
Volume Graphics (2005)
E. Gröller, I. Fujishiro (Editors)

Volumetric Reconstruction, Compression and Rendering of
Natural Phenomena from Multi-Video Data

Lukas Ahrenberg, Ivo Ihrke and Marcus Magnor†

Graphics-Optics-Vision, Max-Planck-Institut für Informatik, Germany

Abstract
Lately, new methods for the acquisition of time-varying, volumetric data for photo-realistic rendering of semi-
transparent, volumetric phenomena like fire and smoke have been developed. This paper presents a wavelet-coding
and rendering approach for these volumetric sequences that exploits spatial as well as temporal coherence in the
data. A space partitioning tree allows for efficient storage and real-time rendering of dynamic, volumetric data on
common PC hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Digitizing and scanning
I.4.5 [Image Processing and Computer Vision]: ReconstructionI.4.2 [Image Processing and Computer Vision]:
Compression (Coding)I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Dynamic, volumetric phenomena in nature such as fire,
smoke and swirling fog, are challenging to simulate realisti-
cally in computer graphics [FSJ01,NFJ02,ZWF∗03]. These
are often evolving in a more or less semi-chaotic fashion
over time.

To obtain computer models of such phenomena that are
suitable for photorealistic image synthesis, optical tomog-
raphy is introduced in [IM04] as a suitable method to re-
construct volumetric time-varying models from camera im-
ages. It is applied to reconstruct three-dimensional volumet-
ric models of flames, but is applicable to thin smoke recon-
struction as well.

This article presents a coding and rendering approach for
this new kind of data. The data is characterized by high stor-
age cost, but is temporally correlated due to the evolving
properties of the underlying phenomena. This facilitates a
space-time wavelet compression approach, treating the data-
set as a four-dimensional volume. After wavelet transfor-
mation the continuity coefficients are stored in a 4D space-
partitioning tree which allows for progressive transmission
and effective reconstruction. We achieve considerable sav-

† e-mail: [ahrenberg | ihrke | magnor]@mpi-sb.mpg.de

ings in storage space. The considerably reduced bandwidth
consumption then enables real-time rendering frame rates.

The paper is organized as follows: In section 2 we review
related work. Section 3 gives some background on the recon-
struction of transparent, volumetric data from camera images
to give an idea of the nature of our data sets. Section 4 dis-
cusses the wavelet compression and our data structure which
is essential for real-time rendering. The rendering algorithm
is covered in section 5. Finally, we present experiments and
results in section 6 and conclude the paper by discussing fu-
ture work in section 7.

2. Related Work

To reconstruct volumetric phenomena there have been ap-
proaches to extend surface reconstruction by taking trans-
parency into account [BV99, SG98]. Computerized tomo-
graphic methods have been applied to rigid body recon-
structions [GW99]. Transparent, volumetric phenomena are
treated by Hasinoff et al. [HK03, Has02]. In Ref. [HK03]
the flame sheet decomposition algorithm is developed, which
reconstructs a surface (the flame sheet) with varying trans-
parency and color. 3D - CT reconstruction is used to generate
time-varying, volumetric models of flames in [IM04].

There are a few different approaches to the prob-
lem of compressing time-varying volumetric data. Shen

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

et.al. [SCM99] implement a structure they call the TSP-tree
which is an extended octree structure to represent both spa-
tial and temporal information. Ma and Shen [MS00] also in-
vestigate the effects of quantization on time-varying, volu-
metric data.

Westerman [Wes95] proposes a method where each time-
frame of the volume sequence is individually wavelet-
compressed. The coefficients are then compared temporally
to determine so called time-features which are used to com-
pute the evolution of regions in the volume.

Most similar to the compression scheme in this paper,
Linsen et.al. [LPD∗02] propose a framework and lifting-
scheme for wavelet transforming time-varying volumetric
data, treating time as the fourth dimension.

The focus of this paper is on representing dynamic, natu-
ral phenomena in an efficient way in order to render directly
from this representation. We can rely on a high temporal cor-
relation of the data and apply a 4D wavelet compression to
the volume-time space. In contrast to other approaches, we
do not use scalar-valued, or color-indexed voxels, but work
directly with RGB floating point values.

3. Tomographic Reconstruction of Flames and Smoke

We use the approach presented in [IM04] to generate time-
varying volumetric descriptions of fire and smoke. Here, we
give a short summary.

We record multi-video sequences of fire or smoke us-
ing a multi-camera array consisting of 8 calibrated cameras.
Using this data, we compute a linear system of equations
that describes the simultaneous rendering of the 8 camera
views in terms of unknown voxel values. This linear sys-
tem is then solved in a non-negative least squares sense.
This scheme is comprised of an algebraic CT reconstruction
method [KS01], which, unlike Radon transform [Rad17]
based methods, allows incorporating additional constraints
into the equations of the linear system. We use this flexibil-
ity to restrict the solution of the linear system to the visual
hull of the volumetric phenomenon. Thus, only voxel values
contained in the visual hull are estimated by the reconstruc-
tion method. This makes it possible to acquire dynamic, vol-
umetric models of fire and smoke that allow a photo-realistic
rendering of the phenomenon from arbitrary viewpoints.

3.1. Image Formation Model

We use the image formation model of Hasinoff et al. [HK03]
for our reconstruction algorithm. The fire is modeled as a 3D
density field φ of fire reaction products, i.e. soot particles.
Image intensity is related to the density of luminous parti-
cles in the fire. It is valid for fire that obeys the following
assumptions:

• Negligible absorption/scattering - this is valid for fire not
substantially obscured by smoke, and

PSfrag replacements

φiIp

cp

Cam1 Cam2

Cam3

Figure 1: The reconstruction process: The coefficients of the
basis functions φi are restricted by several camera views. Ip
is the image intensity and cp the backprojected ray of pixel
p.

• Proportional self-emission - brightness depends on the
density of the soot particles only.

Additionally, the model works for smoke reconstruction
in the following case:

• The smoke is uniformly lit, and
• The smoke is optically thin i.e. there is mostly single scat-

tering.

These assumptions allow us to treat the smoke in a similar
way as the self-emissive medium.

3.2. Basic Equations

The image formation model is formulated for every pixel p:

Ip =
∫

c
φ ds+ Ibg. (1)

Here Ip is pixel p’s intensity, c is a curve through 3D space, φ
is the density field of soot particles, and Ibg is the background
intensity. Curve c is the backprojected ray of pixel p. We
approximate every pixel by one ray through the density field.

In order to discretize this equation, which is valid in the
whole of R

3, we discretize the part of R
3 that is covered by

the volumetric phenomenon using a set of basis functions
with local support. Eq. (1) then reads

Ip =
∫

c

(

∑
i

aiφi

)

ds+ Ibg, (2)

which is reformulated to

Ip = ∑
i

ai

(

∫

c
φi ds

)

+ Ibg, (3)

yielding the linear system of equations

p = Sa+b. (4)

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

The background term b is subtracted from the pixel values
p in a pre-processing step

(p−b) = Sa. (5)

The simplest basis functions φi are the box basis functions

φ Box
i (x,y,z) =

xi
min < x ≤ xi

max
1 yi

min < y ≤ yi
max

zi
min < z ≤ zi

max
0 otherwise.

(6)

This choice of basis functions directly results in a voxel
model reconstruction, whereas for different basis functions
there is an additional interpolation step that needs to be per-
formed to construct a voxel model from the coefficients.

It would be nice to use wavelet basis functions already
for the reconstruction process. This is unfortunately compli-
cated by the difficulty of enforcing non-negative voxel val-
ues after the interpolation step which is necessary to obtain
a physically plausible reconstruction. The difficulty stems
from the negative parts of the wavelet basis functions. For
non-negative basis functions we simply need to enforce a
non-negative solution to the system of equations (4).

3.3. Restrictions

The reconstruction method is able to recover three-
dimensional, dynamic voxel models of fully transparent,
light-emitting phenomena. In its current version, it can
not cope with obstructors present in the volumetric phe-
nomenon. This is similar to artifacts caused by inlays or
other metal implants in medical computerized tomographic
imaging. Furthermore we require that the pixels of the
recorded images are not saturated, and that the entire phe-
nomenon is considered, i.e. no light is emitted outside the
discretization, except from the background term. For the
full details of this method the interested reader is referred
to [IM04].

4. Wavelet Compression of 4D Volumetric Data

The volumetric frames of the reconstructed volumetric an-
imation form a 4-dimensional volume. In this section we
propose a 4D wavelet compression scheme to significantly
reduce the memory requirements of this volume representa-
tion.

4.1. Wavelets

Wavelet compression is nowadays a well-known approach to
data reduction. We will therefore just give a brief introduc-
tion to the part of the theory useful for our application and

point to other sources, such as [Dau92] and [SDS96], for a
thorough introduction.

We will assume that f is a function on our data volume
and can be written as a linear combination of basis functions

f =
N−1

∑
i=0

ciBi (7)

where N is the number of data elements in the volume.

Wavelet theory is based on two sets of basis functions, the
scaling functions

φk,n = 2
k
2 φ(2k

−n), (8)

and the wavelet functions

ψk,n = 2
k
2 ψ(2k

−n). (9)

The scaling function down-samples a part of the signal,
scaling its size and preserving the low frequency, smoothed
information. The wavelet function, on the other hand, is
chosen so that it can represent the high-frequency informa-
tion, that is, the details lost by the low-pass filtering of the
scaling function. Both the scaling and wavelet functions are
scaled and translated versions of a mother function, and form
a multi-resolution hierarchy. We will use these properties
later when constructing our data-structure for representing
the wavelet compressed data. Once a set of wavelet basis
functions and corresponding scaling functions are chosen,
the recovery of coefficients can be thought of as a recursive
process. Start with the original data and use the scaling func-
tions to down-sample the data to half its size, computing
the scaling coefficients of this level. At the same time the
wavelet functions compute another set of coefficients that
represent the high-frequency information.

Now we take the down-sampled data and repeat this pro-
cess, ending up with half of the original data size, and a
new set of coefficients. This can be done until only one scal-
ing function is needed to represent the down-sampled data.
Starting from this one scaling value, s0,0, the scaled function
of the next higher resolution is computed as

f 1 = s0,0φ0,0 +w0,0ψ0,0, (10)

and for any other level after this as

f m+1 = f m +∑
t

wm,tψm,t (11)

where the sum over t represents the different translations on
this scale. Thus f is a linear combination of the basis func-
tions φ0,0 and ψk,n, 0 ≤ k < M, where M is the number of
scaling levels. Wavelet basis functions have compact sup-
port, and for our application we consider only orthonormal
basis functions. For our four-dimensional data we construct
the basis functions as the tensor product of one-dimensional

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

wavelet and scaling functions. This corresponds to the dif-
ferent combinations of the wavelet or scaling function along
the coordinate directions.

4.2. Compression

For many data sets a low pass filtering will yield a good ap-
proximation of the original set, and thus the high frequency
wavelet coefficients will be small. The basic principle of
compression is thresholding small coefficients to zero. For
basis functions with good interpolating properties, many co-
efficients can be dropped without degrading data quality.
This technique results in high compression ratios, storing
only non-zero coefficients.

As the fourth dimension of our data set is time, we can not
automatically expect a good correlation along this data axis.
However, the focus of our method is to reconstruct natural
phenomena, which must evolve continuously over time. Al-
though this evolution may be chaotic in the long run, we can
still expect correlation on a frame-by-frame basis given that
the data was captured with high enough temporal resolution.
From the sequence of thresholded coefficients, we keep only
the ones that are non-zero in value, as well as their corre-
sponding basis functions. In order to store this information
and allow for both small size and fast access, we need a com-
pact data structure.

4.3. The Hexadeca-tree data structure

Because a wavelet basis function has local support and is
used to refine the value of a coarser scale function, the sup-
port of a basis function of side s with index k will span the
region of support of the s/2 sized functions of index k + 1.
That is, for a basis function, ψk,t , of scale k > 0, one can find
basis functions of a coarser scale j < k, so that their support
contains the support of ψk,t . Just as observed in section 4.1,
the support of the basis functions divide the original support
of the data set into sub sets.

The basis functions form a space partitioning tree anal-
ogous to quad- and octrees in 2D and 3D. Using this tree
we let each node represent all basis functions of a specific
scale and translation. The child-nodes will be those basis
functions refining the value along their parent node’s sup-
port, subdividing them. Figure 2 shows a binary tree for the
1D case of the situation described above. In this case, there
would be two basis functions, one wavelet and one scaling
function per node. However for reconstruction purposes it is
sufficient to store only the wavelet basis functions and their
corresponding coefficients, except for the root node which
also contains the scaling coefficient and the scaling basis
function. Higher-dimensional trees will have more functions
of the same support, as there are more ways to combine the
basis functions. Generally, for a n-dimensional space, 2n −1
wavelet basis functions will have the same support. All ba-
sis functions with the same support are represented by the

Figure 2: A binary tree representation. The squares repre-
sent the original data-points, and the ellipse nodes contain a
basis function and the corresponding coefficient. The dashed
box around the node indicates the width of the support of the
function.

same tree node. In our 4D case, there will be 16 different ba-
sis functions defined having the same support. Of these, the
15 wavelet basis function coefficients will be stored in the
nodes. The 16:th, being the scaling function coefficient, is
not required for reconstruction, except at the coarsest scale.

At the top level of the tree, we have the coarsest scale, rep-
resented by the scaling function coefficient and the wavelet
coefficient refining it. The support of the root node being ef-
fectively the whole data size. A the children of a node will
then subdivide the support of a parent in a hierarchical man-
ner.

If all basis functions are multiplied with the corresponding
coefficients and summed up, the result will be the original
function. In our 4D approach, the result will not be a binary
tree, but one where each node has 16 children, representing
the 16 equally sized sub-cubes of a 4D hypercube. We will
refer to this structure as a hexadeca-tree.

We can reduce the memory usage of the data-structure
drastically by pruning the tree in a bottom-up approach after
compressing the coefficients. Because the leaf-nodes with
zero-coefficients do not contribute to the reconstructed sig-
nal, they can be removed from the tree. If all children of a
node are removed, it becomes a leaf and the same test can be
applied again until we find a node that can not be removed.
Figure 3 shows a simple, binary tree example.

4.4. Implementing the data-structure

The pruning method described above leaves us with a
smaller tree than we started with. But it cannot do any-
thing about those nodes which are not leaves and still con-
tain many zero-valued coefficients. This case can be com-
mon when dealing with 4D data, as each node contains sev-
eral coefficients. If only one of these coefficients of a leaf
is non-zero, it will be kept. Therefore we choose to have a

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

Figure 3: Pruning the nodes from the bottom up in a binary
space partitioning tree. Starting with node 6, we can remove
it because its coefficient is zero. Node 5 can be removed for
the same reason, and node 2 now becomes a leaf. This node
can be removed as it is 0. Node 4 is saved and node 3 is
removed, but then the pruning stops since there are no more
leaves to check.

data structure of dynamic size to represent the nodes of the
hexadeca-tree.

Figure 4: The node data-structure. The position vector and
the masks make up the static part, present in every node,
while the coefficient and the children sections are of dynamic
size.

A schematic of the node data-structure is depicted in Fig-
ure 4. For each node we store a static and a dynamic part.
The static part contains the node position and two 16 bit
masks. The ’Coefficient Mask’ specifies which of the pos-
sible basis functions in the node have non-zero coefficients.
The ’Child Mask’ defines which of the children exist in a
pruned tree. The dynamic part contains just the non-zero co-
efficients and index offsets to any child nodes, as indicated
by the masks. Every node stores basis functions having the
same support, which are the ones resulting from the ten-
sor product producing the four-dimensional basis functions
from the one-dimensional mother wavelet. The reason we
only need to store 15 coefficients per node, although there
are 16 different functions resulting from such an operation, is
that one of them is the scaling function, which is not needed
for reconstructing the data. The only scaling function coef-
ficient needed is the one at the coarsest scale, as indicated
in section 4.1, and this one is stored first in the array as a
special case.

The compressed and pruned tree is an efficient represen-
tation for transmission and rendering. There is, of course,
some potential overhead in this representation, as in the
worst case all 15 coefficients will be set in the dynamic sec-
tion. However this is rarely the case. The nodes are stored

Figure 5: Traversal of a basis node tree, reconstructing the
value at position 1.2. The method starts at the root node,
and checks in which child the coordinate lies. Nodes traveled
through are highlighted.

breadth-first in an array. This facilitates progressive decod-
ing so that time-, transmission- or memory-critical applica-
tions need only read and decode a part of the tree to ob-
tain approximated rendering results. The approach is similar
to the spatial orientation trees in the SPIHT codec for im-
ages [SP96].

5. Data Reconstruction and Rendering

5.1. Data Reconstruction

To compute the function value at a point x, it is not necessary
to first compute the whole data set f and then evaluate f (x).
Instead, we observe that a point located in the support of
one node is bound to be located in the support of one of its
children in the hexadeca-tree. That is

f (x) = ∑
Ω

ciBi (12)

where Bi ∈ Ω implies that x lies in the local support of Bi.
Because the children of a node sub-divide its support, it is
simple to compute Ω, starting at the root node. Given that a
node contains x it is only necessary to check in which of the
node’s children the point lies. We do this recursively until a
leaf node is reached. The reconstruction sum will thus take
the form of a traversal through the space partition tree. The
method is depicted in Figure 5.

This is an efficient way of reconstructing subsets of
a wavelet decomposed function, and is similar to tra-
ditional hierarchical volume rendering strategies [Lev90,
LH91, KCY93]. We know that the support of the next ba-
sis functions in the sum will be contained within the support
of the current. The number of summations needed to recon-
struct a value in a direct approach will thus be the depth of
the tree, which is logarithmically dependent on the resolu-
tion of the data. For our approach this is an important obser-
vation as the reconstruction is a 3D volume intersection of a

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

Given the view-matrix, M.
for every voxel position p do
let v = [p,0,1];
let u = M*v;
let this_node = root node;
let value = scaling coefficient;
repeat while this_node exists
for all basis B in this_node do
value += coefficient * B(u);

end for;
for every child of this_node do
if child is in this_node.support
this_node = child;
end if;

end for;
end repeat;
set Image[p[0],p[1]] += value;
end for;

Figure 6: Algorithm for rendering an image view from a
hexadeca-tree representation.

4D dataset. Thus only a subset of all data points needs to be
reconstructed in each step.

5.2. Rendering

To render a view of our tomographic data we need to inte-
grate a 3D volume along the viewing direction. By translat-
ing this volume along the temporal axis in our 4D data-space
we can render time-slices of the volume. If we first rotate the
view-volume around the spatial (x,y,z) axis we can also view
the scene from an arbitrary position centered around the ori-
gin. This mapping is a 5x5 view-matrix for 4-dimensional
homogeneous coordinates. The view matrix, M, for orthog-
onal projection is arranged as

M =

r0,0 r0,1 r0,2 0 0
r1,0 r1,1 r1,2 0 0
r2,0 r2,1 r2,2 0 0
0 0 0 0 t
0 0 0 0 1

. (13)

The upper 3x3 sub-matrix consists of a 3D transformation
matrix that aligns the viewing volume with the current view-
ing direction. t is the the translation along the temporal axis.
The matrix transforms coordinates from the viewing volume
coordinate system into the 4D data coordinate system of the
hexadeca-tree.

We use the algorithm in Figure 6 to render the data. Every
voxel in our viewing volume is transformed into data-space
coordinates by multiplication with the view matrix M. The
value is reconstructed by summing the node coefficient-basis
function products while traversing the hexadeca-tree as de-
scribed above. Every node with support containing the voxel
is traversed. The algorithm stops when it reaches a leaf.

The rendering algorithm can be sped up by storing a 3D

 0

 0.5

 1

 1.5

 2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

Normalized Bitrate (bpv)

Smoke sequence
Fire sequence

Figure 7: RMS error varying with bit rates of the hexadeca-
tree memory print.

bounding box with every temporal step. It costs some more
memory, but can be a good trade-off if the data occupies
only a part of the volume. For our current approach we have
assumed an orthographic projection, and thus have a block-
shaped viewing volume. A perspective projection can also be
implemented by using a viewing frustum instead of a block.
The coordinates can then be projected before accumulating
the results in the image.

The volume can be integrated as part of a virtual scene by
dynamically textured billboards [Sch95]. The current view-
ing direction of the camera is computed, together with the
animation time. The volume at the current time is then
rendered to a 2D texture, as seen from the camera. The
intensity-value of the texel is used as the alpha value. The
texture is then mapped onto a polygon translated to the vol-
ume position and rotated to always face the camera.

6. Results

We have used two different data sets, one of smoke and the
other of fire. Both sequences are of 64x64x64 voxels in size
and contain 64 frames. A sequence consists of 644 voxels,
each having a RGB floating point value, yielding a raw data
size of 192 MB. We used the Haar wavelets as basis func-
tions. The rendering was performed using the bill-boarding
technique described in the previous section implemented in
OpenGL on a Pentium 4 workstation. We performed com-
pression and rendering tests using both data sets.

Figure 7 shows how the Root Mean Square (RMS) er-
ror of the reconstructed volumetric sequence varies with the
number of bits per voxel needed to represent the sequence
at different compression levels. The normalized bit rate is
computed as the RAM memory size of the hexadeca-tree
data structure (as opposed to the storage-size on disk, where
we use zlib to compress the data, and usually gain 25–30%
smaller files) divided by the original sequence data size. As
can be seen in the figure, the ’Fire’ sequence has a very

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fr
am

e
R

at
e

(fp
s)

Normalized Bitrate (bpv)

Smoke sequence
Fire sequence

Fire sequence boundingbox

Figure 8: Frame rate decreasing with higher bit rates.

low maximum bit rate at almost no error cost at all. How-
ever, as the bit rate decreases the error increases drastically.
The low maximum bit rate comes from the high number of
zero voxels in the original data; the fire is located approx-
imately at the center of the volume, and although varying
in shape, it almost never occupies a majority of the vol-
ume. The zeros will of course be removed when using the
hexadeca-tree representation, and cause a major compres-
sion without any quality loss. The dependence of quality on
bitrate can be explained by the fast movement of the flame,
changing much faster than the frame rate of our camera sys-
tem. Thus, two concurrent volumes in the flame sequence are
not well-enough correlated and compression in the temporal
dimension of the hexadeca-tree will be more sensitive to co-
efficient removal. The ’Smoke’ sequence puts the wavelet
compression scheme to better use. It has just as chaotic, dy-
namic behavior as the fire, but spans more of the volume
and evolves slower. As seen from the graph, the maximum
bit rate is higher than that of the ’Fire’ sequence, but it also
degrades more slowly and allows for good compression. Fig-
ure 9 shows the visual quality for some of the bit rates in the
graph. As can be seen, we achieve visually pleasing results,
even at moderately low bitrates, such as the fire at 0.051 and
the smoke at 0.106. However, at some point the error rises
too high and the volume integration fails.

We have implemented a viewer which loads a hexadeca-
tree array into memory and generates textures on the fly
given a viewing direction and position, as described in Sec-
tion 5. The highest bit rates for the ’Smoke’ and ’Fire’ se-
quences renders at 5 and 7 fps. We also precalculated bound-
ing boxes for the frames in both sequences which results in
a performance gain to 18 fps for the ’Fire’ sequence. As ex-
pected, the frame rate increases with lower bit rates. Figure
8 depicts this.

7. Conclusions and Future Work

We have shown how volumetric models of dynamically
changing, chaotic phenomena of fire and smoke can be ren-

dered. Using models captured from the real world might
prove to be a valuable alternative to simulated models in
some computer graphics applications. We have devised a
wavelet compression scheme for the time-varying models,
treating them as a 4D data space. The wavelet coefficients
are stored in a hexadeca-tree structure which allows for pro-
gressive decoding and fast reconstruction. The volume data
can be incorporated into interactive 3D models by a dynamic
bill-boarding approach.

We plan to continue our work by extending the compres-
sion and rendering capabilities of our system. For this paper
we have used 643 volumes, which gives satisfactory results.
However, we will have higher resolution volumes in the near
future, which should give even better visual results. Because
the Haar wavelet basis has limited interpolating properties,
a logical future step in compression will be to try out other
wavelet basis functions. Although our “divide-and-conquer”
software rendering approach is efficient and can render di-
rectly from the hexadeca-tree representation, a number of
interesting approaches using graphics hardware have been
proposed [LG95,EKE01,GWGS02,BCF03]. We would like
to investigate the use of these methods in our scheme to see
if we can improve performance.

References

[BCF03] BINOTTO A. P. D., COMBA J., FREITAS C. M.
D. S.: Real-time volume rendering of time-varying data
using a fragment-shader compression approach. In IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics (2003), pp. 69–76.

[BV99] BONET J. S. D., VIOLA P. A.: Roxels: Respon-
sibility Weighted 3D Volume Reconstruction. In Proc.
International Conference on Computer Vision (ICCV ’99)
(1999), pp. 418 – 425.

[Dau92] DAUBECHIES I.: Ten lectures on wavelets. Soci-
ety for Industrial and Applied Mathematics, 1992.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using hardware-
accelerated pixel shading. In HWWS ’01: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware (2001), ACM Press, pp. 9–16.

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual
Simulation of Smoke. Proceedings of SIGGRAPH (Au-
gust 2001), 15–22.

[GW99] GERING D. T., WELLS III W. M.: Object Mod-
eling using Tomography and Photography. In Proc. of
IEEE Workshop on Multi-View Modeling and Analysis of
Visual Scenes (June 1999), pp. 11–18.

[GWGS02] GUTHE S., WAND M., GONSER J.,
STRASSER W.: Interactive rendering of large vol-
ume data sets. In VIS ’02: Proceedings of the conference
on Visualization ’02 (2002), IEEE Computer Society,
pp. 53–60.

c© The Eurographics Association 2005.

L. Ahrenberg, I. Ihrke & M. Magnor / Volumetric Reconstruction, Compression and Rendering of Natural Phenomena

[Has02] HASINOFF S. W.: Three-Dimensional Recon-
struction of Fire from Images. MSc Thesis, University
of Toronto, Department of Computer Science, 2002.

[HK03] HASINOFF S. W., KUTULAKOS K. N.: Photo-
Consistent 3D Fire by Flame-Sheet Decomposition. In
In Proc. 9th IEEE International Conference on Computer
Vision (ICCV ’03) (2003), pp. 1184 – 1191.

[IM04] IHRKE I., MAGNOR M.: Image-Based Tomo-
graphic Reconstruction of Flames . ACM Siggraph / Eu-
rographics Symposium Proceedings, Symposium on Com-
puter Animation (June 2004), 367–375.

[KCY93] KAUFMAN A., COHEN D., YAGEL R.: Volume
graphics. Computer 26, 7 (1993), 51–64.

[KS01] KAK A. C., SLANLEY M.: Principles of Comput-
erized Tomographic Imaging. Society of Industrial and
Applied Mathematics, 2001.

[Lev90] LEVOY M.: Efficient ray tracing of volume data.
ACM Trans. Graph. 9, 3 (1990), 245–261.

[LG95] LIPPERT L., GROSS M. H.: Fast wavelet based
volume rendering by accumulation of transparent texture
maps. Comput. Graph. Forum 14, 3 (1995), 431–444.

[LH91] LAUR D., HANRAHAN P.: Hierarchical splatting:
a progressive refinement algorithm for volume rendering.
In SIGGRAPH ’91: Proceedings of the 18th annual con-
ference on Computer graphics and interactive techniques
(1991), ACM Press, pp. 285–288.

[LPD∗02] LINSEN L., PASCUCCI V., DUCHAINEAU

M. A., HAMANN B., JOY K. I.: Hierarchical represen-
tation of time-varying volume data with "4th-root-of-2"
subdivision and quadrilinear b-spline wavelets. In Pa-
cific Conference on Computer Graphics and Applications
(2002), pp. 346–355.

[MS00] MA K.-L., SHEN H.: Compression and acceler-
ated rendering of time-varying volume data. In Proceed-
ings of the Workshop on Computer Graphics and Virtual
Reality (2000).

[NFJ02] NGUYEN D. Q., FEDKIW R., JENSEN H. W.:
Physically Based Modelling and Animation of Fire. ACM
Transactions on Graphics 21, 3 (July 2002), 721–728.

[Rad17] RADON J.: Über die Bestimmung von Funk-
tionen durch ihre Integralwerte längs gewisser Mannig-
faltigkeiten. Ber. Ver. Sachs. Akad. Wiss. Leipzig, Math-
Phys. Kl., 69:262 277, April 1917.

[Sch95] SCHAUFLER G.: Dynamically Generated Impos-
tors. GI Workshop on Modeling, Virtual Worlds (Nov.
1995), 129–135.

[SCM99] SHEN H.-W., CHIANG L.-J., MA K.-L.: A fast
volume rendering algorithm for time-varying fields using
a time-space partitioning (tsp) tree. In VIS ’99: Proceed-
ings of the conference on Visualization ’99 (Los Alamitos,
CA, USA, 1999), IEEE Computer Society Press, pp. 371–
377.

[SDS96] STOLLNITZ E. J., DEROSE T. D., SALESIN

D. H.: Wavelets for computer graphics: theory and ap-
plications. Morgan Kaufmann Publishers Inc., 1996.

[SG98] SZELISKI R., GOLLAND P.: Stereo Matching
with Transparency and Matting. In Proceedings Sixth
International Converence on Computer Vision (1998),
pp. 517–524.

[SP96] SAID A., PEARLMAN W. A.: A new fast and ef-
ficient image codec based on set partitioning in hierarchi-
cal trees. IEEE Transactions on Circuits and Systems for
Video Technology 6 (1996), 243–250.

[Wes95] WESTERMANN R.: Compression domain render-
ing of time-resolved volume data. In IEEE Visualization
(1995), pp. 168–175.

[ZWF∗03] ZHAO Y., WEI X., FAN Z., KAUFMAN A.,
QIN H.: Voxels on Fire. In Proc. 14th IEEE Visualization
Conference (VIS’03) (October 2003), pp. 271–278.

c© The Eurographics Association 2005.

