
Eurographics Symposium on Point-Based Graphics (2006)
M. Botsch, B. Chen (Editors)

GPU-Based Ray-Casting of Quadratic Surfaces

Christian Sigg Tim Weyrich Mario Botsch Markus Gross

Computer Graphics Laboratory, ETH Zurich

Abstract

Quadratic surfaces are frequently used primitives in geometric modeling and scientific visualization, such as
rendering of tensor fields, particles, and molecular structures. While high visual quality can be achieved using
sophisticated ray tracing techniques, interactive applications typically use either coarsely tessellated polygonal
approximations or pre-rendered depth sprites, thereby trading off visual quality and perspective correctness for
higher rendering performance. In contrast, we propose an efficient rendering technique for quadric primitives
based on GPU-accelerated splatting. While providing similar performance as point-sprites, our methods provides
perspective correctness and superior visual quality using per-pixel ray-casting.

1. Introduction

Due to their compact and simple definition, quadrics are a
commonly used class of objects and often serve as basic
building blocks for more complex models. They are widely
used in geometric modeling applications, like for instance
in CAD systems or constructive solid geometry, and are fre-
quently employed for scientific visualization of tensor fields,
particle simulations, or molecular structures in biological
and medical applications.

Quadrics are known to be well suited for high quality vi-
sualizations using all variants of ray-tracing, because com-
puting ray-quadric intersections involves solving quadratic
equations only. However, their efficient visualization in
interactive applications is still problematic, since current
graphics hardware is optimized solely for triangle-based
rasterization. Although rendering APIs support quadrics
through a separate interface, they are tessellated for hard-
ware accelerated forward mapping. As a consequence, high-
quality visualizations require a sufficiently fine tessellation,
which in turn causes disproportionate workload at the vertex
shader and triangle setup stage.

The same kind of limitations triggered a lot of research in
hardware-accelerated point-based rendering during the last
years, and we basically follow the same track. The pro-
grammability of current GPUs enables the implementation
of a direct hardware accelerated rendering of quadric primi-
tives, which — in contrast to the traditional forward mapping
— is a mixture between rasterization and ray-casting.

By representing and rendering each quadric primitive as
just one vertex, a tight screen-space bounding box can be
computed in a vertex shader. For each fragment generated
during bounding box rasterization the ray-quadric intersec-
tion is computed in a pixel shader.

Both the bounding box and ray intersection can elegantly
be stated as the root of a bilinear form corresponding to
the implicit definition of the quadric in screen space. Us-
ing homogeneous coordinates, our approach naturally sup-
ports perspective transformations, which enables the pixel-
precise, perspectively correct computation of bounding box
and ray intersections. While perspective correctness was
also considered in recent point-splatting approaches, exist-
ing bounding box computations are either heuristic or com-
putationally very expensive. In contrast, our homogeneous
formulation is mathematically elegant, numerically robust,
and computationally efficient.

We developed a small library to support hardware acceler-
ated quadratic surfaces within OpenGL. Spheres, ellipsoids,
and cylinders are available as additional primitives, which
can efficiently be rendered using just one vertex call. Based
on this library we implemented a molecule renderer for the
common balls-and-sticks and space-filling representations.
The visualization features shadow maps and silhouette en-
hancement, which considerably improves the spatial percep-
tion. By this we achieve superior visual quality while still
retaining high rendering performance thanks to an efficient
deferred shading implementation (cf. Figure 1).

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Figure 1: Molecular representation of a plant seed pro-
tein and human insulin rendered with hardware accelerated
sphere and cylinder primitives. Our rendering approach is
fast enough to employ silhouette outlining and soft shadows
for improved spatial perception at interactive rates.

2. Previous Work

Although quadratic surfaces are featured by many graphics
APIs, such as OpenGL utility library [OSW∗99], there is
currently no special hardware support for these primitives.
The tessellation of quadrics into triangles requires to trade
off rendering quality against rendering speed, as can be seen
in the accompanying video.

Several attempts have been made to provide fast rendering
of quadrics. As a special case of quadrics, spheres lend them-
selves to sprite rendering, using forward mapping of a pre-
computed image of a sphere. Depth sprites additionally read
depth offsets from a texture for per-pixel depth corrections.
While providing a better approximation than “flat” sprites,
this approach is only valid for orthogonal projections and
leads, e.g., to incorrect intersection curves between spheres.
Moreover, these approaches do not easily generalize to other
types of quadrics.

Gumhold uses programmable pixel shaders to compute
ray-ellipsoid intersections for tensor field visualizations
[Gum03]. This method is most similar to our technique, but
has two important drawbacks: First, the bounding box com-
putation is only correct for orthogonal projections, and thus
might clip or cut off ellipsoids for perspective ones. Sec-
ond, ellipsoids are rendered as object-space quads, which
increases the vertex load and leads to rather inefficient ren-
dering compared to our approach.

Similarly, early point-rendering approaches, where el-
lipses rather than ellipsoids are rendered, also use object-
space polygons for splat rendering [RPZ02, PSG04]. How-
ever, more efficient methods [BK03, GP03, BHZK05] need
just one vertex call per splat and employ programmable
shaders for their rasterization: the vertex shader computes
a screen-space bounding square, and during bounding box
rasterization the pixel shader classifies fragments as belong-
ing to the splat or not.

More recently, point-splatting approaches also focused on
perspective correctness. The bounding box computation of
Zwicker et al. [ZRB∗04] is perspectively correct, but com-
putationally expensive and numerically sensitive due to a
required matrix inversion. Moreover, the splats’ interiors
are perspectively distorted in their method. In contrast, the
per-pixel ray-casting of Botsch et al. [BSK04, BHZK05] is
perspectively correct, but their bounding box computation
is only heuristic and might erroneously clip splats. While
slightly incorrect bounding boxes are not a problem for
mutually overlapping splats representing a single surface,
they cause clearly visible, hence unacceptable, artifacts for
quadric-based molecule visualizations (cf. Figure 2).

Our approach adopts homogeneous coordinates for the
implicit definition of the quadric. The resulting bilinear form
can be projected into screen space by a simple linear trans-
formation, which enables the robust, efficient, and perspec-
tively correct computation of bounding box and ray intersec-
tion, since both can be stated as roots of the homogeneous
bilinear form.

To demonstrate one possible application of our method,
we show high-quality real-time visualization of molecules.
Several standard atomic models are used for the study and
dissemination of molecular structure and function. Space-
filling representations and ball-and-stick models are among
the most common ones. The research community uses a
number of free and commercial programs to render these
models, each having a specific trade-off between quality and
rendering speed. Real-time rendering approaches that can
cope with large models typically use hardware assisted trian-
gle rasterization [HDS96], whereas high-quality images are
produced with ray-tracing [DeL02].

Our method exploits programmable graphics hardware to
produce real-time visualization of molecules at a quality
comparable to off-line rendering methods. We implemented
per-pixel evaluation and lighting of quadrics, and integrated
soft shadow mapping and silhouette enhancement in order to
emphasize the important aspects of the rendered image and
to improve spatial perception.

Figure 2: Previous heuristic bounding box computations
might clip quadrics (dashed box), whereas our homogeneous
approach provides perspectively correct results (solid box).

c© The Eurographics Association 2006.



Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Model-View
Matrix

Projection
Matrix

Viewport
Matrix

Variance
Matrix

Parameter
Coordinates

Object
Coordinates

Eye
Coordinates

Clip
Coordinates

Window
Coordinates

xp xo xe xc xwT P VM

Figure 3: The OpenGL vertex transformation sequence is preceded by an additional transformation from parameter coordinates
to object coordinates. In parameter coordinates, the conic matrix defining the quadratic surface is a diagonal matrix.

3. Splatting of Quadratic Surfaces

This section explains all steps necessary to render exact per-
pixel shaded quadrics under perspective projections. We will
first write the implicit definition of the quadratic surface as
a bilinear form in homogeneous coordinates, which can be
transformed to screen space and is closed even under per-
spective projections. This insight will allow the derivation
of formulas to compute screen-space bounding boxes, solve
ray intersections, and evaluate surface normals.

In general, quadratic surfaces are defined as the set of
roots of a polynomial of degree two:

f (x,y,z) = Ax2 +2Bxy+2Cxz+2Dx +Ey2

+2Fyz+Gy+Hz2 +2Iz+ J = 0

The shape of the quadric is solely determined by the coef-
ficients A through J. Using homogeneous coordinates x =
(x,y,z,1)T the quadric can compactly be written using the
bilinear form xT Qx = 0 with the conic matrix

Q =


A B C D
B E F G
C F H I
D G I J

 .

This form is not only much shorter, it is also invariant under
perspective projections, since those become linear transfor-
mations in homogeneous coordinates. Therefore, the quadric
can still be defined in the same form when it is projected to
screen space.

3.1. Homogeneous Transformations

In OpenGL terminology, the quadric is defined in object
space and then subsequently transformed to window coor-
dinates by the transformation sequence denoted in Figure 3.
Each linear transformation in the sequence is determined by
a matrix M, expressing the basis of the previous coordinates
in the new coordinate system. In order to transform the bilin-
ear form to the new basis, its corresponding conic matrix Q
needs to be multiplied by the inverse transformation matrix
from both sides, i.e., Q′ = M−T QM−1. In fact, transform-
ing the conic matrix to a new basis is equivalent to trans-
forming its operands back to the old basis. This allows the
bilinear form to be expressed in any coordinate system of the
transformation sequence.

For each quadric, there is one distinct basis which can be
used to simplify the formulas for bounding boxes and ray

intersection. Due to the fact that the conic matrix Q is sym-
metric, it can be put into a normalized diagonal form by a
basis transformation T:

Q = T−T DT−1 with D diagonal, dii ∈ {0,±1} (1)

The coordinate system where the bilinear form of a
quadric has this diagonal, normalized form will be denoted
parameter space. The transformation matrix T, called vari-
ance matrix, expresses the basis of the parameter space in
object coordinates. The columns contain the axes u, v, w,
and center c of the quadric

T =
[

u v w c
0 0 0 1

]
. (2)

In the transformation sequence of Figure 3, the parame-
ter space is placed in front of the object coordinates. There-
fore, every quadric can be defined as an affine transformation
of one of the basic classes of quadrics in parameter space.
The class of the quadratic surface is determined by the nor-
malized diagonal form. Each quadric primitive supported by
our library maps to one specific set of diagonal entries. The
shape of the quadric in object space is then determined by
the variance matrix, which is supplied with the vertex call.

3.2. Bounding Box Computation

The quadric rendering approach needs to comply with the
graphics pipeline implemented on graphics cards, which cur-
rently support the rasterization of piecewise linear primitives
only. Similar to recent point-based rendering techniques,
we therefore compute a screen-space bounding box of the
quadric. Pixels which are rasterized but are not covered by
the quadric are culled during fragment shading by evaluating
the correct quadratic function.

Obviously, the fewer pixels are culled in the fragment
shader the better. On the other hand, complex bounding
polygons should be avoided, because computations cannot
be shared across the vertices of the polygon. The point sprite
primitive provides the best trade-off between vertex count
and pixel overdraw for most quadrics, since they are ren-
dered with one single vertex call, which completely avoids
re-computations.

Note that only ellipsoids are naturally bound by their im-
plicit definition. Other quadrics, such as cylinders, addition-
ally have to be clipped by the unit cube in parameter space.

c© The Eurographics Association 2006.



Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Bounding box computations will first be explained for ellip-
soids and later be generalized for other classes of quadrics.
We will use the notation of Figure 3 to denote the coordinate
systems of vectors as sub-indices and the transformation ma-
trices between them.

To define the parameters of the point sprite, the vertex
program needs to compute the center position in clip coor-
dinates and the point sprite radius in window coordinates.
A tight axis-aligned bounding box [bx,1,bx,2]× [by,1,by,2] of
the projected quadric in clip coordinates is computed first,
which is defined by four intersecting half-spaces. Each half-
space is given by an equation of the following form:

nT
c xc ≤ 0 (3)

The half-space to the left of bx, for instance, is given
by xc ≤ bx, corresponding to nc = (1,0,0,−bx)T . For the
bounding box to be tight, the bounding plane of the half-
space needs to touch the quadric. This condition can easily
be enforced in parameter space, where the quadric is de-
fined by the normalized diagonal matrix D. In parameter
space, the ellipsoid coincides with the S2 sphere, and each
point on the sphere also corresponds to a normal of a tan-
gent plane. Therefore, the touching condition in parameter
space becomes

nT
p Dnp = 0 . (4)

Transforming this condition to clip space is slightly dif-
ferent than transforming the conic equation, since plane nor-
mals are transformed with the inverse-transposed matrix:

np = (P ·M ·T)T nc ,

with T, M, and P as in Figure 3. For the above example of
nc = (1,0,0,−bx)T this gives

np = r1−bxr4 ,

with ri being the i-th row of the compound transformation
matrix P ·M ·T. Substitution into the constraint (4) yields a
quadratic equation for the horizontal bounding box coordi-
nate bx:(

rT
4 Dr4

)
b2

x − 2
(

rT
1 Dr4

)
bx +

(
rT

1 Dr1

)
= 0 . (5)

The two solutions of the quadratic equation correspond to
the position of the left and right border of the bounding rect-
angle. For the vertical borders, we simply have to replace
r1 with r2 in Equation (5). Finally, since the point sprite ra-
dius corresponds to the bounding box size in window coordi-
nates, we apply the viewport transformation to the bounding
box size and set half of the larger value (width or height) to
the point size radius.

The vertex position of the point sprite coincides with the
center of the bounding box in clip coordinates. In homoge-
neous coordinates, the center position can thus be stated as

vc =
(

rT
1 Dr4 , rT

2 Dr4 , 0 , rT
4 Dr4

)T
,

where the z-coordinate can be set arbitrarily, since the depth
value is overwritten in the fragment program anyway.

Point sprite parameters for cylinders can be computed
with a similar approach. The quadrics are culled at the unit
cube in parameter space and thus, they are cut off by ellip-
soidal caps. A bounding box is computed per elliptic cap,
and the point sprite is constructed to cover both bound-
ing boxes. Overall, the vertex program for cylinders is only
slightly longer than that for ellipsoids.

3.3. Ray-Quadric Intersection

The rasterization process initiates a fragment shader call for
each pixel inside the point sprite. The task of the fragment
shader is to kill fragments that are not covered by the quadric
and to evaluate a lighting model for all others. In order to
combine quadrics with standard primitives, the depth value
of the surface needs to be computed per pixel as well. For
the corresponding ray intersection problem, we again need
to find the roots of a quadratic equation. If the equation has
no real solution, the ray is not intersecting the quadric and
the fragment can be killed.

We use the unknown depth value zw of the intersection
to parametrize the viewing ray corresponding to the pixel
(xw,yw)T in window coordinates:

xw =


xw
yw
zw
1

 = x′w + zw


0
0
1
0

 ,

where x′w denotes the front plane position (xw,yw,0,1)T .
Similar to the last section, we transform the ray equation to
parameter space:

xp = (V ·P ·M ·T)−1 xw = x′p + zwc3 , (6)

where x′p is the front plane position in parameter coordinates
and c3 is the third column of the inverse transformation ma-
trix. Inserting the ray equation into the quadric definition re-
veals the formula for the intersection depth zw in window
coordinates:

0 =
(
x′p + zwc3

)T D
(
x′p + zwc3

)
=

(
cT

3 Dc3

)
z2

w +2
(

x′Tp Dc3

)
zw +x′Tp Dx′p . (7)

If the discriminant of the quadratic equation is negative,
there is no intersection and the fragment can be killed. If the
polynomial has two real roots, the smaller one corresponds
to the closer intersection and is written to the depth buffer.

The evaluation of the lighting model requires the position
and normal of the surface in eye space. While the position is
computed by transformation from window coordinates, the
normal is transformed from parameter space:

pe = (V ·P)−1 xw , (8)

ne = (M ·T)−T np . (9)

c© The Eurographics Association 2006.



Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Figure 4: Improved spatial perception with visual effects. In
comparison to pure per-pixel Phong shading, silhouette and
crease outlining and soft shadows make it much easier to
conceive the structure of the molecule.

Notice that in order to compute Equations (6), (8), (9), only
the quadric-dependent matrix (M ·T)−1 needs to passed
from the vertex shader to the fragment shader, since the ma-
trix V ·P is constant. Based on pe and ne, any lighting model
can be evaluated on a per-pixel basis.

4. Molecule Rendering

The previous section explained the approach of hardware
accelerated quadratic surface rendering. In this section, we
present molecule rendering as an exemplary application
where this technique proves to be advantageous.

Balls-and-sticks models (Figure 1, left) are highly effec-
tive for displaying the covalent structure of a molecule. Each
atom is represented by a sphere, and each pair of bonded
atoms is connected by a cylinder. This metaphor is particu-
larly useful for organic compounds, because the natural rules
of covalent bonding are represented with consistent bond
lengths, angles, and geometries. On the other hand, the elec-
tron distribution is best captured with space-filling represen-
tations (Figure 1, right), where a sphere is placed at each
atom center with a radius corresponding to the contact dis-
tance between atoms.

Using our hardware-accelerated algorithm for quadric
primitives, we can visualize both types of models in real-
time even for large models consisting of hundreds of thou-
sands of spheres and cylinders. This leaves enough perfor-
mance capacities to integrate further techniques for improv-
ing depth perception, thereby providing a much better under-
standing of shape and function of molecules (cf. Figures 4,
7, and the accompanying video). Our multi-pass rendering
algorithm is depicted in Figure 5 and explained below.

Figure 5: Different buffers and effects generated for each
frame of the deferred rendering pipeline. Three geometry
buffers store the parameters of the shading equation: dif-
fuse color (a), fragment depth (b), and surface normal (c).
Per-pixel Phong lighting (d) is then evaluated for each pixel
using the geometry buffers. A shadow map is rendered from
light view (e) and filtered to generate smooth shadow edges
(f). Silhouette and crease outlines (g) are extracted by an
edge detection filter applied to (b) and (c). Shadows and out-
lines are composited with the Phong lighting to generate the
final image (h).

Deferred Shading. To avoid expensive evaluations of the
shading equation for fragments which are subsequently
overdrawn by other fragments closer to the camera, de-
ferred shading [DWS∗88] is employed, as also proposed in
[BHZK05]. After rendering the scene from the light position
to generate the shadow map (see below), the scene is ren-
dered from the camera position in the second pass. However,
instead of evaluating the shading equation for each fragment,
we write fragment depth, diffuse color, and surface normal
into a geometry buffer. In the final pass, the color of each
image pixel is determined by evaluating the shading model
using the parameters stored in the geometry buffer.

Soft Shadows. Shadows provide a valuable information
about the spatial relationship of groups of atoms that form a
molecule. We implemented high-quality soft shadows based
on percentage-closer filtering of shadow maps [RSC87].
The small-scale molecule structures lead to highly complex
shadow maps, thus requiring 64 shadow map samples to
avoid visible noise inside the penumbra region. For better
performance, the first 8 samples are used to adaptively de-
termine whether the full 64 samples are required.

Silhouette and Crease Lines. Object and crease outlines
are a non-photorealistic visual cue for distinguishing neigh-
boring objects of similar color. Using the geometry buffer,
silhouettes and creases can easily be detected by applying a
Sobel edge detection filter to depth values and surface nor-
mals. The resulting gradient length can be considered as sil-
houette strength, which is finally used to blend the outline
color with the Phong lighting.

c© The Eurographics Association 2006.



Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Direct Shading Deferred ShadingFigure #Spheres #Cylinders
Phong-SM Phong+SM Phong-SM Phong+SM+SL

Fig. 8 99k 198k 37 fps 3.9 fps 34 fps 13 fps
Fig. 7 52k – 31 fps 2.6 fps 26 fps 15 fps

Fig. 4, right 15k – 79 fps 5.5 fps 51 fps 22 fps
Fig. 1, right 1712 – 94 fps 7.2 fps 67 fps 22 fps

Table 1: Performance comparison for standard direct shading and deferred shading at a viewport resolution of 1024×768 on a
P4, 2.4GHz, with GeForce 6800GT. While for simple Phong shading without shadows (Phong-SM) the direct shading is faster,
the deferred shading is clearly superior when adding soft shadows (+SM) and silhouette and crease lines (+SL).

Sphere Ellipsoid Cylinder

Figure 6: Supported quadric primitives. Each primitive can
be rendered with one single vertex call. The center is speci-
fied as the vertex position and the remaining parameters are
stored in the texture coordinates. For cylinders, the length of
its axis encodes its radius.

5. Results

We implemented a simple library which extends the
OpenGL API to render quadratic surfaces such as spheres,
ellipsoids, and cylinders. Figure 6 lists the supported quadric
types and the respective parameters defining their shape. Us-
ing vertex attributes to specify these parameters enables the
use of efficient vertex arrays and vertex buffer objects.

Table 1 compares the rendering performance of different
kinds of shading on several molecules of varying complexi-
ties. Using standard direct shading, the shading equation is
evaluated multiple times for a single pixel when one sur-
face is rendered on top of another one. In contrast, deferred
shading evaluates the shading equation in a post-processing
step exactly once per pixel at the additional cost of storing
the shading parameters in offscreen buffers. While for sim-
ple shading models the direct approach is faster, the deferred
technique clearly pays off for more complex shading includ-
ing soft shadows and silhouette lines.

We also examined the relative workload of each individ-
ual rendering effect in our deferred shading pipeline: the
initial shadow map generation is 12%, the per-pixel Phong
shading 35%. Filtering the shadow map with 64 samples for
smooth shadow edges is clearly the most time consuming el-
ement (45%). It is divided in an 8-sample-test to determine
whether pixels lie in the penumbra region (19%) and the full
64-sample filtering for those pixels that do so (26%). Includ-
ing the silhouette and crease lines then adds the missing 8%.
Performing full shadow map filtering only in regions that are
tested to lie inside a penumbra region results in an 31% ren-
dering speed-up on average for our sample scenes.

6. Conclusions

We presented an algorithm for hardware accelerated render-
ing of quadratic surfaces. In typical CAD systems and scien-
tific visualizations, high visual quality requires fine surface
tessellations. In contrast, our method employs ray-casting on
programmable graphics hardware and renders each quadric
primitive with a single vertex call.

Transforming the implicit definition of the quadric to
screen space is the key component for computing a tight
bounding box and ray intersections. In contrast to existing
techniques, our entire approach is perspectively correct. Our
homogeneous formulation is shown to be robust as well as
efficient, and can be generalized to point-based splatting in
the future.

To demonstrate the usefulness of our approach, we imple-
mented a molecule renderer which features smooth shadow
maps and silhouette outlining to improve the crucial spa-
tial perception of the molecular structures. Although these
effects are usually considered too complex for interactive
applications, we can achieve real-time frame rates even for
large molecules and output resolutions.

References

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High quality surface splatting on today’s
GPUs. In Proc. of symposium on Point-Based Graphics
05 (2005), pp. 17–24.

[BK03] BOTSCH M., KOBBELT L.: High-quality point-
based rendering on modern GPUs. In Proc. of Pacific
Graphics 03 (2003), pp. 335–343.

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.:
Phong splatting. In Proc. of symposium on Point-Based
Graphics 04 (2004).

[DeL02] DELANO W.: The pymol molecular graphics
system. http://www.pymol.org, 2002.

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B.,
DUFFY C., HUNT N.: The triangle processor and normal
vector shader: a vlsi system for high performance graph-
ics. In Proc. of ACM SIGGRAPH 88 (1988), pp. 21–30.

c© The Eurographics Association 2006.



Sigg et al. / GPU-Based Ray-Casting of Quadratic Surfaces

Figure 7: A ball-and-stick model consisting of 99k spheres and 198k cylinders. Compared to simple shading (left), our superior
quality visualization (right) greatly improves the spatial perception, and can still be rendered at 13 fps (1024×768 res.).

[GP03] GUENNEBAUD G., PAULIN M.: Efficient screen
space approach for hardware accelerated surfel rendering.
In Proc. of Vision, Modeling, and Visualization 03 (2003).

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids
with depth correction. In Proc. VMV 03 (2003), pp. 245–
252.

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.:
VMD – Visual Molecular Dynamics. Journal of Molecu-
lar Graphics 14 (1996), 33–38.

[OSW∗99] OPENGL ARB, SHREINER D., WOO M.,
NEIDER J., DAVIS T.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2.
Addison-Wesley, 1999.

[PSG04] PAJAROLA R., SAINZ M., GUIDOTTI P.: Con-
fetti: Object-space point blending and splatting. In IEEE
Transactions on Visualization and Computer Graphics
(2004), vol. 10, pp. 598–608.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object
space ewa surface splatting: A hardware accelerated ap-
proach to high quality point rendering. In Proc. of Euro-
graphics 02 (2002), pp. 461–470.

[RSC87] REEVES W. T., SALESIN D., COOK R. L.: Ren-
dering antialiased shadows with depth maps. In Proc. of
ACM SIGGRAPH 87 (1987), pp. 283–291.

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M.,
DACHSBACHER C., PAULY M.: Perspective accurate
splatting. In Proc. of Graphics Interface 04 (2004).

Figure 8: This complex molecular structure consists of 52k
atoms and can be rendered at 15 fps including soft shadow
maps and silhouette contouring (1024×768 resolution).

c© The Eurographics Association 2006.


