn, associated
with p1, . . . , pn respectively, a scalar field V is therefore de-
fined using a blending function as:

V (q) = ∑
1≤i≤n

ω(q, pi,ri)vi. (1)

This approach forms the basis of several implicit modeling
methods such as blobby models, meta balls and soft ob-
jects [Bli82, Mur91, WMW86]. However, in this work, in-
stead of focusing on a particular implicit surface, V (q) = 0,
or an implicit solid, either V (q) ≤ 0 or V (q) ≥ 0, we are in-
terested the heterogeneous volumetric properties of V (q) in
modeling attribute fields of spatial objects.

For example, consider a discretely sampled point cloud
where each pi is associated with a confidence value and an
intensity value. We can map the confidence value to ri, and
the intensity value to an opacity value, oi. With an appro-
priate RBF, we can define an opacity field O as in Eq.(1).
In volume modeling, O in effect defines the ‘visible geom-
etry’ of the point cloud. Any point q ∈ E

3 with O(q) > 0 is
‘visible’ or ‘renderable’ to a rendering algorithm, and may
potentially contribute to a synthesized imagery representa-
tion of the point cloud.

A spatial object o is a volume object if there is a bounded
set X ⊂ E

3 such that the opacity field of o is bounded by X.
In other words, it is certain that o is not visible in (E3 −X),
though it might also contain ‘invisible geometry’ in X. A
volume object is called a point-based volume object (PBVO)
if it has a least one attribute field that is built from a dis-
crete point cloud. In the following discussions, we consider
mainly PBVOs whose opacity fields are built from discrete
point clouds. In Color Plate II, image (b) shows an example
PBVO, built from the Stanford Bunny point set shown in im-
age (a). Unlike traditional implicit modeling and point-based
modeling that focuses on a specific isosurface, one can see
a translucent shell of some thickness, which is determined
mainly by the RBF used for its opacity field.
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(a) Blinn’s RBF ωB
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(b) Nishimura et al.’s RBF ωN , Wyvill et al.’s RBF ωW ,
and Stolte and Kaufman’s RBF ωW
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Figure 1: Five radial basis functions (RBFs) considered.

3.2. Radial Basis Functions (RBF)

As mentioned above, we are interested in blending functions
for modeling attribute fields of spatial objects. Hence, such
a function must satisfy the functional domain of these fields,
that is, O,R,G,B : E

3 → [0,1]. It is therefore beneficial to
take this constraint into account when considering RBFs.
While there is no theoretic or practical difficulty in accom-
modating a negative RBF, it does not seem to offer any ben-
efit to the modeling of PBVOs in this work. In general, one
can always use the sign of vi in Eq.(1) to control the additive
or subtractive property of individual point elements.

There are several RBFs commonly used for implicit sur-
face modeling. One of which is the Gaussian function used
by Blinn [Bli82] for defining algebraic surfaces. To make the
discussion more relevant to point-based modeling in volume
graphics, we rewrite Blinn’s RBF as follows:

ωB(q, pi,ri) =

{

e−βu2
i if ‖ q− pi ‖< ri

0 if ‖ q− pi ‖≥ ri
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Blinn’s ωB Nishimura et al.’s ωN Wyvill et al.’s ωW Stolte and Kaufman’s ωW Our proposed ωC

Figure 2: A comparison of five different RBFs for constructing a PBVO from a large point cloud (Stanford bunny) of 35947
points. Each PBVO is rendered using volume ray casting.

where ui =‖ q− pi ‖ /ri is the relative distance from q to pi
normalized by the radius of influence, ri, and β > 0 is related
to the standard deviation of the Gaussian function as shown
in Figure 1(a). The main shortcoming of ωB is that the basic
Gaussian function is intended to be used ‘globally’, allowing
every point element to have an influence on every point in
space. When we restrict the radius of influence, discontinuity
is often visually obvious in the scalar field resulting from the
blending of different RBFs together.

A few researchers proposed several different polynomial
functions in place of the exponential function in ωB. They
include ωN , ωW and ωS which were proposed in [NHK∗85,
WMW86, SK97] as follows:

ωN(q, pi,ri) =















1−3u2
i if ‖ q− pi ‖<

ri
3

3(1−ui)
2

2 if ri
3 ≤‖ q− pi ‖< ri

0 if ‖ q− pi ‖≥ ri

ωW (q, pi,ri) =

{

1− 4u6
i −17u4

i +22u2
i

9 if ‖ q− pi ‖< ri

0 if ‖ q− pi ‖≥ ri

ωS(q, pi,ri) =







(‖q−pi‖
2−r2

i )
4

r8
i

if ‖ q− pi ‖< ri

0 if ‖ q− pi ‖≥ ri

While these RBFs offer a good approximation of ωB when
β is around 2, they have lost some flexibility in controlling
the shape of an RBF apart from changing the radius ri (Fig-
ure 1(b)). To reintroduce some control flexibility as well as to
involve the factor of distance attenuation, we experimented
with the following RBF:

ωC(q, pi,ri) =







(

1− 2‖q−pi‖
2α1

1+‖q−pi‖
2

)α2
if ‖ q− pi ‖< ri

0 if ‖ q− pi ‖≥ ri

ωC was partially inspired by Nielson’s work on handling vol-
umetric scattered data [Nie93], and it addresses a shortcom-
ing of his RBF which would result in ∞ when q coincides
with any pi. The two parameters α1 ≥ 0.5 and α2 ≥ 0 en-
able considerable flexibility in controlling the shape of the

RBF as shown in Figure 1(c). When α1 = 1.2,α2 = 3, for
example, ωC has a similar shape as ωN , ωW , ωS and ωB with
β = 2. When α1 = 1,α2 = 20, ωC has a similar shape as ωB

with β = 6. Unlike ωB, ωC maintains the basic G0 continuity
at the boundary of the RBF.

Color Plate III shows a comparison of five RBFs for con-
structing a PBVO from a point cloud. With the help of a
PBVO built from a simple point set with five point elements,
one can easily observe the discontinuity on the object in the
top-left image which was rendered with ωB. For a large sam-
pled point cloud, as shown in Figure 2, when the radius of
influence is carefully chosen, all five RBFs are shown to be
reasonably effective.

Both ωB and ωC allow the control of the blending inde-
pendently from the radius of influence, while ωB offers a rel-
atively limited degree of freedom (Figure 1). Figure 3 shows
a few examples illustrating the effects of varying α1 and α2.
A smaller value for α1 results in a more gentle ‘drop’ on
the ωC curve, hence leading to a smoother blending, while a
larger value enables ωC to preserve more features defined by
points. In conjunction with α1, α2 controls the ‘position’ of
the drop, hence the ‘strength’ of ωC.

All of the above RBFs operate within the [0,1] domain.
In other words, considering an individual point element pi,
it cannot propagate its data value vi in a magnified manner.
However, given a collection of data values, v1,v2, . . . ,vn, it
is still possible for the blending function in Eq.(1) to pro-
duce a value greater than the maximum data value, i.e.,
V (q) > max(v1,v2, . . . ,vn), which is not consistent with our
definition of a volume object. Let wsum = ∑1≤i≤n ω(q, pi,ri).
We therefore modify Eq.(1) as follows:

V (q) =























∑ω(q, pi,ri)vi/wsum if wsum > 1

∑ω(q, pi,ri)vi if wsum = 1

∑ω(q, pi,ri)vi/w1−η
sum if 0 < wsum < 1

0 if wsum = 0

(2)

where the summation range is i ∈ [1,n]. Eq.(2) operates in
the range between min(0,v1, . . . ,vn) and max(v1, . . . ,vn),
and it was used to synthesize all images in this paper. For
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(0.6,1) (1.2,5) (2.4,10)

(0.6,3) (1.2,10) (2.4,100)

(0.6,5) (1.2,50) (2.4,1000)

(0.6,10) (1.2,100) (2.4,10000)

(0.6,20) (1.2,500) (2.4,100000)

Figure 3: Varying the two parameters of ωC, (α1, α2), when
rendering part of a PBVO (Stanford bunny). An isosurface,
V (q) = 0.95, was directly rendered. While α2 controls the
strength of ωC, α1 affects the smoothness of blending.

example, η is set to 1 for all images in Color Plate III, which
preserves the principle features of V (q) in Eq.(1).

4. PBVOs in Volume Scene Graphs

4.1. Volume scene graph

In the theoretic framework of CVG [CT00], a volume scene
graph is an algebraic expression, called a CVG term, which
involves a class of spatial objects and a family of construc-
tive operations. In practice, a CVG term can be represented
by a tree, where constructive operations are defined at non-
terminal nodes, and elemental volume objects are defined at
terminal nodes. Each subtree in effect defines a composite
volume object, while the root represents the final composite
volume object, or the scene. To facilitate the sharing of low
level object data, we allow a CVG term to be realized using
a directed acyclic graph with a single root, hence resulting
in a volume scene graph. Geometrical transformations and
transfer functions can be applied at each graph node.

To facilitate efficient processing of a CVG term, a bound-
ing box is assigned to every node in a CVG tree. This in ef-

fect makes all spatial objects into volume objects. We utilize
three coordinate systems for scene specification:

• World Coordinate System — a theoretically unbounded
3D domain where all objects in a scene are positioned.

• Normalized Volume Coordinate System — a unit cubic do-
main which is used to standardize the transformation be-
tween the bounding box of a volume object at the terminal
node (defined in the world coordinate system) and a local
data coordinate system that is data-dependent.

• Data Coordinate System — a bounded 3D domain
[x1,x2]× [y1,y2]× [z1,z2](x1 < x2,y1 < y2,z1 < z2) which
defines a bounded set. For instance, given a volume
dataset of Nx ×Ny ×Nz voxels, our implementation deter-
mines the domain as [0,Nx − 1]× [0,Ny − 1]× [0,Nz − 1]
when it loads the dataset. Given a point cloud, our imple-
mentation determines the domain automatically as:

x1 = min(pi,x − ri | i ∈ [1,n]), y1 = . . . , z1 = . . . ;

x2 = max(pi,x + ri | i ∈ [1,n]), y2 = . . . , z2 = . . . .

In our implementation, we have included a set of built-in
scalar fields, such as spherical, cylindrical, parabolic and hy-
perbolic fields, and random volumetric grids, all of which are
defined in the normalized volume coordinate system.

4.2. CVG operators

In this work, we consider a class of spatial objects with four
scalar fields in the form of o = (O,R,G,B). As an example,
we give three basic CVG operations as follows:

• union: (o1,o2) = (MAX(O1,O2), SELECT(O1,R1,O2,R2),
SELECT(O1,G1,O2,G2), SELECT(O1,B1,O2,B2));

• intersection: (o1,o2) = (MIN(O1,O2),
SELECT(O1,R1,O2,R2), SELECT(O1,G1,O2,G2),
SELECT(O1,B1,O2,B2));

• difference: (o1,o2) = (SUB01(O1,O2),R1,G1,B1);

where MAX, MIN, SELECT and SUB01 are scalar field oper-
ations which can easily be derived from scalar operations by
pointwise extension as given in [CT00], where one can also
find some other CVG operators.

Color Plate IV shows the results of applying CVG oper-
ations to a PBVO r built from the Stanford bunny point set,
and a procedurally defined cylindrical object c. Note that c

comprises a translucent shell and a solid core. When it is
subtracted from r, its translucent shell removes a portion of
the opacity on the corresponding part of r, while its solid
core removes all the opacity from the part of r where it in-
tersects. This demonstrates that the bunny point set has been
transformed to a true 3D volumetric representation, the ‘ge-
ometry’ of which is essentially defined by its opacity field.

Color Plate II(c) shows an image synthesized from a vol-
ume scene graph, ( (r,c),h)), where r is a volume ob-
ject built from a point cloud (Stanford bunny), h is another
built from a volume dataset (UCSD rabbit heart), and c is
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a procedurally-defined cylindrical object for making a hole
on the exterior shell. The bunny is rendered as a translucent
shell and the heart as a fully-opaque object.

Color Plate I shows a volume scene graph involving four
PBVOs built from the same point cloud of 437645 points
(Stanford dragon), all of which are immersed in artificial
clouds represented by a volume dataset (Erlangen clouds).
While the three coordinate systems facilitate the sharing of
the common point data, CVG enables solid dragons to be
combined with amorphous and translucent clouds.

4.3. Extracting Points from Volume Datasets

This also leads to an interesting perspective as to direct ren-
dering a volume using only a subset of voxels near an iso-
surface, for which we have conducted an initial investigation
and experimentation. In our experiments, we have noticed
that, for a given isovalue τ, it is generally more effective to
extract voxels of values in the range [τ,τ+ε] if the voxel val-
ues inside the interested isosurface are mostly greater than
those outside. Similarly, it is more effective to extract voxels
of values in [τ,τ−ε] if vice versa. Figure 4 shows a series of
examples with different settings for ε, which is specified in
terms of the normalized voxel value range between 0% and
100%. The greater ε is, the more voxels are extracted, and
likely the better rendering result can be achieved. The radii
of points are set according to the overall density of voxels,
though anything less than 4 seems to have resulted in a high
level of aliasing.

In comparison with Figure 4(a) which is rendered directly
from the CT head dataset, none of the point-based volume
objects has achieved a similar level of quality. However, im-
ages in (i)-(l) are of a reasonable quality, where major geo-
metrical features such as the horizontal line in the original
dataset are clearly visible. While further studies are neces-
sary, the initial results are encouraging.

5. Ray Casting PBVOs

5.1. Rendering a Volume Scene Graph

Given a volume scene graph, the goal of a rendering pro-
cess is to synthesize a 2D image representing a view of the
scene. So far, ray casting is still the most appropriate means
for directly rendering a volume scene graph, which features
multiple volume objects, solid or translucent. Splatting has
been effective in handling a single volume dataset as the
order of voxels can easily be determined prior to the pro-
jection of splats. It has also been successfully deployed in
point-based rendering for handling arbitrarily-ordered ‘flat’
splats by using image-space composition. The main obsta-
cle for using splatting in directly rendering a volume scene
graph is the necessity for combining volumetric properties
(e.g., opacity and color) of intersected volume objects in the
object space, and the difficulty in determining which point

or voxel to be combined with which other points and vox-
els, unless they are all aligned on the same grid structure.
Furthermore, establishing the projection order of ‘volumet-
ric’ points and voxels among different objects in an arbitrary
volume scene graph is not a trivial problem. Not mention
that any procedurally defined volume object would require a
process of discretization prior to the rendering. We therefore
focus on the ray casting method in this work.

The basic ray casting mechanism is to sample at regular
intervals along each ray cast from the view position. At each
sampling position sw in world coordinates, we recursively
determine if sw is inside the bounding box of the current
CVG subtree, until we reach a terminal node. If sw is inside
the bounding box of the terminal node which contains an
elemental volume object o = (O,R,G,B), we first transform
sw into sn in the normalized coordinate system associated
with o, and then evaluate the four scalar fields, O,R,G,B.

When a scalar field is procedurally defined, for instance,
by a function Fsphere(x), x ∈ [0,1]3, we simply evaluate
Fsphere(sn), since in this work all procedural scalar fields are
defined in the normalized coordinate system. When a scalar
field is defined on a volume dataset, we convert sn to the lo-
cal data coordinate system of the volume dataset, resulting in
sd . It is straightforward to identify the grid cell where sd re-
sides. A scalar value can be obtained for sd by interpolating
the values at the eight voxels which bound the cell.

When a scalar field is defined on a point cloud P =
{p1, p2, . . . , pn}, we first obtain sd in data coordinates in a
way similar to that with a volume dataset. We then identify
a subset of points, P′ ⊆ P, such that

P′ = {p′i | p′i ∈ P and ‖ sd − p′i ‖≤ ri}.

Given such a subset, we can sample the RBF of each p′i ∈ P′,
and obtain a scalar value by using Eq.(2). For a large point
cloud, the most expensive cost in this process is the iden-
tification of P′, as it involves a distance calculation against
every point pi ∈ P, rendering the whole process un-scalable
when n increases.

Table 1 gives a set of timings for rendering two groups of
randomly generated point clouds. The first group includes
four point clouds with 10, 100, 1000, 10000 points respec-
tively. All points are randomly placed on a spherical surface,
representing a point-based surface. Point clouds in the sec-
ond group are generated in a similar manner, but all points
are randomly placed inside a spherical surface, representing
a point-based volume.

The ‘brute force’ method results in timings that indicate
an O(n) complexity. Although this may seem to be accept-
able in some other situations, it is not desirable in rendering
a volume scene graph that may contain many PBVOs.
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(a) a volume (b) a point cloud (c) ε = 1% (d) ε = 2% (e) ε = 3% (f) ε = 4%
7,405,568 voxels 13,850 points 13,850 points 28,046 points 42,903 points 58,384

r = 11.5 r = 10.5 r = 9.5 r = 8.5

(g) ε = 5% (h) ε = 6% (i) ε = 7% (j) ε = 8% (k) ε = 9% (l) ε = 10%
77,512 points 110,668 points 164,350 points 237,585 points 846,552 points 1,521,368 points

r = 7.5 r = 6.5 r = 5.5 r = 4.5 r = 4.5 r = 4.5

Figure 4: Comparing the visualization of the CT head dataset rendered as a conventional volume object and as a PBVO. Several
point clouds were extracted from the original dataset with different numbers of points (voxels).

n: number of points 10 100 1000 10000

Randomly generated points on a spherical surface

a. brute force 16.62 52.12 413.61 2454.21
b. octree (preprocess) 0.00 0.00 0.04 2.38
c. octree (render) 14.68 15.36 17.92 15.43
speedup: a/(b+c) 1.13 3.39 23.03 137.8

Randomly generated points in a spherical volume

d. brute force 16.68 52.34 419.38 3423.82
e. octree (preprocess) 0.00 0.00 0.02 1.08
f. octree (render) 17.34 16.20 20.22 27.66
speedup: d/(e+f) 0.96 3.23 20.72 119.13

Table 1: Testing results for ray casting two groups of ran-
domly generated point clouds. All the timings are in seconds,
and were obtained on a 2GHz Pentium 4 with 1GB memory.

5.2. An Octree-based Rendering Algorithm

We hence introduce an octree structure for partitioning a
large point cloud in its local data coordinate system. In
each level of recursion, a subtree contains only those points,
which have some influence in the bounding box of the sub-
tree. In other words, their RBFs have non-zero values in the
bounding box. It is important to note that due to the non-
zero radius of influence of each point, and the likely over-
laps among the ‘volumes of influence’ of different points, a
point element can belong to more than one terminal nodes.

In comparison with the brute force ray casting, Table 1 also
gives the timings of ray casting with the support of an oc-
tree. One can easily observe a linear speedup in relation to
the sizes of point clouds.

The construction of an octree is controlled by two param-
eters, namely the maximum tree height/depth, hmax, and the
‘preferred’ maximum number of points per terminal octant,
pmax. Whenever an octant reaches a tree depth of hmax or
contains less points than pmax, the octant will be made into a
terminal node. pmax is designed to maintain an optimal num-
ber of points in a terminal node, implying that it is unlikely
that more than pmax points will have their ‘volumes of influ-
ence’ overlapped. However, given an arbitrary point cloud,
it is always possible to have such a situation occurring. Thus
the tree height control through hmax is particularly important
for avoiding an infinite recursion. Table 2 gives a set of per-
formance data when pmax changes from 1000 to 10. Three
sets of tests were carried out, with 10000 random points on
a spherical surface, 10000 random points in a spherical vol-
ume and 35947 points of the Stanford bunny, respectively.
For all the tests, hmax is set to 7. Because of the point den-
sity of the bunny point set, the benefit of reducing pmax soon
becomes less obvious, unless the reduction is coupled with
an increase of hmax. In all cases, we can see the speedup
achieved is proportional to the amount of memory space
used by the octree.

For large point clouds, the amount of space consumed by
an octree can be quite noticeable, especially when points are
densely placed and the radius of influence is set to a rela-
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tively large value. We therefore stores only indices, rather
than the records of points, in the terminal nodes of an octree.

With ray casting, the coherence between consecutive sam-
pling positions can also be exploited effectively. Each octree
maintains a pointer to the octant of the last search, allowing
a new search to start from the same octant. It is also possible
to exploit the coherence between neighboring rays, though
the benefits are less conclusive in our experimentation.

6. Conclusions

We have considered a challenging problem for integrating
point clouds into volume graphics in a consistent and ef-
ficient manner. We have presented our solution under the
framework of Constructive Volume Geometry (CVG) that
enables us to accommodate point clouds in volume scene
graphs. Through the introduction of the notion of point-
based volume object (PBVO), we can transform a point
cloud, typically for defining a surface, to a volume object
that is characterized by opacity, rather than geometry. We
have examined and compared several radial basis functions
(RBFs) for constructing scalar fields from point clouds. We
have proposed a new RBF which is more controllable than
the existing polynomial functions, and does not suffer from
discontinuity as the Gaussian function. We have applied
basic CVG operators to PBVOs in volume scene graphs
and have demonstrated the inter-operability of PBVOs with
conventional volume objects. We have presented an octree-
based algorithm for reducing the complexity in rendering a
PBVO with a large number of points. Our testing results have
shown a significant speedup when an octree is deployed for
rendering PBVOs. In addition, we have investigated into the
suitability for directly rendering scattered voxels extracted
from a volume dataset, and the initial results are interesting
and encouraging.

This work has been implemented in a research prototype
system. Our further work will be focus on embedding point-
based modeling and rendering in vlib, an open source API
for volume graphics [WC01].
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