
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Phong Splatting

Mario Botsch Michael Spernat Leif Kobbelt

Computer Graphics Group
RWTH Aachen University

Abstract

Surface splatting has developed into a valuable alternative to triangle meshes when it comes to rendering of highly
detailed massive datasets. However, even highly accurate splat approximations of the given geometry may some-
times not provide a sufficient rendering quality since surface lighting mostly depends on normal vectors whose
deviation is not bounded by the Hausdorff approximation error. Moreover, current point-based rendering systems
usually associate a constant normal vector with each splat, leading to rendering results which are comparable to
flat or Gouraud shading for polygon meshes.
In contrast, we propose to base the lighting of a splat on a linearly varying normal field associated with it, and
we show that the resulting Phong Splats provide a visual quality which is far superior to existing approaches. We
present a simple and effective way to construct a Phong splat representation for a given set of input samples.
Our surface splatting system is implemented completely based on vertex and pixel shaders of current GPUs and
achieves a splat rate of up to 4M Phong shaded, filtered, and blended splats per second. In contrast to previous
work, our scan conversion is projectively correct per pixel, leading to more accurate visualization and clipping at
sharp features.

1. Introduction

Surface splatting is a well-established technique to render
high quality images of geometric objects that are given by
a sufficiently dense set of sample points. The idea is to ap-
proximate local regions of the surface by planar ellipses in
object space and then render the surface by accumulating
and blending these ellipses in image space. From the geo-
metric point of view, the set of ellipses defines a piecewise
linear approximation of the given geometry, and the size and
aspect ratio of the ellipses depend on the local principal cur-
vatures (and the approximation tolerance prescribed by the
user).

Usually, each splat is associated with a normal vector in
order to compute local lighting, which leads to a piecewise
constant shading — similar to flat shading for polygonal
meshes. Blending the splats’ color contributions by Gaus-
sian filtering improves the rendering from flat shading to
Gouraud shading. For polygons, much better visual quality
is achieved by Phong shading, where normal vectors are lin-
early interpolated across triangles, leading to a continuously
varying lighting [Bui75]. However, normal interpolation re-

quires connectivity information which is usually not avail-
able for surface splats.

The basic idea of Phong splatting is to associate a linearly
varying normal field with each splat instead of keeping the
normal constant. By this, we achieve the same visual quality
as Phong shaded polygons, but we preserve all the important
advantages of point-based surface representations, e.g., we
do not have to construct a globally consistent connectivity.

The first to propose the use of a varying normal field for
surface splatting were [KV01], generating normal mapped
splats by sampling position and curvature information of
NURBS surfaces. In this paper we present an algorithm for
the generation of Phong splats that provides a simpler formu-
lation as well as a more robust and accurate approximation
of the geometry as well as of its normal field.

In order to generate Phong splat representations we as-
sume that the input data consists of a set of sample points
with associated normal vectors. Hence, each point can be
considered as a 5-dimensional sample. The first three entries
are the spatial point coordinates and the last two entries rep-
resent the (normalized) normal vector.

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


Botsch, Spernat, Kobbelt / Phong Splatting

To approximate a certain surface region by an elliptic
splat, we fit a least squares plane to the corresponding set
of sample points that belong to this region. Then we project
the samples to this plane and fit a minimum enclosing el-
lipse. To derive the linear normal field, we do exactly the
same, i.e. we fit a linear function to the normal vectors in the
least squares sense.

The rendering of the resulting Phong splat representa-
tions can be implemented very efficiently by exploiting the
features of modern programmable graphic processors. Our
system delegates all rendering tasks to the vertex and pixel
shader units of the GPU and achieves a rendering speed of up
to 4M high-quality filtered Phong splats per second. Com-
pared to standard point-based rendering algorithms, Phong
splatting needs significantly fewer splat primitives to pro-
duce the same visual quality. Taking this into account, our
method is also more efficient than previous high-quality
splatting approaches.

Besides higher performance, another advantage of map-
ping the complete rendering process to the GPU is that the
CPU is free to handle the actual processing of the geometry
data. Hence, the geometry processing algorithms also bene-
fit from Phong splats, as less primitives have to be stored and
processed.

2. Related Work

Points have first been proposed as rendering primitives by
Levoy and Whitted [LW85], followed by point-based render-
ing approaches based on image-space reconstruction tech-
niques [GD98, PZvBG00, SD01] or object-space resam-
pling [ABCO∗01, FCOAS03].

In contrast to this, surface splatting [ZPvBG01] avoids
holes in the rendered image by associating a normal vec-
tor and a radius with each point, thereby considering
them as small discs or ellipses in objects space. Build-
ing on this work, several point-based rendering approaches
have been developed, the early ones being implemented
in software and therefore putting a high load on the CPU
[ZPvBG01, BWK02].

The increasing efficiency and programmability of modern
graphic cards triggered the development of hardware-based
splatting methods, starting with [RL00]. The approach of
[RPZ02] renders splats using object space quads, causing a
multiplication of the number of vertices to be processed by
a factor of four. More efficient approaches manage to ren-
der just one vertex per splat and use vertex and pixel shaders
for the splat rasterization. But also these methods represent
a trade-off between high visual quality and efficient render-
ing, differing in the rendering primitives and filtering meth-
ods they use. Splat shapes range from simple image space
squares [DVS03] over circular splats [CH02, BK03] to el-
liptical splats that nicely adapt to the local surface curvature
[ZRB∗04].

High quality anisotropic anti-aliasing can be achieved
by assigning a Gaussian filter kernel to splats. Combin-
ing these object-space reconstruction kernels with a band-
limiting image-space filter results in the high quality EWA
splatting technique [ZPvBG01, RPZ02, ZRB∗04].

However, all methods mentioned above use a constant
normal vector for lighting splats, leading to results similar to
flat shading in the polygon rendering case. Blurring the shad-
ing discontinuities by Gaussian filtering achieves render-
ings comparable to Gouraud shading. Better results can be
achieved by a per-pixel EWA averaging of normals in com-
bination with deferred shading, as proposed by [ZPvBG01].
However, non-constant normal fields yield an even higher
visual quality, as first proposed by Kalaiah and Varshney
[KV01, KV03]. Since their approach is the one most simi-
lar to ours, we will compare to it in more detail in Sec. 5. A
comparison to [ZPvBG01] is given in Sec. 6.

Being piecewise linear primitives, surface splats also
gained increasing attention as an alternative geometry repre-
sentation, since they exhibit the same approximation power
as triangle meshes. As a consequence, several geometry pro-
cessing algorithms have been developed for point-based ge-
ometries [PG01, ZPKG02, PKKG03, PKG03]. The running
time of these algorithms is mostly dominated by the num-
ber of splat primitives. To enable efficient processing and
rendering of these datasets, simplification and resampling
techniques for point-based geometry have been developed
[PGK02, Paj03, WK04]. We build upon this kind of ap-
proaches by adding a linearly varying normal field to the
splat primitives.

We simplify and improve the splat generation phase of
[KV03] in Sec. 3 and propose a Phong splat rendering sys-
tem that combines per-pixel lighting and high-quality fil-
tering and correctly computes the projection per pixel in
Sec. 4. Finally Sec. 6 shows that the resulting Phong splat-
ting framework provides a superior ratio of quality to speed
compared to existing splatting approaches.

3. Phong Splat Generation

Given a dense set of (input) surface samples pi we use a tech-
nique like the one described in [WK04] to generate an op-
timized set of elliptical surface splats that approximates the
input data within a prescribed error tolerance ε. The idea of
this technique is to locally estimate the principal curvature
directions at every input sample and to align the ellipses’
axes accordingly. An initial selection of splats that cover the
complete set of samples is then optimized by a global relax-
ation procedure.

The output of this procedure is a set of elliptical surface
splats S j that provide an approximation of the input point
cloud. A splat is defined by its center c j and two orthogo-
nal principal tangent directions u j and v j . The tangents are
scaled according to the corresponding ellipse radii such that

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

(0,0)

(0,0,1) (x,y,1)

n

Figure 1: Since lengths are not important for the normal
fitting procedure, normals are represented as homogeneous
points on an offset tangent plane.

an arbitrary point q in the plane spanned by u j and v j lies in
the interior of the splat S j if its local parameter values u and
v satisfy the condition

u2 + v2 =
(

uT
j (q− c j)

)2
+

(

vT
j (q− c j)

)2
≤ 1. (1)

The inside test can be applied even to points that do not lie in
the supporting plane of the splat. In this case, the two param-
eter values u and v correspond to the orthogonal projection
of q into that plane.

Each splat S j is associated with a sub-set Pj of the samples
pi which are covered by it, i.e., which are contained in the
elliptical cylinder generated by offsetting the splat in normal
direction by ε and by −ε respectively. Notice that usually we
expect Pj ∩Pk 6= ∅ for neighboring splats due to the mutual
overlap.

The basic idea of Phong shading is to assign explicit nor-
mal vectors to the vertices of a polygon mesh and then to in-
terpolate these normals in a piecewise linear fashion. Phong
splatting does the same, except that we cannot interpolate
normal vectors of neighboring splats, since in general no
connectivity information is available. Hence, for each splat
we derive a linear normal field from the associated set of
samples Pj .

For the geometric fitting the splat’s center and tangential
directions are usually derived by fitting a plane to the sample
points pi ∈ Pj in the least squares sense. We do exactly the
same in order to fit a linear normal field to the given normals
ni associated with the sample points pi. This normal field N j
is specified by a center normal n̄ j and two scalar values α j
and β j , such that the (unnormalized) normal of a point q on
the splat S j with parameter values (u,v) is

N j(u,v) = n̄ j +u α j u j + v β j v j, (2)

i.e. we tilt the center normal along the tangential directions.

For the normal fitting we represent a given normal vector
ni w.r.t. the local frame spanned by the splat’s tangent direc-
tions (u j , v j) and its normal (u j × v j). Note that the center
normal n̄ j generally differs from u j × v j in order to mini-
mize the normal error over the whole splat.

For later lighting computations the length of the inter-
polated normal vector is not relevant, since it can be re-
normalized or is used for accessing a cube-map (Sec. 4). As
a consequence, we can set the third local-frame coordinate
of ni to 1 such that each normal vector is actually repre-
sented by a point (x,y) on an offset tangent plane, similar to
homogeneous coordinates (cf. Fig. 1).

If the center normal n̄ is represented by (x̄, ȳ), and if
(ui,vi) denote the parameter values of the sample pi and
(xi,yi) its local-frame normal vector, the normal fitting can
be written as a set of linear equations

(

x̄
ȳ

)

+

(

ui α
vi β

)

!
=

(

xi
yi

)

∀ pi ∈ Pj,

which are solved for (x̄, ȳ), α and β in the least squares sense,
e.g. using the normal equations (AT Ax = AT b). Since in the
above equation the x and y components are uncoupled, it can
be further simplified to the solution of two 2× 2 linear sys-
tems:

(
∣

∣Pj
∣

∣ ∑ui

∑ui ∑u2
i

)(

x̄
α

)

=

(

∑xi
∑xi ui

)

(3)

(
∣

∣Pj
∣

∣ ∑vi

∑vi ∑v2
i

)(

ȳ
β

)

=

(

∑yi
∑yi vi

)

, (4)

where the summation is done over all pi ∈ Pj . If these sys-
tems happen to be underdetermined, e.g. if Pj contains less
than 2 samples, we compute the least norm solution using
the pseudo-inverse [GL89].

Note that the overall method works best if the tangential
directions are roughly aligned to the directions of minimal
and maximum normal deviation of the sample normals ni,
i.e. to the principal curvature directions. If this is not already
provided by the geometry fitting scheme, like e.g. [WK04],
the directions u j and v j can easily be estimated by the eigen-
vectors corresponding to the two smaller eigenvalues of the
covariance matrix of sample normals ∑i ninT

i (see [Gar99]
for details).

The result of this normal fitting process is a center normal
n̄ j and two scalars α j and β j associated with each splat S j ,
representing an optimal fit to the given input normals.

4. Phong Splat Rendering

In this section we show how to render the Phong splat repre-
sentation based on the features of modern GPUs. The Phong
splatting system we propose is targeting at superior visual
quality, therefore we combine per-pixel lighting using linear
normal fields with elliptical splat shapes and antialiasing by
Gaussian filtering and blending.

For efficiency reasons we want to render each splat by
sending only one vertex through the graphics pipeline. Like
in previous approaches, we determine the projected size of
the splat and adjust the OpenGL point size, such that a suffi-
ciently large square will be generated and rasterized. In order

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

t c

b

−n

q

−f −z

q

n

n

Figure 2: We compute the point q corresponding to a given
window pixel by casting a ray through the respective point
qn on the near plane and intersecting it with the splat plane.

to avoid the complicated computation of the exact projected
size [ZRB∗04], we conservatively estimate it by perspec-
tively foreshortening the larger of the ellipse radii r using
the depth value zeye of the splat center c like in [BK03]

size = 2r ·
n

zeye
·

hvp

t −b
, (5)

where n, t and b are the parameters of the viewing frustum
(cf. Fig. 2) and hvp is the height of the viewport.

This will rasterize a size× size image-space square such
that we have to determine the local splat parameter values
for each pixel generated by it. Based on these coordinates
we decide whether the pixel is within the splat or should
be discarded, leading to the correct elliptical splat shape. In
contrast to other approaches we base this on the computa-
tion of the exact 3D point corresponding to the current pixel
position by inverting the viewing and projection transforma-
tions. The first step is to compute the point qn on the near
plane that is being projected to the current window pixel po-
sition (x,y), which is basically an inversion of the viewport
transformation:

qn =







x · wn
wvp

− wn
2

y · hn
hvp

− hn
2

−n






,

where w{n,vp} and h{n,vp} denote the width and height of the
near plane and viewport, respectively. Casting a ray from the
origin (the eye) through this point and intersecting it with the
splat’s supporting plane yields the corresponding point q on
the splat (cf. Fig. 2):

q = qn ·
cT n
qT

n n
, (6)

where c and n denote the splat’s center and normal vector
in eye coordinates. After computing q, the parameter values
(u,v) can easily be determined by Eq. 1. If the pixel is ac-
cepted, i.e. u2 + v2 ≤ 1, we compute its normal vector using
Eq. 2 and derive a color by lighting it.

If technical datasets are to be rendered by surface splat-
ting, sharp edges or corners can be represented by clipped
splats, as first proposed by [PKKG03]. Based on the object-
space parameter values (u,v), this method can easily be in-
tegrated into our framework. We represent a clip line in the
splat’s tangent space by three scalars (a,b,c), such that the
point q is to be clipped if au + bv + c < 0, i.e. at the cost
of one dot product. Notice that this is much easier compared
to [ZRB∗04], since their approach requires the projection of
two points representing the clip line to image space in order
to do the half-space test there.

What remains to be done is correcting the pixel’s depth
value, that would otherwise equal the depth value of the cen-
ter point all over the splat, causing blending artifacts as was
first pointed out by [BK03]. Since we know the exact depth
in eye-coordinates qz, we can derive the fragment’s depth
value zvp by

zvp =
1
qz

·
f n

f −n
+

f
f −n

.

Note that this actually results in per-pixel correct depth val-
ues, in contrast to previous approaches using affine approxi-
mations to the projective mapping [BK03, ZRB∗04].

4.1. Implementation Details

In order to render an elliptical Phong splat we send one
(colored) vertex located at the center position c through the
OpenGL rendering pipeline and pass the (scaled) tangential
vectors (u, v) and the normal field (n̄, α, β) as texture coor-
dinates. Hence, in comparison to standard elliptical splatting
approaches we need 17 instead of 12 floating point values
per splat. However, since we need one order of magnitude
fewer splat primitives to achieve the same visual quality, the
overall memory consumption is lower for Phong splats.

A vertex program transforms the splat center to window
coordinates and the tangents and center normal to eye-space.
It also computes the size of the image-space square to be ras-
terized (Eq. 5) and optionally (for closed models) a conser-
vative backface test based on the transformed normal field.
In addition, the vertex program precomputes the scaled nor-
mal n · (cT n)−1 for the later ray intersection (Eq. 6).

In the fragment program we then need only 6 instructions
to compute the local parameter values. Based on them, we
either discard the fragment or compute its normal vector.
For efficient per-pixel lighting, we use a cube map to store
precomputed lighting terms as a function of normal vectors.
This precomputation derives the lighting components that
are independent from the surface color, based on lighting
conditions and achromatic surface reflectance. Colored or
textured models can then be rendered by multiplying these
intensity values by the color of the splat or pixel, respec-
tively. In the case of achromatic light sources (r=g=b), we
can even store separate diffuse and specular intensity values
in one luminance-alpha cube map.

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

Figure 3: A least squares plane (dashed) generally provides
a better approximation to a set of sample points than a tan-
gent plane (solid).

When rendering models containing clipped splats, we or-
der them such that first all non-clipped splats are rendered
and then all splats with one or two clipping lines. This min-
imizes the overhead caused by additional splat attributes by
switching the respective shader programs.

For high-quality filtering and blending we exactly follow
the approach of [BK03]. We assign a radially decreasing
weight to splat pixels and sum up their weighted contribu-
tions by alpha blending. In order to blend only overlapping
pixels with slightly different depths, we have to use two ren-
dering passes, the first one doing so-called visibility splat-
ting. A final normalization, i.e. a per-pixel division by the
sum of weights, is done in a pixel shader by rendering a
viewport-sized quad that is textured by the outcome of the
two rendering passes.

5. Discussion

Using varying normal fields for splat rendering was first pro-
posed by [KV01]. They generate point datasets by sampling
continuous smooth NURBS surfaces or triangle meshes
[KV03], using a local Taylor expansion to estimate differ-
ential properties at the splat center. The geometry is approx-
imated by the tangent plane at the splat center and normal
vectors are constructed based on the principal curvatures at
the center point.

In contrast, the input data we consider are just sample
points with associated normal vectors, i.e. we do not require
explicit surface geometry or topology information. In this
sense, our approach more closely follows the spirit of point-
based graphics. In addition, our splat generation phase does
not even require the sample normals to be consistently ori-
ented, as the orientation is canceled out by the homogeneous
normal representation. To get consistently oriented normal
fields for the rendering process, only the splats S j (defining
the offset tangent planes) should be consistently oriented,
but their number is significantly smaller than the number of
the input samples.

Comparing the two approximation methods, least squares
planes can approximate the local geometry better than a tan-
gent plane (cf. Fig. 3). In strictly convex/concave configura-

tions, the approximation error of the least squares solution
is roughly half of the error of the tangent plane. In the same
sense our least squares linear normal field approximates bet-
ter than the normal field of a quadratic surface approxima-
tion used in [KV01].

From a signal processing point of view their approach is a
subsampling process, while we approximate both geometry
and normals by least squares methods, which can be consid-
ered as a low-pass filtering process. Hence, our approxima-
tion effectively avoids alias artifacts, that would otherwise
result in shading discontinuities.

The normal approximation of [KV01] can be considered
to be the normal field of a quadratic patch parameterized
over the tangent plane f (u,v) = au2 +bv2 +cuv+du+ev+
f . Since at the splat center (0,0) they interpolate position
and normal vector, i.e. f (0,0) = fu(0,0) = fv(0,0) = 0, and
since the axes u and v are aligned to principal curvature di-
rections, i.e. fuv(0,0) = 0, the quadratic patch actually has
the form f (u,v) = au2 + bv2. In contrast, we use a linear
function n(u,v) = au + bv + c for the normal fitting, which
corresponds to using the normal field of a general quadratic
function f (u,v) = au2 + bv2 + du + ev + f . Again, the term
cuv vanishes since the tangent coordinate system is aligned
to the principal axes. The additional degrees of freedom d
and e correspond to the adjustment of the center normal n̄ in
order to improve the normal fitting. The offset f represents
the fact that our least squares plane is not fixed at the splat
center pi.

More important from a practical point of view is that our
decoupling of the normal fitting from the geometry fitting
leads to the simple solution of two 2 × 2 linear systems
(Eq. 3). Our method is also more robust in the presence of
imperfect real-world datasets, since the least squares method
smoothly distributes the error over the whole splat, while
the estimated curvature information at the splat center will
get unreliable. The slight shading discontinuities caused by
inevitable approximation errors of the linear normal field re-
quire the use of high-quality filtering and blending — this
was not necessary for the clean datasets used in [KV01].

An important difference to other GPU based surface splat-
ting methods is that our approach is projectively correct
since it does not approximate the projection by an affine
mapping. The resulting exact parameter values are impor-
tant for splat shape, normal computation, and splat clipping,
and they enable a simpler implementation. Using exact depth
values for each pixel leads to more robust blending and
avoids artifacts even for large splats which are almost per-
pendicular to the image plane.

On the other hand, not using an affine approximation to
the projective mapping disables us to use EWA splatting,
i.e. to combine object-space reconstruction filter and image-
space band-limiting filter into one Gaussian. However, using
the object-space reconstruction filter alone turned out to be
sufficient in practice, as also mentioned in [BK03].

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

Figure 4: The same torso dataset containing 3k splats (left) rendered using flat shading without blending (center left), flat
shading + Gaussian blending (center right) and Phong splatting (right).

Figure 5: To achieve comparable visual quality the model complexity has been adjusted for each rendering mode. From left to
right: flat shading (170k splats), flat shading + Gaussian blending (33k splats), Phong splatting (3k splats).

6. Results

We compare our Phong splatting system to related work both
in terms of rendering quality and rendering efficiency. For
the models we present, a Phong splat representation has been
generated using the algorithm described in Sec. 3.

Fig. 4 shows a torso model of 3k splats using different ren-
dering techniques. Using standard surface splatting without
any filtering clearly shows the flat shading discontinuities.
Gaussian blending (using two rendering passes) manages to
decrease these artifacts, but also blurs the image noticeably.
Phong splatting uses per-pixel lighting and clearly achieves
the highest rendering quality. Note that these three results
are comparable to flat shading, Gouraud shading (smooth
shading but no sharp highlights) and Phong shading in the
triangle mesh rendering case.

The same model is shown in Fig. 5, but the number of
points has been adjusted such that each rendering mode
achieves about the same visual quality. Although using a
very high splat count (170k splats), the flat shading artifacts

can hardly be removed without blending. Even with blend-
ing enabled, the sampling has to be quite dense (33k splats)
in order to result in high visual quality and sharp high-
lights. Using Phong splatting, we need one order of mag-
nitude fewer splat primitives (3k splats) in order to achieve
the same visual quality. This is confirmed by Fig. 8, that
shows the decrease in visual quality for several simplifica-
tions of a scanned statue. It is clearly noticeable that the ren-
dering quality is not as tightly related to geometric complex-
ity for Phong splatting as for standard splatting. An example
of Phong shading for textured models is shown in Fig. 6.

In order to avoid shading discontinuities, [ZPvBG01] pro-
posed to splat normal vectors in addition to colors and to
compute the final pixel colors by a deferred shading of these
averaged per-pixel values. However, when blending the nor-
mal vectors, the gradient of the normal field depends on the
distance of neighboring splats while in the case of Phong
splats we derive the normal gradient directly from the highly
detailed input data (cf. Fig. 7). Additionally, this method is
not suitable for an implementation on current GPUs, since

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

Figure 6: A comparison of standard splatting (top closeup)
to Phong splatting (bottom closeup) for the colored
chameleon model consisting of 100k splats.

the accumulated (alpha blended) normals suffer from dis-
cretization artifacts.

Finally, the combination of splat clipping and Phong
splatting is shown in Fig. 9, where the well-known fandisk
dataset is rendered as point-based representation using the
different shading modes.

Besides considerably higher visual quality, our Phong
shading system also provides splat rates comparable to re-
cent approaches. On a 3GHz Pentium4, GeForceFX 5950,
we achieve splat rates between 3.5M and 4M splats/sec for
a window size of 512 × 512. Taking into account that we
need significantly fewer splats for the same visual quality,
our method can even be considered to be more efficient than
previous approaches.

7. Conclusion

In this paper we proposed to use a linearly varying normal
field for per-pixel lighting of surface splats. The resulting
Phong splats have been shown to result in a much higher ren-
dering quality compared to flat shaded splats. Although non-
constant normal fields have been used before by [KV01], our
Phong splat generation provides an easier formulation and
also offers a more robust fitting of both the geometry and the
normal field, which is especially important for noisy real-
world datasets.

The presented Phong splatting system is implemented
completely on the GPU, leading to a rendering speed of
up to 4M splats/sec. Additionally, our approach results in
a projectively correct rasterization with pixel-exact depth
values, leading to more precise results. The example im-
plementations of the vertex and pixels shader programs in-
cluded in the supplementary material will also be available
at http://www.rwth-graphics.de.

As general geometry processing algorithms also benefit
from the lower splat counts, we believe that Phong splats can
evolve to an interesting alternative to standard “flat” splats.

Figure 7: A coarse model (9k splats) rendered by de-
ferred per-pixel shading of averaged splat normals (left)
and Phong splatting (right). Since the normals of the for-
mer method are not based on the detailed input data (pi,
ni), highlights are not represented sufficiently. The highest
frequency perturbations in the left image are due to GPU
discretizations and not related to the approach in general.

Figure 8: The decrease in visual quality related to model
complexities of 350k, 110k and 35k splats, shown as close-
ups for standard splatting (left) and Phong splatting (right).

c© The Eurographics Association 2004.



Botsch, Spernat, Kobbelt / Phong Splatting

Figure 9: Phong splatting can easily be combined with splat clipping, resulting in sharp features. A splat representation of the
fandisk dataset (left) is rendered using flat shading (center left), flat shading + Gaussian blending (center right), and Phong
splatting (right).

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN

S., SILVA C.: Point set surfaces. In Proc. of IEEE
Visualization 01 (2001), pp. 21–28. 2

[BK03] BOTSCH M., KOBBELT L.: High-quality point-based
rendering on modern GPUs. In Proc. of Pacific Graph-
ics 03 (2003). 2, 4, 5

[Bui75] BUI-TONG PHONG: Illumination for Computer Gen-
erated Pictures. CACM 18(6) (1975), 311–317. 1

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.: Effi-
cient high quality rendering of point sampled geome-
try. In Proc. of Eurographics Workshop on Rendering
02 (2002). 2

[CH02] COCONU L., HEGE H.-C.: Hardware-accelerated
point-based rendering of complex scenes. In Proc.
of Eurographics Workshop on Rendering 02 (2002),
pp. 41–51. 2

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-
MINGER M.: Sequential point trees. In Proc. of Sig-
graph 03 (2003). 2

[FCOAS03] FLEISHMAN S., COHEN-OR D., ALEXA M., SILVA

C. T.: Progressive point set surfaces. ACM Transac-
tions on Graphics 22, 4 (2003). 2

[Gar99] GARLAND M.: Quadric-Based Polygonal Surface
Simplification. PhD thesis, Carnegie Mellon Univer-
sity, CS Dept., 1999. 3

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample render-
ing. In Proc. of Eurographics Workshop on Rendering
98 (1998), pp. 181–192. 2

[GL89] GOLUB G. H., LOAN C. F. V.: Matrix Computations.
Johns Hopkins University Press, Baltimore, 1989. 3

[KV01] KALAIAH A., VARSHNEY A.: Differential point ren-
dering. In Rendering Techniques 2001 (2001). 1, 2,
5, 7

[KV03] KALAIAH A., VARSHNEY A.: Modeling and render-
ing points with local geometry. IEEE Transactions
on Visualization and Computer Graphics 9(1) (2003),
30–42. 2, 5

[LW85] LEVOY M., WHITTED T.: The use of points as display
primitives. Tech. rep., CS Departement, University of
North Carolina at Chapel Hill, January 1985. 2

[Paj03] PAJAROLA R.: Efficient level-of-details for point
based rendering. In Proc. of IASTED Comuter Graph-
ics and Imaging (2003). 2

[PG01] PAULY M., GROSS M.: Spectral Processing of Point-
Sampled Geometry. In Proc. of Siggraph 01 (2001).
2

[PGK02] PAULY M., GROSS M., KOBBELT L.: Efficient sim-
plification of point-sampled surfaces. In Proc. of IEEE
Visualization 02 (2002). 2

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-scale fea-
ture extraction on point-sampled surfaces. In Proc. of
Eurographics 03 (2003). 2

[PKKG03] PAULY M., KEISER R., KOBBELT L., GROSS M.:
Shape Modeling with Point-Sampled Geometry. In
Proc. of Siggraph 03 (2003). 2, 4

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface elements as rendering primitives.
In Proc. of Siggraph 00 (2000), pp. 335–342. 2

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: a multires-
olution point rendering system for large meshes. In
Proc. of Siggraph 00 (2000), pp. 343–352. 2

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space
ewa surface splatting: A hardware accelerated ap-
proach to high quality point rendering. In Proc. of
Eurographics 02 (2002), pp. 461–470. 2

[SD01] STAMMINGER M., DRETTAKIS G.: Interactive sam-
pling and rendering for complex and procedural geom-
etry. In Proc. of Eurographics Workshop on Rendering
01 (2001), pp. 151–162. 2

[WK04] WU J., KOBBELT L.: Optimized subsampling of point
sets for surface splatting. In Proc. of Eurographics 04
(2004). 2, 3

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:
PointShop 3D: An Interactive System for Point-Based
Surface Editing. In Proc. of Siggraph 02 (2002). 2

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. In Proc. of Siggraph 01 (2001),
pp. 371–378. 2, 6

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M., DACHS-
BACHER C., PAULY M.: Perspective accurate splat-
ting. In Proc. of Graphics Interface 04 (2004). 2,
4

c© The Eurographics Association 2004.


