
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Point-based Surface Rendering with Motion Blur

Xin Guan and Klaus Mueller

Department of Computer Science, State University of New York at Stony Brook

Abstract
In this paper we show how to extend point-based surface rendering to illustrate object motion. We do this by
first extruding the circular points into ellipsoids, which fill the space traced out by the points in motion. Using
ellipsoids instead of cylinders achieves a low-passing effect of the motion trail. We then find the screen-space
projection of each ellipsoid, which is an ellipse. These can be rendered conveniently using hardware acceleration.
Our technique thus facilitates the rendering of complex objects with real-time motion blur. It gives the viewer
a sharply rendered object together with the hint of the direction of motion. The construction of the motion blur
trails can be based on different rendering primitives, as is also discussedin the paper. Various trail textures are
presented to achieve artistic rendering results.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms,
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Color, shading, shadowing, and texture.

1. Introduction

Point-based rendering [RL00][PZvG00][ZPvBG02] has
gained much popularity in recent years. One reason for this
is the simplicity of rendering point-based primitives. An-
other reason is that, given the high level of detail of many
geometric objects, it is more efficient to represent this detail
by an easy-to-render point than a tiny polygon, which has
significantly more rendering overhead. In this paper we show
how the convenient point representation can be extended to
illustrate the motion of point-based objects. In fact, there are
two ways to illustrate motion: one is to show an animation
sequence of the moving object, the other is to illustrate the
motion in a single image. The latter can be most accurately
achieved by averaging the images of the moving object over
time. However, rendering each image and averaging them
can be a time-consuming affair. Getting around this and still
maintaining accuracy is difficult, however, since for each ob-
ject instance along the motion path both shading and visibil-
ity change. A well-argued discussion on this is provided in
[SPW02]. In this work, it is our goal to achieve an interac-
tive rendering, using the convenience of the point primitive
that models our objects. At the same time we seek to suggest
the motion without encountering a blurring of the moving
object. In that respect, we may want to replace the notion
of motion blur with that of motion hint. In our work, we
assume the motion to be a low-passing of the object loca-

tion over time. Since the object is a collection of points, one
could hence low-pass each point by itself, yielding an ellip-
soid, and then render the resulting collection of these low-
passed points. This yields a very efficient rendering frame-
work to illustrate motion, but it is understood that it is not en-
tirely physically accurate, due to the disregard to the chang-
ing shading effects across the trail. What is achieved is more
of a non-photorealistic motion-bur effect, where, however,
we have much control over the visual effects that can be ac-
complished. We demonstrate our results using mainly ob-
jects from volume graphics, which have been converted to
surface point objects. But our approach will readily apply to
any point-based object. Our paper is structured as follows.
First, Section2 will discuss previous work on related issues,
and Section3 and4 will describe how the motion ellipsoid
are constructed and finally rendered. Section5 and 6 will
then present results and give conclusions.

2. Previous Work

Anti-aliasing has been a well-studied research field in com-
puter graphics. Aliasing occurs whenever the sampling rate
falls below the Nyquist rate. In rendering, aliasing effects
can be prevented by using smooth filters for interpolation.
Specifically, point-based rendering reduces aliasing by rep-
resenting the point samples as extended kernel functions,

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

such as Gaussians, tents, or squares (see, for example,
[RL00][PZvG00][ZPvBG02].

Our paper extends anti-aliasing by ways of extending ker-
nels into the temporal domain. This gives rise to a variety of
motion-blur effects, which are able to give suggestive hints
of the object in motion.

Motion blur is an intuitive way to create temporally anti-
aliased renderings of graphics objects. With respect to the
different underlying geometric models, motion blur tech-
niques can be applied to polygonal models, volumetric ob-
jects, particle systems, or images. Polygon-based techniques
focus on creating motion-blurred renderings of polygonal
surface models. Volume-based techniques use 3D volumet-
ric models for motion blur generation and the final render-
ing. Particle systems are often used to model fuzzy objects,
and due to the similarity with polygon-based techniques,
this method is discussed in Section2.1 along with polyg-
onal methods. Finally, the fourth category is to post-process
a rendered image and simulate the motion blur effects in the
synthesized image.

2.1. Polygon-based Techniques

The rendering equation for polygon models under motion is
(see [SPW02] for further detail):

i(x,y, t) = i(w, t) = ∑
l

∫

Ω

∫

T
r(w, t)gl (w, t)Ll (w, t)dtdw.

(1)

Here,Ω is the solid angle of the viewing cone emerging from
the pixel at(x,y), T is the time at which the camera shutter
is open, andl counts the number of objects in the scene.
The functionr is a camera-dependent reconstruction filter,
which describes its shutter geometry as a function of time,
g is a function describing the observed geometry (usually a
value 1 when visible, and 0 otherwise), andL is the object’s
luminance over time. Following [SPW02], we can categorize
existing motion blur techniques on polygonal models based
on the different terms in Equation (1).

Monte-Carlo based methods [CPC84][CCC87][Coo86]
[DW85][LRU85] use statistical super-sampling to approxi-
mate the entire integral of Equation (1). [HA90] used hard-
ware to accelerate this method with multi-passz-buffer
scan conversions. Super-sampling is inevitably slow since it
needs to process more samples, and also, the number of sam-
ples required is often adaptive and thus hard to predict. For
this reason, with Monte-Carlo based methods it is difficult to
achieve real-time constant rendering rates.

Assuming constant shading in Equation (1), some
methods solve for visibility, that is, the geometry term.
[KB83][Gra85] search for visible geometric objects and dis-
play them. On the other hand, geometric morphing meth-
ods strategically deform or introduce new geometry from

available geometry based on the actual motion. In their par-
ticle systems, [Ree83] renders the particle points as line
segments along their motion trail to model fuzzy objects.
[Cat84] solves the visible surface problem at each screen
pixel independently, while [WZ95] creates a transparent mo-
tion volume to approximate the motion blur of constant-
colored opaque objects.

[NRS82] addresses the shading problem by proposing an
object space method that interpolates between samples and
provides a continuous transition from a sampled signal to
another signal. Their method can be naturally extended for
motion blur generation. This work does not consider the vis-
ibility problem.

Sung et al. [SPW02] observe from [Gra85][KB83] that, in
general, it is not possible to solve the shading and visibility
problem separately in temporal and spatial domain, thus they
separate the shading problem from the visibility problem.
This method generates high quality images, however, since
it requires adaptive super sampling, the rendering speed is
limited and cannot be guaranteed.

2.2. Volumetric Techniques

Mueller et al. [MMSI∗98] describe a framework for motion
blur generation in the context of splatting-based volume ren-
dering. For volume rendering, the geometric visibility prob-
lem persists when semitransparent or opaque compositing
is used. However, for X-ray-like or emission volume mod-
els, Max [Max95] and Crawfis et al. [CMB94] have shown
that the compositing order is immaterial. Mueller et al.’s
method simplified the problem and did not address the vis-
ibility problem, but only the integrated energy across the
time domain. The elongated Gaussian splat is constructed
as a rectangle that spans the motion vector of a voxel, with
two half-spherical Gaussian splats at both ends. This idea
is similar to [WZ95] by creating a motion volume for each
geometric elements.

2.3. Post-processing Techniques

Post-processing techniques [Max90][ML85] [PC83][Shi93]
[SSC03] operate on the rendered images, and can be applied
to any geometric model. Post-processing techniques only ad-
dress the 2D problem (extended by [ML85][Shi93] for 2.5D
problems) and are capable of creating high quality motion
blurred images. [CW93] requires a per-pixel correlation and
requires significant computation time. [PC83] proposes an
approach of producing motion blur images by time convolu-
tion of the normal image with the motion function. However,
in general, solutions to post-processing approaches cannot
adapt to local properties of the images, and cannot address
the situation where motion objects cannot be separated into
non-overlapping layers in depth.

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

3. Construction of Ellipsoids for Motion Blur

3.1. Motivation

One of our goals was to extend the work by Mueller et al.
[MMSI∗98], which presented an algorithm for the genera-
tion of motion blur of volumetric objects. However, we felt
that rendering all object voxels motion-blurred, even the in-
terior ones, does not give the viewer more information on
either the motion, or the shape of the volume. In addition, it
would also increase the rendering time substantially. Thus,
instead of rendering motion blur for the entire volume, we
decided to only consider a specific iso-surface of the vol-
ume as a time. This iso-surface can be selected by the user at
run-time. Once the iso-surface has been selected, we can use
point-based surface rendering instead of full volume splat-
ting. We used the method described in [BC03] for creating a
point-based surface model from a volumetric iso-surface.

Different from most of the previous work, our emphasis is
to generate images that provide strong motion hints for the
viewer quickly, instead of trying to create theoretically cor-
rect motion blurs. The only mathematically strict method for
generating realistic motion blur is to render the scene mul-
tiple times and then composite the rendering results. All ex-
isting techniques attempt to simulate this effect by making
assumptions and approximations. However, when we con-
sider the nature of motion blurred images, they do not offer
a clear view of the geometric shape of the objects, or even a
hint of the direction of the motion. We feel that this aspect,
along with efficient rendering capability, is very important
for visualization.

To render motion blurred images that at the same time
offer hints of object property and motion direction requires
some study of conventional photography art. To accomplish
this goal, photographers would clearly make use of the flash
and the shutter. In Figure1, one football and one basket ball
drop from the hands above. To capture this motion in a single
2-dimensional picture, the photographer would first shoot
the picture in a room with only a small amount of light. After
the shutter has been open for a long enough time to capture
the motion trail, the photographer gives the scene a strong
flash for a very short time interval and captures the geomet-
ric and material information of the object, as if the object
stays still in that interval. Thus the overall picture retains
both the object and the motion information.

Our approach can accomplish these effects by sending
two primitives down the rendering pipeline: one for realis-
tic rendering of the surface object, and the other to simulate
the motion trail.

3.2. Point-based Surface Rendering

The extraction of iso-surface voxels from the volume gen-
erates a surface representation of the object. Many tech-
niques exist for point-based rendering of surface models. We

Figure 1: Photographer’s techniques to generate motion
blur images while maintaining the clear shape of objects and
the hint of motion direction.

choose to use a simplified version of EWA surface splatting
[ZPvBG02]. Instead of going through the expensive com-
putation of the elliptical Gaussian texture mapping, we use
one 2-dimensional round Gaussian splat that is perpendic-
ular to the normal of this point. We render this round splat
as a texture-mapped square in the space, and thus resort to
OpenGL to do the projective transformation. An even more
simplified approach is to consider each surface point as a
Gaussian sphere, whose projection onto the screen is a disk.
This can be combined with a billboard technique to achieve
fast rendering rates. However, the latter technique does not
offer the same image quality as the former one, as shown in
Figure2, and we choose to use the normal-oriented splats.

Finally, in contrast to the 2-pass approaches of
[PZvG00][ZPvBG02][ZPvG01] which use a z-buffer
method in conjunction with blending to determine occlu-
sion, we first bucket-sort the points with respect to the
viewpoint and then render them in front-to-back order.

3.3. Motion Trail from Gaussian Disks

Now that we have the rendering method to visualize the
sharp point-based object extracted from the volumetric ob-
ject, we need to create the motion trail from these points.
Here we perceive the motion object to be generated from
low-passing the object along the fourth, that is, the time, di-
mension. This makes some assumptions on the linearity of
the motion path. But since we consider each atomic object

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

Figure 2: Different point-based rendering primitives: Gaus-
sian sphere (left) and normal-oriented Gaussian disks
(right). Bucket-sort is used to ensure correct ordering.

point separately, this is only a mild assumption. Thus, rota-
tions of an object can be easily accomplished by computing
each point’s trajectory as the local path in the global rota-
tion. Translations and rotations can be combined by adding
the vectors at each point.

The Gaussian filter is a good anti-aliasing filter, and we
shall use it here to accomplish the temporal blurring. Fig-
ure3 illustrates a circular (Gaussian) point moving fromP1
to P2, passing throughP0. Low-passing this sequence with
a temporal Gaussian centered atP0 produces a Gaussian el-
lipse. This would generate motion blur. To obtain a motion
trail, giving the desired motion hint, one would place its cen-
ter slightly behindP0. Rendering both the point atP2 and the
ellipse would then generate a picture similar to Figure1.

Figure 3: During a given time interval, a point moves from
P1 to P2, where P0 is the middle point along the line segment
between P1 and P2.

The just described method can be readily extended into
3D, where a moving spherical point would produce an ellip-
soid. Although this train of thought is valid for volume ren-
dering with splatting, where objects are indeed made up of
spherical Gaussians, this is not true for surface point-based
objects that are constructed from Gaussian disks. We need
to be more specific when creating the motion ellipsoid with
normal oriented Gaussian disks as point primitives. Consider
Figure4, where we show the settings of the geometry. The
motion vector means that in the given time interval, the sur-

face point moves from its current position to the other end of
the motion vector (or,P1 to P2 in Figure3).

Figure 4: Ellipsoid Generation and Rendering

Now given the disk’s normal and the motion vector, we
need to create the motion ellipsoid that simulates the low-
passed motion volume created by the swiping of the normal-
oriented Gaussian disk. One can construct this ellipsoid in
3D using the screen-space transformed normal and motion
vectors, followed by its projection into a screen-space el-
lipse. This requires two cross-products and one dot prod-
uct to form the matrixT that transforms an axis-aligned
unit ellipsoidI3 into the motion ellipsoid, a 3×3 variance-
covariance (VC) matrix:

Mellipsoid = T × I3×T′.

The screen-space ellipse can be obtained by dropping the
ellipsoid’s last row and column [ZPvBG02]. The eigenvalues
and eigenvectors of this 2D matrix determine the orientation
and stretch of the polygon onto which the Gaussian footprint
is mapped for projection as follows. Given a general ellipse
in a plane with a variance matrix

V2 =

(

A D
D B

)

,

we can compute the two half vectors that define its bounding
rectangle (represented by the polygon). The two eigenvalues
of matrixV2 are

λ1 =

(

A+B−

√

(A−B)2 +4D2

)

/2

λ2 =

(

A+B+
√

(A−B)2 +4D2

)

/2

Let

w =
1

√

(λ1−B)2 +D2
,

we have sinα = wD,cosα = w(λ1 −B). The length of the
major and minor axes area= 1/

√

λ2, b= 1/
√

λ1. Letright

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

be the long axis andup be the short axis, we have

right = [−asinα,acosα]

up = [bcosα,bsinα]

We need 4 square roots, 2 divisions and 20 multiplica-
tions.

An alternative and more efficient method skips the 3D
construction of the motion ellipsoid entirely and instead con-
structs the 2D motion ellipse from a convolution of the 2D
Gaussian functions of the projected point and the projected
motion vector. This convolution can be conveniently per-
formed by adding their VC matrices [ZPvBG02]. We ob-
tain the point’s 2D VC matrix by first transforming its object
space 3D VC matrix into screen space, taking into account
the transformation due to motion, and then dropping the last
row and column of the resulting matrix. Note that the 3D
VC matrix has the shape of an ellipsoid with zero width in
the disk’s normal direction, giving rise to 2 non-zero eigen-
values. The world-space motion vector is projected to the
screen as well, and its VC matrix (bounded by an ellipse of
zero width and having one non-zero eigenvalue) is built us-
ing the orientation and length of the 2D vector. Adding these
two matrices results in the projected motion ellipsoid, from
which we extract the eigenvectors and values for orientation
and scale of the polygon that maps the texture of the Gaus-
sian footprint using the equations outlined above.

To obtain different rendering effects, we can vary the
length of the motion ellipse, move it closer or farther away
from the object’s point primitive, or generate a number of
motion ellipses of identical orientation, but shorter along the
motion direction and spaced apart at a fixed interval on the
motion axis. In the latter variation, we can render the point’s
motion trail in a sequence of different colors, ranging from,
say, red to white. This is just to emphasize that the approach
is quite general and allows for a lot of “playing around”,
once we have a framework for rendering and projecting el-
lipsoids. This will be described next.

4. Point-Based Rendering with Motion Trails

To create real-time motion blur when the user moves the ob-
ject, we need the motion vector for each point in each time
step. Assume that the current and previousModelView ma-
trices areMcurr andMprev, respectively, and the position of a
point in the object space isp, the motion vector in the world
coordinate system is:

motionworld = Mcurr p−Mprevp = (Mcurr −Mprev)p.

The motion vector in the object space is

motion= M−1
currmotionworld

= M−1
curr(Mcurr −Mprev)p

= (I −M−1
currMprev)p.

Thus we only need to compute this matrix once for each
frame.

We can easily extend our texture-based motion trail gen-
eration to other textures beyond Gaussian texture or other
colors, as shown in Figure7, to create interesting non-
photorealistic (NPR) rendering effects (Figure8).

The overall rendering algorithm works as follows. First,
a surface representation of a volume is extracted based on a
user-specified iso-value. This yields a collection of circular
Gaussian splats, rendered as polygons. When viewed under
motion, each point also gives rise to an elliptical Gaussian
splat. We maintain a bucket list which orders the object and
motion splats front to back to resolve occlusions.

Alternatively, one may also maintain two bucket lists, one
for the motion splats and one for the object splats. Using
these separation of points, motion and object, we would ren-
der two images: one for the motion trail, modelling a long-
open photographic lens, and one for the object captured by
the final flash photography. Adding these two images to-
gether is synonymous to what happens on filmed motion
trails. One can de-emphasize motion trails falling within the
extent of the object by assigning a high opacity to the object
points and alpha-blending the object and the motion image
in that order. Alternatively, one can also displace the mo-
tion ellipse far from the object point, which means that the
camera was closed for some time until the flash picture was
taken. Merging the two bucket lists will provide images in
which motion trails of distant object parts are occluded by
closer object portions.

Alpha-compositing is always used to render the depth-
sorted object points, but either adding or alpha-blending can
be used to render the motion splats. The former is more true
to the photographic model we are striving to simulate, while
the latter may provide better blending. The influence of a
point on the motion trail image is strongly related to its re-
flected light. For uni-colored objects, we can model this by
scaling the motion splat’s intensity by the dot product of the
normal and the light vectors. A more general solution would
scale the motion splat’s intensity by the result of the com-
plete shading equation. This would generate motion trails
that show a mix of the object colors (see the balls in Figure
1).

We do not generate motion splats for points with back-
facing normals. We also provide the option to scale the in-
tensity of the motion splat by the dot product of point nor-
mal and viewing vector. This ensures that points with small
screen footprints will not contribute much to the motion im-
age.

5. Results

We implemented the algorithm on a computer with Pentium
1.2G CPU, 512M memory, and ATI Radeon 9700 Graphics

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

Card. The rendering speed for all volume datasets shown be-
low has a frame rate of above 10 fps, thus we consider the
algorithm as interactive. Due to the smoothness of the splats
we have not observed strobing in animated viewing.

Figure 5 shows a simple example: a rotating rod and a
translating rod, rendered with a white motion trail to suggest
its motion. Figure6 shows some motion trails when a solid
sphere drops. Figure7 shows a dataset of a cerebral ves-
sel with an aneurism, undergoing various motions, rendered
with different motion trail effects. This, for example, could
be used to suggest the trajectories of vessels in a beating
heart. Finally, Figure8 shows some engine parts undergoing
different kinds of motion.

Figure 5: Rotation and translation of a rod.

Figure 6: A falling sphere.

Figure 7: Point-based rendered vessel dataset. Left: Origi-
nal dataset. Right: with rotational motion blur. Middle: with
color-coded trails to disambiguate if the illustrated length
of motion trails in the image was due to the motion or the
viewing angle. Redder trails have larger motion.

Figure 8: Point-based rendered engine dataset with37520
surface points rendered. First row: Left: Original dataset.
Right: rotational motion displayed as streak lines. Second
row: Left: with rotational motion. Right: motion blur trail
only. Third row: Left: rotational motion with color-coded
trails. Right: translational motion.

6. Conclusions

This paper presents an original technique to simulate motion
blur and motion hints for point-based objects. By illustrat-
ing to the viewer a sharply rendered object and the direction
of its motion, it provides strong motion hints without dimin-
ishing the visual appearance of the moved object. Since the
object itself is not blurred, we do not encounter the problems
associated with a temporally changing shading function.

A current downside of our approach is that the visibil-
ity function of the moving objects is not properly handled.
Although we perform depth sorting of all points, surface
points and motion ellipsoids, it is absolutely possible that
there are motion ellipsoids that cross each other in tempo-
ral space, which is particularly true for rotations. This can
be handled by using an image-aligned slice-based rendering
technique, such as the one described in [MC98]. It would
slice the 3D motion ellipsoids and not use the 2D ellipti-

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

cal projections. With this functionality, the visibility part of
Equation (1) would also be correctly solved. It would en-
able correct semi-transparent viewing of object parts hidden
in the motion blur of more front-facing objects, using alpha-
compositing. A slice-based rendering technique would also
enable better post-shading rendering effects. Finally, in or-
der to also model the change of shading, which is dependent
on the orientation of the normal vector, we plan to associate
the point normals with the motion ellipses. Shading would
then be performed as a post-process on these blurred nor-
mals. Future work is directed towards these directions.

Our approach works well for the translational motion of
the Gaussian disks, which is easily modelled by ellipsoids
and ellipses. On the other hand, the trajectory of points un-
der rotation follows a curve – giving rise to a bent motion
ellipsoid for the Gaussian disks. We currently only handle
small rotations, where motion vectors can be approximated
by a straight line. One way to deal with larger rotations could
be to bend the screen space motion ellipse, centered at an av-
erage orientation, by the projected rotation trajectory. In that
case, translations and rotations would be combined by updat-
ing the 3D rotation curve by the translation vector. The ren-
dering would use a polygon strip approximating the shape of
the bent ellipse, with the Gaussian texture mapped onto it.

At the current time we do not check during motion splat
generation if the point is actually visible from the view, at
least partially. This means that front-facing points hidden
in concavities will still give rise to motion splats, yet they
are invisible in the object image. This, of course, will not
be the case in motion trail photography. Visibility splatting
[PZvG00] could provide help in this effect. Here, the inten-
sity of the motion splat, and even its width, could be deter-
mined by the z-buffer pixel ID’s. Hidden splats would not
produce a motion splat at all.

We would also like to experiment with other textures to
model motion blur with NPR effects, similar to those used
in cartoons. Furthermore, it may be interesting to use dy-
namic multi-resolution representations of volume or surface
models, so that instead of low-passing the trajectory of each
point, we could low-pass each part in the desired layer of
resolution. Finally, we would like to extend the approach
presented in this paper to time-varying volumes, where we
could estimate the local motion trail by computing the voxel
motion vectors using optical flow or mpeg-style motion pre-
diction.

Acknowledgments

This work was supported by NSF Career Grant ACI-
0093157. We would like to thank the paper reviewers, in
particular reviewer 3, for their valuable comments.

References

[BC03] BRENTZENJ. A., CHRISTENSENN. J.: Hard-
ware accelerated point rendering of isosur-
faces. InThe 11th International Conference
in Central Europe on Computer Graphics, Vi-
sualization and Computer Vision(2003).3

[Cat84] CATMULL E.: An analytic visible surface al-
gorithm for independent pixel processing. In
Proceedings of the 11th annual conference on
Computer graphics and interactive techniques
(1984), ACM Press, pp. 109–115.2

[CCC87] COOK R. L., CARPENTERL., CATMULL E.:
The reyes image rendering architecture. In
Proceedings of the 14th annual conference on
Computer graphics and interactive techniques
(1987), ACM Press, pp. 95–102.2

[CMB94] CRAWFIS R., MAX N., BECKER B.: Vector
field visualization. IEEE Computer Graphics
and Applications 14, 5 (Sept. 1994), 50–56.2

[Coo86] COOK R. L.: Stochastic sampling in computer
graphics.ACM Trans. Graph. 5, 1 (1986), 51–
72. 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.:
Distributed ray tracing. InProceedings of the
11th annual conference on Computer graphics
and interactive techniques(1984), ACM Press,
pp. 137–145.2

[CW93] CHEN S. E., WILLIAMS L.: View interpola-
tion for image synthesis. InProceedings of the
20th annual conference on Computer graphics
and interactive techniques(1993), ACM Press,
pp. 279–288.2

[DW85] DIPPé M. A. Z., WOLD E. H.: Antialiasing
through stochastic sampling. InProceedings
of the 12th annual conference on Computer
graphics and interactive techniques(1985),
ACM Press, pp. 69–78.2

[Gra85] GRANT C. W.: Integrated analytic spatial
and temporal anti-aliasing for polyhedra in 4-
space. InProceedings of the 12th annual con-
ference on Computer graphics and interactive
techniques(1985), ACM Press, pp. 79–84.2

[HA90] HAEBERLI P., AKELEY K.: The accumulation
buffer: hardware support for high-quality ren-
dering. InProceedings of the 17th annual con-
ference on Computer graphics and interactive
techniques(1990), ACM Press, pp. 309–318.
2

[KB83] K OREIN J., BADLER N.: Temporal anti-
aliasing in computer generated animation. In

c© The Eurographics Association 2004.



Xin Guan & Klaus Mueller / Point-based Surface Rendering with Motion Blur

Proceedings of the 10th annual conference on
Computer graphics and interactive techniques
(1983), ACM Press, pp. 377–388.2

[LRU85] LEE M. E., REDNER R. A., USELTON

S. P.: Statistically optimized sampling for dis-
tributed ray tracing. InProceedings of the
12th annual conference on Computer graphics
and interactive techniques(1985), ACM Press,
pp. 61–68.2

[Max90] MAX N.: Polygon-based post-process motion
blur. Visual Computer 6, 6 (1990), 308–314.2

[Max95] MAX N.: Optical models for direct volume
rendering.IEEE Transactions on Visualization
and Computer Graphics 1, 2 (June 1995), 99–
108. 2

[MC98] MUELLER K., CRAWFIS R.: Eliminating pop-
ping artifacts in sheet buffer-based splatting.
In Proceedings of the conference on Visualiza-
tion ’98 (1998), IEEE Computer Society Press,
pp. 239–245.6

[ML85] M AX N. L., LERNER D. M.: A two-and-
a-half-d motion-blur algorithm.SIGGRAPH
Comput. Graph. 19, 3 (1985), 85–93.2

[MMSI∗98] MUELLER K., MOLLER T., SWAN II J.,
CRAWFIS R., SHAREEFN., YAGEL R.: Splat-
ting errors and antialiasing.IEEE Transactions
on Visualization and Computer Graphics 4, 2
(apr – jun 1998), 178–191.2, 3

[NRS82] NORTON A., ROCKWOOD A. P., SKOL-
MOSKI P. T.: Clamping: A method of an-
tialiasing textured surfaces by bandwidth lim-
iting in object space. InProceedings of the
9th annual conference on Computer graphics
and interactive techniques(1982), ACM Press,
pp. 1–8.2

[PC83] POTMESIL M., CHAKRAVARTY I.: Modeling
motion blur in computer-generated images. In
Proceedings of the 10th annual conference on
Computer graphics and interactive techniques
(1983), ACM Press, pp. 389–399.2

[PZvG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: surface elements as
rendering primitives. InProceedings of
the 27th annual conference on Computer
graphics and interactive techniques(2000),
ACM Press/Addison-Wesley Publishing Co.,
pp. 335–342.1, 2, 3, 7

[Ree83] REEVES W. T.: Particle systemsa technique
for modeling a class of fuzzy objects. In
Proceedings of the 10th annual conference on

Computer graphics and interactive techniques
(1983), ACM Press, pp. 359–375.2

[RL00] RUSINKIEWICZ S., LEVOY M.: Qs-
plat: a multiresolution point rendering sys-
tem for large meshes. InProceedings of
the 27th annual conference on Computer
graphics and interactive techniques(2000),
ACM Press/Addison-Wesley Publishing Co.,
pp. 343–352.1, 2

[Shi93] SHINYA M.: Spatial anti-aliasing for anima-
tion sequences with spatio-temporal filtering.
In Proceedings of the 20th annual conference
on Computer graphics and interactive tech-
niques(1993), ACM Press, pp. 289–296.2

[SPW02] SUNG K., PEARCE A., WANG C.: Spatial-
temporal antialiasing.IEEE Transactions on
Visualization and Computer Graphics 8, 2
(April – June 2002).1, 2

[SSC03] SHIMIZU C., SHESH A., CHEN B.: Hardware
accelerated motion blur generation.EURO-
GRAPHICS 22, 3 (2003).2

[WZ95] WLOKA M. M., ZELEZNIK R. C.: interactive
real-time motion blur. The Visual Computer,
12 (1995), 283–195.2

[ZPvBG02] ZWICKER M., PFISTER H., VAN BAAR J.,
GROSS M.: EWA splatting. IEEE Transac-
tions on Visualization and Computer Graphics
8, 3 (jul – sep 2002), 223–238.1, 2, 3, 4, 5

[ZPvG01] ZWICKER M., PFISTER H., VAN BAAR J.,
GROSSM.: Surface splatting. InProceedings
of the 28th annual conference on Computer
graphics and interactive techniques(2001),
ACM Press, pp. 371–378.3

c© The Eurographics Association 2004.


