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Abstract
Geometric flows are ubiquitous in mesh processing. Curve and surface evolutions based on functional minimization
have been used in the context of surface diffusion, denoising, shape optimization, minimal surfaces, and geodesic
paths to mention a few. Such gradient flows are nearly always, yet often implicitly, based on the canonical L2

inner product of vector fields. In this paper, we point out that changing this inner product provides a simple,
powerful, and untapped approach to extend current flows. We demonstrate the value of such a norm alteration
for regularization and volume-preservation purposes and in the context of shape matching, where deformation
priors (ranging from rigid motion to articulated motion) can be incorporated into a gradient flow to drastically
improve results. Implementation details, including a differentiable approximation of the Hausdorff distance between
irregular meshes, are presented.

1 Introduction

Geometric flows have been extensively used in mesh pro-
cessing. In particular, surface flows based on functional min-
imization (i.e., evolving a surface so as to progressively de-
crease an energy functional) is a common methodology in ge-
ometry processing with applications spanning surface diffu-
sion [Tau95], denoising of scanned meshes [DMSB99], shape
optimization and surface design [Kob00,BS05,XPB06], min-
imal surfaces [PP93], (geodesic) shortest paths [BWK05],
and animation [GHDS03]. Such gradient flows even extend
to image processing where they appear, e.g., in the founda-
tions of active contours [CKS97] and shape spaces [You99,
KSMJ04]. While a large part of the image processing
community implements gradient flows using an Eulerian
methodology (typically, with level sets [Set99, OF03]—see
also [MBWB02, DR04] in graphics), Lagrangian represen-
tations of surfaces based on triangle meshes are most com-
mon in graphics. In this Lagrangian setting, discretization of
continuous flows is usually achieved through the use of dis-
crete differential operators and/or using finite element tech-
niques [PP93, DKS02, MDSB02]. In this paper, we point out
that most (if not all) surface gradient flows used in mesh pro-
cessing are based on the canonical L2 inner product of vector
fields—although this choice is rarely mentioned or acknowl-
edged. In fact, changing this inner product is shown to be a
powerful, versatile, and untapped approach to design novel
generalized Lagrangian gradient flows of discrete surfaces.

Outline We first give a brief exposition of the mathematical
background involved in the design of conventional gradient
flows in Section 2, stressing the (often implicit) choice of the
L2 inner product over the space of vector fields on meshes.
In Section 3, we then propose to alter this L2 inner product

target

template

Figure 1: Articulated matching of an Armadillo template mesh to a
very different pose, using the Hausdorff gradient flow with a quasi-
articulated prior. Our approach can embed such shape priors into
conventional surface flows to provide, e.g., robust and efficient shape
matching with no markers. Notice that although a template arm
initially coincides with a target mesh leg (resulting in a strong local
minimum), the final pose is successfully recovered.

through the introduction of an additional operator to offer
a simple, versatile, and powerful way to design generalized
gradient flows of discrete surfaces—an idea recently intro-
duced in [CKPF05] and [SYM07] in the Eulerian setting.
Finally, we show two particular applications of these gener-
alized flows. In Section 4, we demonstrate that the use of
Sobolev inner products is an effective way to regularize ex-
plicit gradient flows, similar to implicit fairing for the special
case of the mean curvature flow, that we enhance to offer
local volume control (Section 5). Finally, in Section 6, we
show how deformation priors render generalized flows par-
ticularly relevant to shape matching: we introduce a series
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of prior-based inner products to develop a multi-resolution
shape matching procedure between two meshes through a
generalized pseudo-Hausdorff distance gradient flow.

2 Mathematical Background on Gradient Flows

We start by giving a brief exposition of the mathematical
background involved in the design of Lagrangian gradient
flows. Note that we will refer to the Euclidean (R3) metric
as |.|, and to its associated inner product as the conventional
dot product “·” notation. Norms and inner products of vector
fields are denoted as ‖.‖ and 〈., .〉 instead, to avoid confusion.

2.1 Continuous Definition of Gradient Flows

Let S be a surface in R3 (assumed with no boundary for sim-
plicity), and suppose that we are given an energy functional
E as a measure of surface “quality”, i.e., the lower the energy,
the “fairer” the surface is. A gradient flow is a motion of the
surface that follows the steepest descent of the functional,
i.e., the motion follows the "gradient" of the functional. How-
ever, in the continuous setting, the definition of the gradient
of the energy functional is not straightforward: one cannot
use the traditional concept of partial derivatives along each
dimension since we are dealing with an infinite-dimensional
space of deformation (thereafter denoted by F). Using the
calculus of variations, we can however define a theory of
curve and surface evolution [GH86] using the weaker notion
of Gâteaux derivative. The Gâteaux derivative of E at S (de-
noted by DE(S) [v] for its value in the direction v ∈ F) is
defined to be the rate of variation of the energy when the
surface undergoes a deformation along a vector field v:

DE(S)[v] def=
dE(S+εv)

dε

∣∣∣∣
ε=0

= lim
ε→0

E(S+εv)−E(S)
ε

. (1)

Inner Product of Vector Fields Recall now that we wish to
define a surface evolution that decreases the energy the fastest.
However, the very notion of steepness requires a metric, i.e,
a way to measure distances and angles. To that effect, we
must equip our space F of all possible deformation fields
with an inner product 〈,〉F . With this additional structure on
the space of deformations of a surface, we can now formally
define the gradient of E relative to the inner product 〈,〉F ,
denoted ∇FE(S), as the vector field such as:

∀v ∈ F, DE(S) [v] = 〈∇FE(S),v〉F , (2)
Here, we assume existence and uniqueness of this gradient for
simplicity—these topics are outside the scope of this article;
but be aware that these properties intimately depend on the
choice of energy functional.

Gradient Flow Now that the gradient of the energy func-
tional is properly defined, shape motion via functional mini-
mization can be performed by evolving an initial surface S0
in the direction of the negative gradient to best reduce the
energy, yielding:

dS
dt

=−∇FE(S), S(0) = S0 (3)

Once again, we assume that this flow is well defined without
further analysis or justification. We note that if this evolution

exists, it does decrease the energy E as expected:
dE(S)

dt
= lim

ε→0

E(S(t)− ε∇FE(S))−E(S(t))
ε

= 〈∇FE(S),−∇FE(S)〉F =−‖∇FE(S)‖2
F ≤ 0 .

Choice of Inner Product In the construction of a gradient
flow as we just reviewed, we remained agnostic vis-a-vis the
inner product on F . In fact, every inner product yields its
own gradient, and thus, a different gradient flow. However it
is widely assumed, overtly or covertly, that the deformation
space F is the Hilbert space of square integrable velocity
fields L2(S,R3) equipped with the canonical L2 inner prod-
uct on S:

〈u,v〉L2 =
∫
S

u(x) ·v(x) dx , (4)

where dx is the area element of the surface. Even with this
choice of space for F (the only deformation space that we will
consider in this paper), picking a different inner product is a
degree of freedom for gradient flows that is rarely exploited
in geometry processing—to the point where most classical
gradient flows reported in the literature (mean curvature flow,
geodesic active contours, etc) improperly refer to the energy
gradient, implicitly assuming the L2 inner product.

2.2 Discrete Gradient Flows

We now assume that the surface S is represented by a triangle
(piecewise-linear) mesh X, and the position of its vertices is
denoted by xi. A piecewise linear vector field on S is a collec-
tion V = {vi} of vectors at the vertices, interpolated linearly
over each triangle: v = ∑i vi φi, where the linear, interpolating
basis functions φi satisfy: ∀x ∈ S, ∑i φi(x) = 1. Note that for
this particular setup, a discrete surface flow exactly coincides
to a motion of each vertex xi along vi.

L2 Inner Product and L2-Gradient With this choice of dis-
crete setup, the canonical L2 inner product of two discrete
vector fields U and V becomes particularly simple to express:

〈U,V〉L2 = UT MV , (5)
where M = {Mi j} is a symmetric definite positive matrix
(called the mass matrix in the Finite Elements literature) de-
fined through 3×3 blocks:

Mi j = Id3

∫
S

φi(x)φ j(x)dx .

Note that M is sparse, but not diagonal. A classical approx-
imation, simplifying computations considerably with lim-
ited accuracy loss, is to use mass lumping which turns M
into a diagonal matrix where Mii is the area of the (Voronoi
or barycentric) dual cell of xi times the identity matrix Id3
[DDCB00, MDSB02].

Discrete Gradient Flow If we call X the vector of all the po-
sitions xi of the vertices of the mesh, the discrete counterpart
of the L2-gradient of a surface energy functional E is:

∇L2E(X) = M−1 ∂E
∂X

(X) ,

where ∂E/∂X is the derivative of the energy with respect to
the position of the vertices. The discrete L2 gradient descent
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Figure 2: Quasi-Articulated flow: matching two hands by minimizing their Hausdorff distance with a gradient flow incorporating an articulated
prior (using 16 regions: 3 per finger + palm). The flow automatically morphs the red hand into the blue one, first mostly through a global rotation,
then by adjusting each finger. Color mix on the final frame is due to the fact that the hands do not have the same sampling and connectivity.

then follows straightforwardly:
dX
dt

=−M−1 ∂E
∂X

(X) . (6)

Example The most canonical example of surface flow is cer-
tainly the mean curvature flow [GH86]. Its discrete treatment
on meshes was first studied in [PP93], and more recently
in [DMSB99], where the flow was formulated as

dxi

dt
=− 1

2Ai

dAi

dxi
,

with xi denoting the i-th vertex of the mesh, and Ai denoting
the 1-ring surface area of this vertex. This last term being
proportional to the area of the barycentric dual of xi (and
thus, proportional to the lumped mass matrix diagonal term
Mii), one can see that this discrete flow corresponds to the
L2-minimization of the area of the surface—the exact analog
of its continuous counterpart, called Laplace-Beltrami flow.

3 Generalized Gradient Flows

We now present how to design other inner product than L2

on the space F of vector fields before showing how it results
in a family of generalized gradient flows.

3.1 Designing New Inner Products

Recently, Charpiat et al. [CKPF05] have shown for the Eu-
lerian setting that shape optimization through gradient de-
scent can greatly benefit from the design of an application-
dependent inner product on the deformation space. In particu-
lar, they noted that for any self-adjoint positive-definite linear
operator L : F → F , a new inner product can be defined by

〈u,v〉L = 〈u,Lv〉L2 = 〈Lu,v〉L2 . (7)
This is evidently a very special type of inner product, as
it is defined with respect to the L2 norm. The advantage is
however that if ∇L2E(S) exists, then ∇LE(S) also exists and
can be expressed as:

∇LE(S) = L−1
∇L2E(S) . (8)

Indeed, one can verify that:

∀v ∈ F, DE(S) [v] = 〈∇L2E(S),v〉L2 =
〈
LL−1

∇L2E(S),v
〉

L2

=
〈
L−1

∇L2E(S),v
〉
L

.

In other words, this procedure is of significant practical inter-
est because it allows to modify any existing L2 gradient flow.
We now show how to adapt this idea in the mesh setting.

3.2 Generalized Gradients
The discrete counterpart of the linear operator L is a matrix
that we will denote as L = {Li j}. Then, using Eq.(7), the
L inner product of two discrete vector fields U and V is
expressed through

〈U,V〉L = 〈LU,V〉L2 = UT MLV. (9)
Thus the L-gradient of the energy can be easily expressed as

∇L E(X) = (ML)−1 ∂E
∂X

(X) = L−1
∇L2E(X) .

Note that we made use of the self-adjointness of the operator
L, which in our discrete setting means that the ML matrix is
symmetric (so that 〈U,LV〉L2 =UT (ML)V=UT (LT M)V=〈LU,V〉L2 ).
In fact, the discrete L matrix is not necessarily symmetric;
however, left-multiplying by the mass matrix M will make
the final product symmetric. The reader can verify that all
the inner products proposed in this paper trivially satisfy this
property although their corresponding matrices L may not be
symmetric by themselves.
3.3 Time Integration
Once our generalized gradient is defined, the associated gen-
eralized flow is obtained via time integration. A direct im-
plementation of an explicit Euler time stepping scheme for a
generalized gradient flow yields:

Xt+dt = Xt −dt (ML)−1 ∂E
∂X

(Xt) . (10)

We will see that for most of our proposed generalized flows,
the inverse of ML is given analytically (see, e.g., Eq.(16)),
rendering the computational cost of time integration almost
negligible. The only exception is the prior in Section 6.3.3,
where (ML)−1 has no closed form expression. Even in this
case, integration can still be done efficiently: the matrix ML
is such that multiplying it by a vector is not a quadratic, but a
linear operation. Thus, a preconditioned conjugate gradient
method (PCG) [BBC∗94] will be, in practice, very efficient,
as is the case in Section 6.3.3. We can also use implicit in-
tegration for our generalized gradient flows through a lin-
earization of ∂E/∂X with respect to the position of the vertices.
This modification, tantamount to keeping the metric of the
surface constant over the integration step, has been advocated
for the mean curvature flow in [DMSB99] as an easy way
to remove the usual time step constraints inherent to explicit
integration techniques and add robustness to mesh flows. We
will suppose that such a linearization exists (as will be the
case in all of our flows) such that: ∂E(Xt )/∂X=At Xt+Bt , where
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A is diagonal, positive definite matrix (the same argument
can be made for sparse SPD matrices). Then, Eq.(10) can be
rewritten by using the position of the vertices at the next time
step in the evaluation of the gradient:

Xt+dt = Xt −dt (ML)−1(AXt+dt +B) .

That is, one can find the next mesh Xt+dt by solving the
following linear system:

(ML+dt A)Xt+dt = MLXt −dt B . (11)
Interestingly, we now show that in some cases, this implicit
integration of flows can be seen as a special case of the ex-
plicit integration of a regularized gradient flow.

Figure 3: Incorrect matching between two fingers obtained through
a straightforward L2 gradient flow of their Hausdorff distance. The
absence of rigidity priors leads to significant spurious sliding and
mismatch. The intermediate positions also exhibit large deformation.

4 Application: Regularized Gradient Flows

As most existing gradient flows used in geometry processing
are based on L2, they all share the consequences induced
by this particular choice of inner product. First, since the
L2 norm of a vector field completely disregards its spatial
coherence, a conventional gradient flow may (and will, see
Figure 3) produce highly non-rigid deformation, thus degen-
erate meshes. Second, one can also show that such gradient
flows are potentially very susceptible to noise, and often get
stuck in local minima of the energy. To remediate these flaws,
Sundaramoorthi et al. [SYM07] proposed recently to use a
regularizing inner product, namely, a Sobolev norm. They
demonstrated the multiple advantages of this choice in the
context of Eulerian (Level Sets) active contours.

Sobolev Inner product Our Lagrangian set-up can accom-
modate the same change of norm. For meshes, the Sobolev
norm H1 derives from the following inner product:

〈u,v〉H1 =
∫
S

u(x) ·v(x)dx+λ

∫
S

∇u(x) ·∇v(x)dx .

It is a simple matter of integration by part to show that this
inner product corresponds to the linear operator L(u)=u−
λ∆u, where ∆ is the Laplace-Beltrami operator (discretized
for instance in [PP93]), and λ is an arbitrary positive constant.

Sobolev Gradient Flow With this inner product, we can
define the H1-gradient of an energy E , and perform explicit
integration of the corresponding gradient flow:

Xt+dt = Xt −dt (Id−λ∆)−1
∇L2E(Xt).

Consequently, a step of Sobolev gradient flow can be per-
formed by solving the following linear system:

(Id−λ∆)Xt+dt = (Id−λ∆−dt ∇L2E)Xt . (12)

The solution of this linear system now couples the motion
of each vertex to the motion of the other vertices. This ex-
emplifies the regularization effect: for an explicit integration
of a L2-gradient, vertices move basically independently of
each other, while for H1, vertices move in concord. Finally,
we can extend the regularization scheme to higher Sobolev-
like norms. For instance, a higher-order inner product can
be defined through L(u) = u− λ∆u + µ∆2u, leading to an
additional term on each side of the linear system to solve.

This regularization is very reminiscent of a well-known
smoothing method: it turns out that the explicit integration of
the H1-gradient flow of the surface area of a mesh is known
as implicit fairing [DMSB99]. Indeed, we mentioned in Sec-
tion 2.2 that the L2-gradient of the area corresponds to the
Laplace-Beltrami operator. Substituting this term in Eq. (12)
and choosing λ = dt, we get the usual expression:

(Id−dt∆) Xt+dt = Xt .

Seeing implicit fairing as simply being a regularized explicit
mean curvature flow is another way of understanding its no-
table stability. The reader will have noticed that, the general-
ized mean curvature flow defined by the higher-order inner
product corresponds once again to an implicit fairing, this
time with higher-order operators—a known way to improve
the filtering quality of this smoothing flow [DMSB99]. A
similar regularizing effect can be used for any flow using
Eq. (12) with the additional ∆2 terms.

5 Application: Volume-Controlled Implicit Fairing

Now we take the above regularized scheme one step further
by modifying it to allow a direct control over the local volume
change during the flow. Once again, a simple modification of
the inner product is all it takes.

Quasi-Volume Preserving Flows Let VP denote the sub-
space of all volume-preserving deformations, with NVP be-
ing its L2-orthogonal complement, and let ΠVP and ΠNVP be
the projection operators on the corresponding subspaces. We
define a volume-controlled norm of a field v simply as:

‖v‖2
LVP

= ‖Π‖2
VP v+

1
λ
‖ΠNVPv‖2 ,

where λ is a penalty factor on volume-preserving motion:
a smaller λ will make such motion "cheaper", thus favored.
Following the procedure from Eq.(7), we get:

LVP = ΠVP +
1
λ

ΠNVP, thus: LVP
−1 = λId+(1−λ)ΠVP,

which can be used to obtain a new gradient flow, as in Eq.(8).
For instance, a volume-controlled implicit fairing is achieved
through solving:

(LVP −λ∆)Xt+dt = LVPXt . (13)
Finally, the projection operator ΠVP on the subspace of lo-
cally volume-preserving motions can be implemented as fol-
lows. A deformation field v of a discrete mesh X = {xi} with
a normal field N = {ni} and a mass matrix M, causes a local
volume change δVi = vi ·Mii ni around each vertex xi, where
M is assumed to be diagonal, i.e., the total area isA= ∑i Mii.
(Mii ni is akin to the usual area-weighted normal at a vertex.)
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Then averaging δVi over the one-ring area of xi yields:

δV i =
δVi

∑ j∈N+(i) M j j
,

where N+(i) denotes the vertex i and its immediate neighbors.
Thus, the local volume-changing velocity component of each
xi becomes:

v̄i = ni ∑
j∈N+(i)

δV j,

yielding: ΠVP(vi) = vi− v̄i. Note that controlling the volume
locally ensures global volume control. With this procedure,
λ is a “knob” that makes the flow more or less volume-
preserving—it will become fully volume-preserving as λ

goes to zero. Fig. 4 illustrates the obvious non-shrinking ef-
fect of this generalized flow compared to the original implicit
fairing for a same amount of smoothing.

Figure 4: Implicit fairing with local volume control. While a noisy
horse model (left) becomes degenerate after aggresive implicit fair-
ing (middle), a comparable amount of smoothing with local volume
control avoid shrinking (right); closeup shows overlaid comparison.

6 Application: Robust Shape Matching

6.1 Background
A particularly interesting application of surface flows is shape
matching. Suppose that we have two 3D models (a template
and an instance) of a same subject (be it an object, a whole
human body, or just an organ) in different poses with no
known correspondence (this is typically the case for most
models acquired from 3D scanners and medical imaging).
The shape matching problem amounts to recovering a rel-
evant mapping (i.e., induced by a plausible deformation)
between these two different poses—see Fig. 2 for an ex-
ample of properly established correspondence. For shapes
given as meshes or point clouds, matching can be done us-
ing only global registration if the two shapes are quite sim-
ilar [CM91, BM92, MGPG04, GMGP05] —see Planitz et
al. [PMW05] for a detailed survey—or using more com-
plex approaches allowing for the matching of less similar
shapes [You99, DGG03, CR03]. For widely different shapes,
an alternative is to rely on Markov networks, approximate
inferences, and geodesic nearness constraints to automati-
cally compute Correlated Correspondences [ASP∗04], and
use these established correspondences as markers for more
robust registration [ASK∗05]. When no training set is avail-
able, a common procedure is to evolve the template shape,
often initially positioned by the user, in the direction of steep-
est descent of an energy measuring the distance to the in-
stance shape. However, due to the highly non-convex and
non-linear nature of most energy functionals, an unsuper-
vised gradient descent flow gets trapped in irrelevant states
corresponding to local minima, seriously limiting its appli-
cability and efficiency (see Figure 3). The use of markers

Figure 5: Non-rigid Shape Matching: Here, an articulated template
model of a lamb (red) is automatically deformed to fit a different
pose (blue), by directly minimizing their Hausdorff distance with
a gradient flow based on a quasi-articulated prior. To handle this
example (∼ 22000 vertices for each mesh) in less than two minutes,
a multi-resolution scheme was used. Notice that our prior automat-
ically makes the lamb move mostly rigidly first to best fit the target
pose, then adjust the limbs non-rigidly. The color mix on the final
frame shows that, even if both lambs do not have the same sampling
and connectivity, their geometry matches well.

as in [ACP02, ACP03, SKR∗06] can help tremendously, but
requires (potentially heavy) user supervision. Alternatively,
for the class of near-isometric deformations (such as articu-
lated motion), generalized multidimensional scaling (GMDS)
has been proposed [BBK07a, BBK07b] based on the MDS
method [EK03]. A mapping is formulated as a parametriza-
tion of one surface onto the other such that the distortion of
pairwise geodesic distances is minimized. Yet without any
prior knowledge about the shape structure, an optimal map-
ping can be extremely hard to recover, as shown in Fig. 6.

Our Prior-based Approach We now explore an alternative
where our generalized gradient flows are beneficially applied
to embed priors (such as quasi-rigidity, quasi-isometry, or
quasi-articulation) in the modeling of the gradient flow. The
use of priors, often used in object tracking or shape fair-
ing/completion [DTB06], consists in introducing a measure
of the plausibility of the different configurations, and bias-
ing the optimization process towards the most probable ones
—thus improving robustness of the estimation.

6.2 Hausdorff Gradient Flow for Matching

A typical shape matching algorithm tries to deform the tem-
plate to match the instance by reducing a geometric distance.
Because a L2-type distance is known to be too forgiving
in comparing two shapes (as well as prone to numerous
local minima), we resort to an approximation of the Haus-
dorff distance instead, based on a method recently introduced
in [CFK05] in the context of level sets. The exact symmetric
Hausdorff distance d(S,T ) between surface S and T is

d(S,T ) = max
[

max
p∈S

min
q∈T

‖p−q‖ ,max
q∈T

min
p∈S

‖p−q‖
]

Since this expression is not differentiable, we use instead a
pseudo-Hausdorff distance dH(X,Y) between two distinct
meshes X = {xi}i=1..P and Y = {y j} j=1..Q. We refer the
reader to Appendix A for the actual derivation of this dis-
tance, as it significantly differs from the original Eulerian
description in [CFK05] to allow for a robust treatment of
irregular sampling. The L2 gradient flow based on our ap-
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Figure 6: GMDS correspondences (courtesy of [BBK07a]) between
two different Armadillo poses, for a subset of 100 vertices, with the
corresponding Voronoi regions shown in matching colors. While most
regions are mapped adequately (e.g., the tail, shown with a black
arrow), hands and legs still have many inaccurate correspondences
(e.g., those shown with red arrows), which will result in unnatural
deformations if further used for registration.

proximate Hausdorff distance is then written as
dX
dt

=−M−1 ∂ dH

∂X
(X,X∞) , (14)

where X∞ is the instance mesh, and the mesh X is initial-
ized as the template mesh. As extensively discussed previ-
ously, such a naive minimization is unable to yield relevant
correspondences between two dissimilar shapes, as the en-
ergy landscape is too complex and non-linear to avoid getting
stuck in one of the numerous local minima (see Fig. 3). While
other similarity measures could be added to the Hausdorff
distance for better matching (see the use of the normal field
in [ZG04, RL01, CSAD04]), we will refrain from discussing
them here for simplicity.

6.3 Constructing Prior-based Inner Products

To increase efficiency and robustness of shape matching as
well as further exemplify the versatility of generalized flows,
we present in this section three different possible alterations
of a gradient flow.

6.3.1 Quasi-Rigid Deformation Prior

The case of quasi-rigid deformation prior, where a L2-
gradient flow is altered by penalizing non-rigid motion, was
introduced in Charpiat et al. [CKPF05], and we adapt it here

Figure 7: Quasi-Rigid Prior using Multiresolution: Matching two
full body meshes with different sampling (∼ 28K vertices each) by
minimizing their Hausdorff distance with a quasi-rigid gradient flow.
To speed up computations, a multi-resolution scheme was employed
(total time: 1 min). The coarsest resolution is shown in the middle.
Closeups show the final alignment (template mesh in wireframe).

to our Lagrangian setting due to its relevance to our goals.
To that effect, we denote by A the surface area of a given
shape S , and by c = 1

A
∫
S xdx its center of mass. With these

two definitions, we decompose the space of rigid motions
into the subspaces of translations, of instantaneous rotations
around the center of mass, and of global scaling (denoted
by respectively T , R and S). These subspaces are mutually
orthogonal for the L2 inner product. We finally denote by N
the orthogonal complement of these subspaces, i.e. the space
of strictly non-rigid motions. Thus, the space F of all defor-
mations satisfies: F = T ⊥ R ⊥ S ⊥ N. A new inner product,
altering the respective "strength" of the different components
of a deformation, can now be expressed by following the
general procedure of Eq.(7) and introducing:

L= λT ΠT +λR ΠR +λS ΠS +ΠN , (15)
where ΠT , ΠR, ΠS, ΠN denote orthogonal projections on
different subspaces, and λT , λR, λS > 0 are penalty factors
of translations, rotations, scalings, respectively. The lower
a penalty factor is, the stronger its corresponding type of
motion will be in the new gradient flow. Note that this inner
product also has a straightforward interpretation in mechan-
ics, since the L-norm of a vector field can be seen as a kinetic
energy summing the translational, rotational, and purely non-
rigid residual kinetic energies of the motion.

Expression of New Gradient The new gradient ∇LE(S)
can be obtained from the L2-gradient using Eq.(8) with a
simple expression, since the inverse operator L−1 can be
expressed in closed form as:

L−1 = Id+
1−λT

λT
ΠT +

1−λR

λR
ΠR +

1−λS

λS
ΠS . (16)

Thus, the new L-gradient is simply a linear combination of
the L2-orthogonal projections of the L2-gradient on T , R and
S. Each of these projections are found through the following
equations, where the integrals are turned into discrete sums
since v is piecewise linear:

∀v ∈ F, (ΠSv)(x) =
∫
S v(y) · (y− c)dy∫
S ‖y− c‖2 dy

(x− c)

(ΠT v)(x)=
1
A

∫
S

v(y)dy , (ΠRv)(x)= I−1
Ω ×(x−c),

where I is the discrete moment of inertia of the mesh:

I=
∫
S

[
‖x− c‖2 Id3− (x− c)(x− c)T

]
dx,

and Ω is the discrete angular momentum

Ω =
∫
S
(x− c)×v(x)dx.

The resulting generalized flow boost translations, rotations,
and scaling from the initial gradient flow. One can verify that
L fulfills our initial requirements for inner products, guar-
anteeing a proper generalized gradient flow. Figure 7 shows
how this flow successfully aligns two full body meshes.

6.3.2 Quasi-Articulated Deformation Prior

We now extend the idea introduced above to motion of ar-
ticulated bodies with quasi-rigid links. This prior will be
particularly useful when used on mapping the hand in Fig-
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ure 2 onto another deformed hand. The bone structure within
each finger severely restricts the possible spectrum of defor-
mation that a hand can usually undergo, and building this
knowledge into the gradient flow will significantly improve
the robustness of the matching procedure.
We will assume that a segmentation of S =

⋃
k=1..K Sk into

K parts is known, and that the articulation connectivity graph
is a tree: G = {(Si,S j)|Si is a predecessor of S j}. Assume
also that for each Sk a corresponding center of rotation (joint)
ck is given. We will denote by R, A and N respectively the
orthogonal subspaces of Rigid, Articulated and Non-rigid
motions of the full object. Similarly, Rk, Ak and Nk denote
the subspaces of rigid, articulated and non-rigid motions of
the kth articulated part. Notice that since we are dealing with
connected links, the translation and scaling parts of Rk (de-
scribed in the previous section) are irrelevant, and only the
rotation part Rk is needed. Note also that each Ak depends
solely on rotations—not only about its own center ck, but
also about its predecessors’ joints. Thus, the projection ΠAk

on the articulated motion subspace Ak is best computed via
a recursive formula through the tree:{

ΠA1 = ΠR1

ΠAk = ΠApred(k)
+ΠRk (Id−ΠApred(k)

) , (17)

where pred(k) denotes the predecessor of link k in the tree
structure and the root index is defined as 1. We can now
obtain a weighted inner product by first isolating the rigid
component of a deformation, then applying to the non-rigid
residual an {articulated ⊕ non-rigid} decomposition of each
part Sk of the object taken separately. Thus, the square L-
norm of a deformation field v is defined as:
‖v‖2

L=λ‖ΠRv‖2
L2+∑

k

[
µk
∥∥ΠAkΠN v

∥∥2
L2+
∥∥ΠNk ΠN v

∥∥2
L2

]
,

where λ (resp. µk) is the penalty factor of the rigid motion
of the full object (resp. of part Sk). These penalty factors
typically fulfill ∀k, λ < µk < 1, so that rigid motion is favored
over articulated motion, while the latter is favored over non-
rigid motion. Finally, the linear operator L corresponding to
the norm in Equation (6.3.2) becomes:

L= λΠR+∑
k

[
µk ΠAk ΠN +ΠNk

]
(18)

and the corresponding closed form inverse is:

L−1 =
1
λ

ΠR+∑
k

[ 1
µk

ΠAk ΠN +ΠNk

]
. (19)

Extension to Hierarchical Linked Structures We remark
that the above ideas can be easily generalized to a hierarchi-
cal structure, i.e., a multi-level decomposition of the object,
with different penalty factors both for the different parts and
for the different levels. This approach allows to prioritize
global motions over local ones, to obtain an "as-rigid-as-
possible" articulated deformation. For instance, a hand can
be a subtree in a body hierarchy, represented by single compo-
nent on level k, but split into a palm and fingers on level k+1.
This can be achieved with another recursive construction:

‖v‖2
L,S = λ(S)

∥∥∥ΠA(S)v
∥∥∥2

L2
+ ∑
S ′⊂ S

∥∥∥ΠN (S)v
∥∥∥2

L,S ′ ,

Figure 8: Quasi-Articulated Prior: Matching two arms with the
Hausdorff gradient flow incorporating a quasi-articulated prior (us-
ing 18 subparts: 16 for the hand, plus the upper and lower arm).
Again, the mesh sampling of both arms is very different. Despite the
presence of fingers in different positions (adding more local minima
to the distance-based energy), our algorithm finds the right matching
through a combination of global and local rotations, with a small
amount of non-rigid deformation (for instance at the elbow). Final
alignment of the fingers is shown in closeup on the right.

whereA(S) is the space of articulated motion on a part S con-
taining subparts S ′

k, and λ(S) is the corresponding penalty
factor. To end the recursion correctly, we define:

‖v‖2
L,S = λ(S)

∥∥∥ΠA(S)v
∥∥∥2

L2
+
∥∥∥ΠN (S)v

∥∥∥2

L2

for the leaf parts of the structure (i.e., the quasi-rigid defor-
mation prior of Section 6.3.1).

Handling Joints A shortcoming of the above articulated pri-
ors is that they do not directly penalize disagreement between
the motion of different parts at the joints (i.e., the nodes of
the tree). As a result, a gradient flow derived from these pri-
ors may be discontinuous across parts (i.e., at the joints). To
overcome this problem, we use a simple partition of unity
of the shape S rather than a strict partitioning: by modeling
the points close to the joints as simultaneously belonging
to several parts with different probabilities ("blending"), we
recover the smoothness of the deformation. Note that while
in our case the probabilities are obtained simply by a local
blending of the parts around the joints, this approach gener-
alizes to any probabilistic segmentation if available.

6.3.3 Quasi-Isometric Prior

If no a-priori knowledge is available on the range of deforma-
tion that a particular shape can undergo, a reasonable assump-
tion valid for a a wide class of models is quasi-isometry, i.e.,
that a surface deforms such that Euclidean distances between
pairs of surface points, sampled from the whole surface or
from a neighborhood of a certain size, are nearly preserved.
This assumption implies a near-preservation of both angles
and areas at the scale of the chosen neighborhood. A con-
tinuous inner product could be derived from this condition.
For simplicity, we present a discrete version directly. This
prior bears similarity in its goals to the “semi-local rigidifica-
tion” from Charpiat et al. in [CMP∗06] in the context of level
sets, but it differs from this previous work in its foundations
and realization. A closely related approach was recently and
independently suggested in [KMP07].

Gradient for Quasi-Isometric Prior First, we note that the
length preservation of an edge ei j = (xi,x j) is expressed as

(vi−v j) · (xi−x j) = 0 .
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From this condition, we can derive the following inner prod-
uct of two discrete vector fields U and V directly:
〈U,V〉L = 〈U,V〉L2

+λiso ∑
ei j

[
(ui−u j) · (xi−x j)

][
(vi−v j) · (xi−x j)

]
,

where λiso is a penalty factor. The associated operator is:
(MLV)i = vi +λiso ∑

j∈N1(i)

[
(vi−v j) · (xi−x j)

]
(xi−x j) ,

where N1(i) denotes the one-ring neighborhood of vertex i.
This prior can be optimized by adapting the size of the neigh-
borhood and the penalty factor λiso to the desired degree and
scale of local rigidity, such that the ML matrix is still sparse
and thus can be inverted rapidly using PCG. We then obtain
a computationally efficient and versatile prior, which encom-
passes articulated motion without the need for a segmentation
of the shape. Note that constraining local Euclidean distance
is generally not sufficient to enforce a quasi-rigidity of the
shape. Thus, one can add fake edges (joining a few opposite
vertices in each limb) with our same isometric prior when
added rigidity is desired.

6.4 Results of Prior-based Shape Matching

We show in a series of numerical experiments that upgrad-
ing the gradient flow of the approximate Hausdorff distance
with our deformation priors of Section 6.3 yields an efficient
method for shape matching. Note that in all the following
examples, the sampling of the template and of the query
meshes are (purposely) completely different. Unless speci-
fied otherwise, the meshes shown in this paper were obtained
using E-Frontier’s Poser. To accelerate convergence by sev-
eral orders of magnitude, we implemented a multiresolution
approach for the articulated examples: we precompute coar-
sified versions [GH97] of both the template and the instance
mesh and run the Hausdorff gradient flow on those simpler
meshes, before refining them back to the original resolution
(using pyramid coordinates [SK04]) for final alignment, as
illustrated by figure 7. This multiresolution implementation
results in reasonable timings: most flows shown in this pa-
per are done in a minute or less, the fastest being the hand
in Figure 2 (10s.), while aligning the whole human body in
Figure 7 takes 1 minute for 28K vertices. Note also that we
used implicit integration for stability. Figs.5-8 demonstrate

Figure 9: Quasi-Isometric Prior: Matching two arms by minimizing
their Hausdorff distance with a quasi-isometric gradient flow. Here,
without any prior knowledge on the leg structure, the quasi-isometric
gradient flow finds the appropriate matching. The last frame shows
both meshes, to demonstrate the quality of the match despite the
sampling disparity between the two models.

the ability of our quasi-articulated prior of Section 6.3.2 to
generate a relevant matching between body parts in different
poses (using λR = λT varying from 5e-3 to 5e-4, and the
µ’s decreasing by a factor of 10 per level in the hierarchy).
This prior can be used as soon as a segmentation (even a
coarse one) of the template shape is available. In Figure 9
(λiso = 50), we show that our quasi-isometric can nonetheless
accommodate articulated bodies with different poses with-
out known segmentation, by enforcing the rigidity of the
deformation only at a local scale. Finally, in Figure 10, we
show the applicability of our method to noisy and incomplete
meshes, with the example of a full arm and shoulder. Note
that, although we obtain satisfying results in this experiment,
the symmetric Hausdorff distance is not naturally suited to
partial matches. Yet, our approach was able to resolve this
matching procedure.

Comparison to Related Work The above results are in-
tended to show a "stress test" for the generalized flows
methodology rather than the panacea of shape matching. Nev-
ertheless, a closer look at shape matching literature points out
the significant benefits that generalized flows bring. Several
techniques [ACP03,BR04,PMG∗05] essentially employ vari-
ous non-rigid variants of ICP; one known shortcoming of ICP
is its reliance on closest point-pairs of estimated correspon-
dences, which are often erroneous unless the two meshes are
pre-aligned. A common way to improve robustness is to add
a relaxation term, affecting the quality of the final match. Our
flow approach bypasses these issues due to the global nature
of the Hausdorff distance functional, without sacrificing the
quality of the final match. Allen et al. focused on human body
matching [ACP03] with fairly similar poses, using a combi-
nation of locally-affine transformations (similarly to [FA96])
while enforcing a smoothly varying deformation field. To our
knowledge, this setup does not have a simple way to build
prior knowledge into the deformation, and rigid motion can-
not be clearly separated (the same holds for [PMG∗05]), ne-
cessitating the use of markers for each new object to avoid lo-
cal minima. By comparison, our quasi-articulated prior only
requires a one-time effort of segmenting the template mesh.
Another popular way to constrain the deformation is via thin-
plate splines [CR03,BR04]. Interestingly, adding a thin-plate
energy term is similar to using the high-order Sobolev-like
gradient (Section 4) of the original energy, making it a special
case of our proposed setup.

7 Conclusion and Future Work

We have extended the notion of gradient flows of triangle
meshes by pointing out that one can tailor the inner product
on vector fields instead of using the canonical L2. We gave de-
tails on implementation of such generalized geometric flows
using explicit and implicit integration techniques. We ap-
plied this formalism to improve conventional approaches to
shape matching, by first defining an approximate Hausdorff
gradient flow, then by applying deformation priors (such as
articulated bodies or quasi-isometry) to render the flow signif-
icantly more robust (i.e., less prone to local minima and erro-
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Figure 10: Partial Matching of an incomplete scanned 3D mesh (in blue, courtesy of U. of Washington) with a template arm in a different pose.
Despite the sparsity of the scan, a quasi-articulated prior (19 subparts, including fingers) on our Hausdorff-based flow gets a good match.

neous matching). Finally, we use a multi-resolution approach
to speed up convergence and add scalability. Our future work
includes extending the toolbox of energies and priors for the
particular case of shape matching. For instance, landmarks
are often used in practice to alleviate the registration task
(e.g. in [GMGP05]). Incorporating landmarks into our de-
formation energy is simple and could combine the strengths
of both approaches. We also plan on further investigating the
power of altering the norms in mesh flows in the more general
context of shape representation and analysis. Promising re-
sults have been shown in this area [MM05, YM05, KMP07],
where properly defining continuous morphs (homotopies)
and geodesic distances in the space of curves requires alter-
ing the L2 metric.
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A Pseudo-Hausdorff Distance and its Gradient

We define our approximation of the Hausdorff distance
between two distinct meshes X = {xi}i=1..P and Y =
{y j} j=1..Q as follows:

dH(X,Y) =

[
1
P ∑

i
Mx

ii f−1
i +

1
Q ∑

j
My

j jg
−1
j

] 1
2α

− ε (20)

with fi =
1
Q ∑

j
My

j jd
−α

i j , g j =
1
P ∑

i
Mx

ii d−α

i j and di j = |xi−y j|2 +ε
2,

where Mx
ii and My

j j are elements of the diagonal mass ma-
trices of X and Y, respectively (required to compensate for
irregular sampling), ε > 0 and α ≥ 0. Proving that the above
expression converges to the Hausdorff distance between the
two meshes when α → +∞ and the sampling of the two
meshes increases follows the continuous proof of [CFK05].
An additional argument necessary to the proof is the elemen-
tary fact that for any set of positive values {ui}i=1..N ,

lim
α→+∞

(
1
N

N

∑
i=1

uα
i

)1/α

= max
1≤i≤N

ui .

Note however that our Hausdorff approximation does not
satisfy the triangular inequality. Nevertheless, it is symmet-
ric with respect to the two meshes (while only sided dis-
tances are often used in practice for other methods, see for
instance [PKZ04]), and only takes positive values. Finally,
it has a decisive advantage over the real Hausdorff distance
expression: it is differentiable with respect to the position of
the vertices of the two meshes. Specifically, we have:

∂dH(X,Y)
∂xi

=
(dH(X,Y)+ ε)1−2α

P ·Q
Mx

ii ∑
j

xi −y j

dα+1
i j

My
j j( f−2

i +g−2
j ) .

The complexity of computing dH or its gradient is O(P ·
Q), which can be prohibitive when using large datasets. In
practice, we restrict the sums in fi and gi (Eq.(20)) to only
the ε-nearest neighbor pairs (found in constant time using a
uniform partitioning of the domain), reducing the complexity
to a more tractable O(P)+O(Q) for coarsely aligned shapes,
without a noticeable loss of accuracy. Further elimination of
the computational bottleneck is made possible through the
use of multi-resolution.
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