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Abstract
Modeling tasks, such as surface deformation and editing, can be analyzed by observing the local behavior of the
surface. We argue that defining a modeling operation by asking for rigidity of the local transformations is useful
in various settings. Such formulation leads to a non-linear, yet conceptually simple energy formulation, which is
to be minimized by the deformed surface under particular modeling constraints. We devise a simple iterative mesh
editing scheme based on this principle, that leads to detail-preserving and intuitive deformations. Our algorithm
is effective and notably easy to implement, making it attractive for practical modeling applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling – geometric algorithms, languages, and systems

1. Introduction
When we talk about shape, we usually refer to a property
that does not change with the orientation or position of an
object. In that sense, preserving shape means that an object
is only rotated or translated, but not scaled or sheared. In
the context of interactive shape modeling it is clear, how-
ever, that a shape has to to be stretched or sheared to satisfy
the modeling constraints placed by the user. Users intuitively
expect the deformation to preserve the shape of the object
locally, as happens with physical objects when a smooth,
large-scale deformation is applied to them. In other words,
small parts of the shape should change as rigidly as possible.

Our goal is to create a shape deformation framework that
is directly based upon the above principle. When local sur-
face deformations induced by modeling operations are close
to rigid, surface details tend to be preserved. This is a highly
important property for surface editing schemes that are
meant to be applied to complex, detailed surfaces, such as
those coming from scanning real 3D objects or from sophis-
ticated virtual sculpting tools. Recently, detail-preserving
surface editing techniques have been receiving much atten-
tion in geometric modeling research [Sor06,BS07], thanks to
the increasing proliferation of such detailed models, which
usually come in the form of irregular polygonal meshes.

We propose the following conceptual model derived from
the principle of local rigidity: The surface of the object is
covered with small overlapping cells. An ideal deformation
seeks to keep the transformation for the surface in each cell
as rigid as possible. Overlap of the cells is necessary to avoid
surface stretching or shearing at the boundary of the cells.

Figure 1: Large deformation obtained by translating a
single vertex constraint (in yellow) using our as-rigid-as-
possible technique.

For this modeling framework to become practical we shall
define how rigidity is measured in each of the cells. A nat-
ural choice is to estimate the rigid transformation for each
cell based on corresponding points on the initial and the de-
formed surfaces, then apply this rigid transformation to the
original shape and measure the deviation to the deformed
shape. Note that estimating a linear transformation from the
corresponding surface points and then measuring its non-
orthogonality is not a good measure of rigidity: an optimal
approximate linear transformation of an arbitrary deforma-
tion could well be orthogonal. Consequently, in order to de-
fine locally shape-preserving deformation, a direct optimiza-
tion of the rigid transformation should be performed instead.

Assuming we can measure deviation from rigidity in each
cell, setting up the modeling framework requires deciding
on the size and placement (or, equivalently, overlap) of
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the cells. These parameters are interrelated: First, all cells
should cover similar areas of the surface, or the area of the
cells needs to be properly weighted in the objective funtion.
Second, the overlap should be chosen in such a way that each
part of the surface is covered by the same number of cells.

In the following, we will derive this modeling ap-
proach for the setting of discrete surfaces, namely triangular
meshes. Surprisingly, a rather straightforward formulation of
the main ideas outlined above leads to an intuitive iterative
procedure with guaranteed convergence that is simple to im-
plement. It also turns out that it can be interpreted as an it-
erative improvement of the now-common discrete Laplacian
modeling frameworks [Sor06], which greatly facilitates its
adoption into existing modeling frameworks. We will also
relate the approach to other linear and non-linear modeling
frameworks and discuss the tradeoffs.

1.1. Background

Local rigidity can be seen as the governing principle of var-
ious surface deformation models. If we look at the classi-
cal elastic energy that measures the difference between two
shapes, or the so-called shell energy [TPBF87]:

Es
(
S,S′

)
=

Z
Ω

ks
∥∥I′− I

∥∥2
F + kb

∥∥II′− II
∥∥2

F dudv , (1)

where ‖ · ‖F is the Frobenius norm, I, II are the fundamen-
tal forms of the surface S and I′, II′ are the fundamental
forms of its deformed version S′, then we can see that the
energy is minimized when S′ is a rigid transformation of
S . This is true globally as well as locally: the fundamental
forms define the surface locally in a unique manner, up to a
rigid transformation, such that local shape preservation oc-
curs when S and S′ are locally a rigid transformation of one
into the other.

In any surface deformation scenario, apart from the triv-
ial cases, complete local rigidity of the surface cannot hold,
since it would follow that the surface is globally rigid. Thus
the shape distance (1) does not reach zero, but rather has
some minimum value. This minimum is attained when the
local transformations that occur between S and S′ are as-
rigid-as-possible and smooth. Smooth means that the local
deformations are locally similar; when they are in addition
close to being rigid this means that the fundamental forms
are almost preserved, i.e. the shape is locally preserved.

The shell energy (1) is a non-linear function of the surface
positions, which makes it difficult to operate with in prac-
tice. Several works in geometric modeling [KCVS98,BK04]
proposed to formulate a linearized discrete version of this
energy (see [BS07] for detailed discussion). The lineariza-
tion allows an efficient optimization, but it causes arti-
facts, such as local detail distortion and general shape dis-
tortion when large deformations (and in particular, rota-
tions) are involved. As a partial compensation for local de-
tail distortion, multi-resolution surface representations can

be employed [ZSS97, GSS99], such that the smooth (low-
frequency) component of the surface is deformed first, and
then high-frequency details are added back by local dis-
placement. Unfortunately, this solution quickly leads to lo-
cal self-intersections when the deformation introduces bend-
ing [BSPG06].

As mentioned above, a different take on minimizing shape
distortion is to try and devise deformations that are lo-
cally rigid. The principle of as-rigid-as-possible deformation
was successfully applied to shape interpolation [ACOL00,
XZWB05]. In this case, the source and target shapes are
known, and the question is how to determine intermediate
“shape path” such that the deformation from source to target
appears as-rigid-as-possible; this can be done by performing
polar decomposition of the transformation of each discrete
surface element and interpolating the scaling and the rota-
tion components separately. In shape editing the deforma-
tion task is harder because the target surface is not known,
only several modeling constraints are given (typically some
prescribed positions for a subset of surface elements).

One possible approach is to optimize for local rigid
transformations and preservation of differential coordi-
nates [Ale01] simultaneously; this was proposed by Sorkine
et al. [SLCO∗04] and Igarashi et al. [IMH05]. However, this
optimization is non-linear, because rotations cannot be lin-
early parameterized in either 2D or 3D. In 2D, it is possi-
ble to linearly express similarity transformations; this can
be exploited to design a two-step editing process for 2D
shapes: in the first step, local similarity transformations are
optimized, and in the second stage isotropic scaling is elim-
inated. The same idea was implemented by Schaefer et
al. [SMW06] in the context of 2D free-form deformations
(space-warps): they devised a moving-least-squares frame-
work for 2D space warping, where each element of the space
grid deforms as-rigidly-as-possible, and the warping is con-
trolled by positional constraints on several grid points. In
3D, even similarity transformations cannot be linearly pa-
rameterized; to keep an efficient linear deformation frame-
work Sorkine et al. [SLCO∗04] use a first-order approxima-
tion of similarity transformations, which works well when
only moderate rotations are involved in the deformation.

Note that the shape distance (1) has two parameters ks and
kb that determine the relative weight of tangential distortion
(i.e., the first fundamental form) against the normal direction
(second fundamental form). Lipman et al. [LCOGL07] as-
sumed isometric deformations, such that the first fundamen-
tal form is preserved, and devised an elegant method to min-
imize the deviation of the second fundamental form using
Cartan’s moving frames formulation for discrete surfaces.
Wardetzky et al. [WBH∗07] show that when the deformation
is isometric, the bending energy term can be formulated as a
quadratic energy of the surface positions. In different situa-
tions one can apply different “weighting” of the two terms;
isometry is not always the most important part (when the de-
sired surface deformation is stretching rather than bending,
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for example). It is also worth noting that if more complex
modeling constrains are admitted, namely, if the user explic-
itly specifies the desired rotations (or general affine transfor-
mations) to be applied to some control points on the surface,
the editing can be relatively easily performed by propagating
those transformations to the unconstrained parts of the sur-
face [YZX∗04, LSLCO05, ZRKS05, LCOGL07]. This leads
to pleasing and intuitive results when the prescribed affine
transformation and translation are compatible [LSLCO05];
in general, however, such editing methods are translation-
insensitive and may lead to unintuitive shape distortions.

In this work, we directly formulate as-rigid-as-possible
editing of discrete surfaces in 3D as a variational problem.
The energy formulation is non-linear, and we show a sim-
ple iterative approach to minimize it. Several related non-
linear variational deformation methods were proposed very
recently: dual Laplacian editing [ATLF06] starts with naive
Laplacian editing as an initial guess and iteratively adjusts
the local Laplacian coordinates to coincide with the sur-
face normals and refits the surface geometry to those Lapla-
cians. This alternating iterative approach is similar to ours
in spirit, but they do not formulate a specific energy that
their iterations are meant to minimize, so it is not clear
how to characterize the fixed points of the iterative process.
Non-linear approaches are typically too expensive for in-
teractive manipulation of high resolution models, therefore
multiresolution is usually employed. This is the case, e.g.,
in the following methods. Pyramid coordinates [KS06] are
formulated as non-linear displacements over locally fitted
planes; Huang et al. [HSL∗06] employ non-linear Laplacian
constraints (coupled with other constraints, such as volume
preservation) and minimize the resulting objective function
on small subspace mesh. The deformation of the coarse sub-
space drives a space warp, implemented using 3D mean-
value coordinates [JSW05], to deform the detailed surface.
The PRIMO system [BPGK06] relates the surface to a col-
lection of prisms that envelop it; the prisms are thought of as
rigid objects, and the integrated distance between their ad-
jacent faces is minimized using a modified Newton scheme,
again combined with a clever multiresolution technique.

All the non-linear approaches above produce quite com-
pelling results, as does the approach we present here; the
advantage of our technique is its energy formulation that
leads to an iterative minimization scheme that is very easy
to implement while still guaranteeing convergence. Also, the
steps in the minimization are related to Laplacian surface
deformation techniques, which might be useful in modeling
frameworks relying on this idea.

2. Discrete surface setup

In the following we denote by S a triangle mesh, whose
topology is determined by n vertices and m triangles. We
denote by N (i) the set of vertices connected to vertex i,
also called the one-ring neighbors. The piecewise linear ge-

ometric embedding of S is defined by the vertex positions
pi ∈ IR3. Assume S is being deformed into S′ that has the
same connectivity and a different geometric embedding p′i .

It is natural to define the cells over the topological ele-
ments of the mesh. Because of the required overlap, each
cell should consist of more than one triangle. We believe it
is natural to choose a vertex-based definition, where each
cell covers the triangles incident upon a vertex. We first an-
alyze the approximate rigid transformation per cell and for-
malize an energy function that measures the deviation from
this rigid transformation. Then we show how to minimize
this energy and use it in the context of modeling operations.

2.1. Analyzing rigid transformations between two cells

Given the cell Ci corresponding to vertex i, and its deformed
version C′i , we define the approximate rigid transformation
between the two cells by observing the edges emanating
from the vertex i in S and S′. If the deformation C → C′
is rigid, there exists a rotation matrix Ri such that

p′i −p′j = Ri
(
pi−p j

)
, ∀ j ∈N (i) . (2)

When the deformation is not rigid, we can still find the best
approximating rotation Ri that fits the above equations in a
weighted least squares sense, i.e., minimizes

E(Ci,C′i ) = ∑
j∈N (i)

wi j
∥∥(p′i −p′j

)
−Ri(pi−p j)

∥∥2
. (3)

This is a weighted instance of the shape matching prob-
lem [Hor87]. We will discuss the proper choice of weights
wi j in the next section.

We briefly describe the derivation for the optimal rotation
Ri for fixed Ci,C′i . For convenience, let us denote the edge
ei j := pi−p j, and similarly for e′i j for the deformed cell C′i .
We denote summation over j as a shorthand for j ∈ N (i).
Then we can rewrite (3) as

∑
j

wi j
(
e′i j −Ri ei j

)T (e′i j −Ri ei j
)

= (4)

= ∑
j

wi j

(
e′Ti j e′i j −2e′Ti j Ri ei j + eT

i j RT
i Ri ei j

)
=

= ∑
j

wi j

(
e′Ti j e′i j −2e′Ti j Ri ei j + eT

i j ei j

)
.

The terms that do not contain Ri are constant in the min-
imization and therefore can be dropped. We are thus re-
mained with

argmin
Ri

∑
j
−2wi j e′Ti j Ri ei j = argmax

Ri
∑

j
wi j e′Ti j Ri ei j =

= argmax
Ri

Tr

(
∑

j
wi j Ri ei j e′Ti j

)
=

= argmax
Ri

Tr

(
Ri ∑

j
wi j ei j e′Ti j

)
.
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original mesh uniform weights cotan weights uniform weights cotan weights

Figure 2: Demonstration of the importance of proper edge weighting in the energy formulation (3). Deformation using uniform
weighting (wi j = 1) leads to asymmetrical results, whereas cotangent weighting enables to eliminate the influence of the meshing
bias.

Let us denote by Si the covariance matrix

Si = ∑
j∈N (i)

wi j ei j e′Ti j = Pi Di P′Ti , (5)

where Di is a diagonal matrix containing the weights wi j,
Pi is the 3× |N (vi) | containing ei j’s as its columns, and
similarly for P′i . It is well known that the rotation matrix Ri
maximizing Tr (RiSi) is obtained when RiSi is symmetric
positive semi-definite (if M is a psd matrix then for any or-
thogonal R, Tr (M) > Tr (RM)). One can derive Ri from the
singular value decomposition of Si = Ui Σi VT

i :

Ri = ViUT
i , (6)

up to changing the sign of the column of Ui corresponding
to the smallest singular value, such that det(Ri) > 0.

2.2. The local rigidity energy

Our simple idea for measuring the rigidity of a deformation
of the whole mesh is to sum up over the deviations from
rigidity per cell, as expressed by (3). Thus, we obtain the
following energy functional:

E
(
S′
)

=
n

∑
i=1

wi E(Ci,C′i ) = (7)

=
n

∑
i=1

wi ∑
j∈N (i)

wi j
∥∥(p′i −p′j

)
−Ri(pi−p j)

∥∥2
,

where wi, wi j are some fixed cell and edge weights. Note that
E
(
S′
)

depends solely on the geometries of S, S′, i.e., on the
vertex positions p,p′. In particular, since the reference mesh
(our input shape) is fixed, the only variables in E

(
S′
)

are
the deformed vertex positions p′i . This is because the optimal
rotations Ri are well-defined functions of p′, as was shown
in the previous section.

The choice of per-edge weights wi j and per-cell weights
wi is important for making our deformation energy as mesh-
independent as possible, as demonstrated in Figure 2. The
weights should compensate for non-uniformly shaped cells

and prevent discretization bias. We therefore use the cotan-
gent weight formula for wi j [PP93, MDSB03]:

wi j =
1
2
(
cotαi j + cotβi j

)
,

where αi j,βi j are the angles opposite of the mesh edge (i, j)
(for a boundary edge, only one such angle exists). We fur-
ther note that the deviation from rigidity, as defined by (3),
is an integrated quantity, so that the cell energy is propor-
tional to the cell area, and we can set wi = 1. An alternative
explanation for this would be using the area-corrected edge
weights w′i j = (1/Ai)wi j, where Ai is the Voronoi area of cell
Ci [MDSB03], and then also setting the cell weights to be the
Voronoi area: w′i = Ai. The area term simply cancels out, and
we are left with the symmetric cotangent weights wi j.

3. Modeling framework

In a modeling framework we need to solve for positions p′

of S′ that minimize E(S′), under some user-defined model-
ing constraints. This means we do not know the rigid trans-
formations {Ri} a priori and thus need to solve for them as
well. Therefore, we first interpret E(S′) as a function of p′

and {Ri} and in any modeling situation we seek the mini-
mum energy under the variation in both sets.

To solve for the next local minimum energy state (start-
ing from a given initial vector of positions and rotations),
we propose to use a simple alternating minimization strat-
egy. This means, for a given fixed set of rigid transforma-
tions, we find positions p′ that minimize E(S′). Then, we
find the rigid transformations {Ri} that minimize E(S′) for
the given set of positions p′. We continue these interleaved
iterations until the local energy minimum is reached.

Let us first look how to find optimal rigid transformations
{Ri} for a given set of modified positions p′. Each term in
the sum (7) involves only the per-cell rigid transformation
Ri, i.e., we can compute an optimal transformation for each
cell without regard for the other cells and their rigid trans-
formations. Thus, we seek an Ri that minimizes the per cell
energy in (3). The solution to this, however, is detailed in
Section 2.1, namely, Equation (6).
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initial guess 1 iteration 2 iterations initial guess 1 iteration 4 iterations

Figure 3: Successive iterations of the as-rigid-as-possible editing method. The initial guess is the naive Laplacian editing result
(as in [LSCO∗04] but without any local rotation estimation). The original straight bar model is shown in Figure 6.

In order to compute optimal vertex positions from given
rotations, we compute the gradient of E(S′) with respect to
the positions p′. Let us compute the partial derivatives w.r.t.
p′i . Note that the only terms in E(S′) whose derivative does
not vanish are those involving vertices i and j ∈N (i):

∂E(S′)
∂p′i

=
∂

∂p′i

(
∑

j∈N (i)
wi j
∥∥(p′i −p′j

)
−Ri(pi−p j)

∥∥2
+

+ ∑
j∈N (i)

w ji
∥∥(p′j −p′i

)
−R j(p j −pi)

∥∥2
)

=

= ∑
j∈N (i)

2wi j
((

p′i −p′j
)
−Ri

(
pi−p j

))
+

+ ∑
j∈N (i)

−2w ji
((

p′j −p′i
)
−R j

(
p j −pi

))
.

Using the fact that wi j = w ji , we arrive at

∂E(S′)
∂p′i

= ∑
j∈N (i)

4wi j

((
p′i −p′j

)
− 1

2
(Ri +R j)

(
pi−p j

))
.

Setting the partial derivatives to zero w.r.t. each p′i we arrive
at the following sparse linear system of equations:

∑
j∈N (i)

wi j
(
p′i −p′j

)
= ∑

j∈N (i)

1
2
(
Ri +R j

)(
pi−p j

)
. (8)

The linear combination on the left-hand side is non-other
than the discrete Laplace-Beltrami operator applied to p′;
the system of equations can be compactly written as

Lp′ = b , (9)

where b is an n-vector whose ith row contains the right-hand
side expression from (8). We also need to incorporate the
modeling constraints into this system. In the simplest form,
those can be expressed by some fixed positions

p′j = ck , k ∈ F , (10)

where F is the set of indices of the constrained vertices.
These consist of static and handle vertices, interactively ma-
nipulated by the user. Incorporating such constraints into (9)
simply means substituting the corresponding variables, ef-
fectively erasing respective rows and columns from L and
updating the right-hand side with the values ck.

Note that the rigid transformations {Ri} only influence
the right-hand side of the system, whereas the system ma-
trix only depends on the initial mesh. Thus, we can employ

a direct solver, and the system matrix has to be factored only
once for minimizing E(S′). Moreover, since p′ consists of
three columns (for the three coordinate functions), we only
need to perform three times back-substitution to solve for
each coordinate, using the same n× n factorization. Since
L is symmetric positive definite, the sparse Cholesky fac-
torization with fill-reducing reordering is an efficient solver
choice [Tol03].

To summarize, the overall minimization of E(S′) pro-
ceeds as follows. Firstly the coefficients wi j are precomputed
and the system matrix of (9) is pre-factored. Given an initial
guess p′0, the local rotations Ri are estimated, as described
in Section 2.1. New positions p′1 are obtained by solving (9),
plugging Ri into the right-hand side. Then further minimiza-
tion is performed by re-computing local rotations and using
them to define a new right hand-side for the linear system,
and so on. This leads to an efficient solution of the non-linear
problem at hand, since only back-substitutions are necessary.

4. Results and discussion

We have implemented the as-rigid-as-possible deformation
technique using C++ on a Pentium 4 2.16GHz laptop with
2GB RAM. We used the sparse Cholesky solver provided
with the TAUCS library [Tol03] and standard SVD imple-
mentation (used for polar decomposition of 3× 3 matrices)
from [PTVF92].

We present some typical deformation results obtained
with our technique in Figures 1, 4–8. Note that natural de-
formations are obtained, even when the manipulation handle
is only being translated, because the optimization automati-
cally produces the correct local rotations. The Cactus (Fig-
ure 7) is a particularly challenging example, especially for
linear variational deformation methods, due to its long pro-
truding features [BS07].

The results of our method can be compared with
PRIMO [BPGK06], a state-of-the-art non-linear technique,
as well as various linear variational techniques, by observ-
ing the canonical examples in Figures 5, 6, 7. Such de-
formations appear in the comparison table in [BS07]; it is
evident that our method performs equally well to PRIMO

and is generally superior to linear methods, especially when
handle translation is involved. To emphasize this point, we
compare the results of our method with Poisson mesh edit-
ing [YZX∗04, ZRKS05] in Figure 5. Note that since the
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Figure 4: Large deformation of the spiky plane (see Figure 2
for the original mesh). Note that the handle (in yellow) was
only translated, without specifying any rotation.

Poisson our method Poisson our method

Figure 5: Comparison with Poisson mesh editing. The orig-
inal models appear in Figures 2 and 7. The yellow han-
dle was only translated; this poses a problem for rotation-
propagation methods such as [YZX∗04,ZRKS05,LSLCO05].

handle was only translated, Poisson editing cannot gener-
ate a proper rotation field (since there is no handle rota-
tion to propagate), which results in detail distortion and lack
of smoothness near the constraints. The same translation-
insensitivity would be observed in the method of Lipman
et al. [LCOGL07]; our technique handles translation well by
optimizing for the local rotations, at the price of a global
non-linear optimization. It is worth noting though that the
required numerical machinery and the setup of the linear sys-
tem is almost identical to the linear variational methods.

The accompanying video shows several short editing ses-
sions captured live. Our unoptimized code runs interac-
tively (at 10-30 fps) for regions of interest (ROI) of up
to 10K vertices, using 2-3 iterations per edit. A number
of improvements are possible to speed up convergence: a
faster polar decomposition routine (i.e., one that reuses pre-
vious frame computations rather than starting from scratch
each time) and a multiresolution technique, such as the one
in [BPGK06] or [HSL∗06], to allow the optimization to run
on a coarse version of the mesh in order to quickly propagate
the deformation across the ROI.

An important implementation issue is the initial guess
which starts the optimization; since the energy we minimize
is non-linear, multiple local minima may exist, and the so-
lution depends on the initial guess in such case. It is impor-
tant to use a reasonable-quality initial guess (i.e., not too far
from the initial shape and the intuitively expected result) to
allow quick convergence, yet it is desirable to compute it
quickly. We experimented with several possibilities, which
can be used in different scenarios:
Previous frame (for interactive manipulation): If the user
interactively manipulates the control handle(s), it is reason-
able to use the result of the previous frame as the initial

Figure 6: Twist and rotation deformations.

Model Figure Relative RMS error
Dino Fig. 1 0.024
Spiky plane Fig. 4 left 0.034
Spiky plane Fig. 4 right 0.016
Twisted bar Fig. 6 left 0.095
Armadillo Fig. 8(b) 0.037
Armadillo Fig. 8(c) 0.013
Armadillo Fig. 8(e) 0.051

Table 1: Relative RMS error of edge lengths for various de-
formations. When the modeling constraints do not necessi-
tate stretching, the error is very low. The twist example does
involve some slight stretching because the top of the bar is
constrained to remain at the same height, hence the higher
relative error in this case.

guess, since the handle movement and/or deformation is ex-
pected to be continuous. Therefore, in this case we simply
take the previous frame and assign the user-defined positions
to the constrained vertices. This approach was used for all
the figures in this paper, unless explicitly mentioned other-
wise, and is also demonstrated in the accompanying video.
The user experience reminds a lot of interacting with physi-
cal material.
Naive Laplacian editing: The starting guess is obtained by
simple linear minimization of ‖Lp′ − δ‖2 under the posi-
tional modeling constrains (10), where δ = Lp are the dif-
ferential coordinates of the input mesh. Although this guess
produces distorted results for large deformations, the subse-
quent iterations manage to recover, as demonstrated in Fig-
ure 3. For significantly distorted initial guess the conver-
gence may be slow, however.
Rotation-propagation: If the manipulation of the handle in-
volves explicit rotation (along with translation), one can use
any of the techniques that explicitly propagate the specified
rotation to the unconstrained regions, such as [LSLCO05,
ZRKS05, LCOGL07]. Subsequent optimization of our en-
ergy allows to consolidate the otherwise decoupled rotation
and translation and improves the results; convergence is typ-
ically very fast since the starting rotational component of the
deformation is already good.

An interesting property of our as-rigid-as-possible sur-
face deformation is edge length preservation, to the extent
allowed by the modeling constraints. If the modeling con-
straints do not impose stretching on the surface, the opti-
mization always strives to converge to a state where the edge
length error is small. This is clearly visible in the deforming
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(a) (b) (c) (d) (e) (f)

Figure 7: Bending the Cactus. (a) is the original model; yellow handles are translated to yield the results (b-f). (d) and (e) show
side and front views of forward bending, respectively. Note that in (b-e) a single vertex at the tip of the Cactus serves as the
handle, and the bending is the result of translating that vertex, no rotation constraints are given.

(a) (b) (c) (d) (e) (f)

Figure 8: Editing the Armadillo. (a) and (d) show views of the original model; the rest of the images display editing results,
with the static and handle anchors denoted in red and yellow, respectively.

plane example (Figure 4), for instance, which behaves sim-
ilar to rubber-like material. Table 1 summarizes root-mean-
square edge length error measurements for several deforma-
tions presented in this paper; it can be seen that the relative
RMS error is very low.

5. Conclusions

The important features of our approach are (1) robustness,
resulting from the minimization procedure that is guaranteed
to not increase energy in each step; (2) simplicity, as each
step of the minimization is conceptually similar to Lapla-
cian modeling; and (3) efficiency, because the Laplace sys-
tem matrix is constant throughout the iterations and has to
be factored only once.

We have learned during our experiments that this com-
bination is not evident, i.e., simply updating the right-hand
side of a discrete Laplace system in a seemingly reasonable
way would fail to converge in almost all cases. Convergence
in our approach is the result of deriving an energy that can-
not increase in each step of the iterations. Note that theo-
retically, the local minimum found by decreasing the energy
might not be unique, i.e., there could be a connected set of
minimum energy states. However, we have not experienced
this problem and believe that if it exists at all then only for
particularly derived examples.

The fact that each step in the iterations can be performed
by solving a linear system with a constant matrix throughout

the minimization procedure really is the result of a careful
design of the energy functional. The number of iterations
required to get reasonably close to a minimum depends on
the condition number of the (anchored) Laplacian matrix,
which is generally proportional to the mesh size. Specifi-
cally, if we keep the boundary conditions the same and re-
fine the mesh, the condition number will grow proportion-
ally, even if the shape of the mesh elements is perfect (for
detailed analysis and bounds on the condition number of
the uniform anchored Laplacian matrix, see [CCOST05]; the
uniform Laplacian coincides with the cotangent Laplacian
for tessellations with equilateral triangles, and in other cases
the bounds for the cotangent Laplacian are probably more
pessimistic). This means as the meshes are refined stability
deteriorates, and typically more iterations are needed until
convergence (in addition to the fact that each iteration be-
comes more costly). This practical efficiency problem could
be easily alleviated with multi-resolution techniques.

Another interesting quality of our approach is that it triv-
ially extends to volumetric cells, e.g., tetrahedra. As the
rigidity is measured based on the edges in each cell, nothing
would have to be changed in the setup of the energy – one
would only have to plug-in the connectivity of a volumet-
ric grid. So, if preservation of volume is of concern rather
than preservation of surface, then this could easily be ac-
complished. Of course, as with other recent approaches, the
optimization could be applied to a coarse volumetric grid
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which controls the shape embedded in it, rather than directly
to the discrete surface or volume.

In future work, we wish to experiment with several
degrees of freedom that our modeling framework offers:
changing the size and relative weights per cell, so as to con-
trol the overall and relative local rigidity of the surface.
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