
Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Discrete Laplace operators: No free lunch

Max Wardetzky1 Saurabh Mathur2 Felix Kälberer1 Eitan Grinspun2 †

1Freie Universität Berlin, Germany 2Columbia University, USA

Abstract
Discrete Laplace operators are ubiquitous in applications spanning geometric modeling to simulation. For robust-
ness and efficiency, many applications require discrete operators that retain key structural properties inherent to
the continuous setting. Building on the smooth setting, we present a set of natural properties for discrete Laplace
operators for triangular surface meshes. We prove an important theoretical limitation: discrete Laplacians can-
not satisfy all natural properties; retroactively, this explains the diversity of existing discrete Laplace operators.
Finally, we present a family of operators that includes and extends well-known and widely-used operators.

1. Introduction

Discrete Laplace operators on triangular surface meshes
span the entire spectrum of geometry processing appli-
cations, including mesh filtering, parameterization, pose
transfer, segmentation, reconstruction, re-meshing, com-
pression, simulation, and interpolation via barycentric coor-
dinates [Tau00, Zha04, FH05, Sor05].

In applications one often requires certain structural prop-
erties of discrete Laplacians—such as symmetry, sparsity,
linear precision, positivity, and convergence—requirements
that are motivated by an attempt to keep properties of the
continuous case, leading to a large and diverse pool of dis-
crete versions. What is missing is a characterization of this
vast pool by means of a unified conceptual treatment.

As a step toward such a unified treatment, we describe a
set of natural properties for discrete Laplace operators on tri-
angular surface meshes (§2). Building on a century-old theo-
rem by Maxwell and Cremona [Max64,Cre90], we prove an
important theoretical limitation: not all the natural proper-
ties can be satisfied simultaneously, i.e., a ‘perfect’ discrete
Laplacian does not exist (§3). This result imposes a taxon-
omy on all discrete Laplacians, by considering those proper-
ties that they fail to respect. Retroactively, this explains the
diversity of existing Laplacians proposed in the literature,
as different applications are bound to choose different op-
erators. We complement this analysis with a framework for
constructing sparse symmetric discrete Laplacians (§4).
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1.1. Properties of smooth Laplacians

Consider a smooth surface S, possibly with boundary,
equipped with a Riemannian metric, i.e., an intrinsic no-
tion of distance. Let the intrinsic L2 inner product of func-
tions u and v on S be denoted by (u,v)L2 =

R
S uv dA, and let

∆ =−divgrad denote the intrinsic smooth Laplace-Beltrami
operator [Ros97]. We list salient properties of this operator:

(NULL) ∆u = 0 whenever u is constant.

(SYM) Symmetry: (∆u,v)L2 = (u,∆v)L2 whenever u and v
are sufficiently smooth and vanish along the boundary of S.

(LOC) Local support: for any pair p 6= q of points, ∆u(p) is
independent of u(q). Altering the function value at a distant
point will not affect the action of the Laplacian locally.

(LIN) Linear precision: ∆u = 0 whenever S is part of the
Euclidean plane, and u = ax + by + c is a linear function on
the plane.

(MAX) Maximum principle: harmonic functions (those for
which ∆u = 0 in the interior of S) have no local maxima (or
minima) at interior points.

(PSD) Positive semi-definiteness: the Dirichlet energy,
ED(u) =

R
S ‖gradu‖2 dA, is non-negative. By our choice of

sign for ∆, we obtain ED(u) = (∆u,u)L2 ≥ 0 whenever u is
sufficiently smooth and vanishes along the boundary of S.

In applications, one often requires a discrete Laplacian
having properties corresponding to (some subset of) the
properties listed above.
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2. Discrete Laplacians

Discrete Laplacians defined Consider a triangular surface
mesh Γ, with vertex set V , edge set E, and face set F . We
define a discrete Laplace operator on Γ by its linear action
on vertex-based functions,

(Lu)i = ∑
j

ωi j(ui−u j) , (1)

where i and j refer to vertex labels. Note that (1) automat-
ically implies that L satisfies (NULL). Vice-versa, any lin-
ear operator on function values at vertices, (Lu)i = ∑ j li ju j,
which vanishes on constants, satisfies 0 = ∑ j li j, and can
hence be written as in (1) by setting ωi j =−li j. The proper-
ties of L are encoded by the coefficient matrix, (ωi j).

Desired properties for discrete Laplacians We describe a
set of natural properties for discrete Laplacians. Each prop-
erty is primarily motivated by a core structural property of
the smooth Laplacian, but where possible we attempt to pro-
vide additional geometric and physical intuition.

SYMMETRY (SYM): ωi j = ω ji. Motivation: Real sym-
metric matrices exhibit real eigenvalues and orthogonal
eigenvectors.

LOCALITY (LOC): Weights are associated to mesh edges
(1-ring support), so that ωi j = 0 if i and j do not share an
edge in Γ. Changing the function value u j will not alter the
Laplacian’s action (Lu)i, if i and j do not share an edge. Mo-
tivation: Smooth Laplacians govern diffusion processes via
ut = −∆u. When discretized via random walks on graphs,
(ωi j) are transition probabilities along edges of Γ.

LINEAR PRECISION (LIN): (Lu)i = 0 at each interior ver-
tex whenever Γ is straight-line embedded into the plane and
u is a linear function on the plane, point-sampled at the ver-
tices of Γ. This is equivalent to requiring that

0 = (Lx)i = ∑
j

ωi j(xi−x j) (2)

for all interior vertex labels i, where x ∈ R2|V | denotes the
vector of positions of the |V | vertices of Γ in the plane†.
Motivation: In graphics applications, (2) is desirable for
(i) de-noising, where one expects to remove normal noise
only but not to introduce tangential vertex drift [DMSB99],
(ii) parameterization, where one expects planar regions to
remain invariant under parameterization [FH05], and (iii)
plate bending energies, which must vanish for flat config-
urations [WBH∗07].

POSITIVE WEIGHTS (POS): ωi j ≥ 0 whenever i 6= j. Ad-
ditionally we require that for each vertex i there exists at

† The equivalence follows from observing that (2) implies that L
vanishes on two linear functions, the x− and y−coordinates. Since
L vanishes on constants by definition, it follows that it vanishes on
all linear functions.

least one vertex j such that ωi j > 0. Motivation: (i) (POS)
is a sufficient condition for a discrete maximum principle
(recall (MAX) from the smooth case). (ii) Physically, in dif-
fusion problems corresponding to ut = −∆u, (POS) assures
that flow travels from regions of higher to regions of lower
potential, not vice-versa. (iii) (POS) establishes a connection
to barycentric coordinates by setting

λi j =
ωi j

∑ j 6=i ωi j
so that ∑

j 6=i
λi j = 1 .

Indeed, u is discrete harmonic ((Lu)i = 0 at all inte-
rior vertices) if and only if ui is a convex combination
of its neighbors (ui = ∑ j 6=i λi ju j). (iv) The combination
(LOC)+(LIN)+(POS) is related to Tutte’s embedding theo-
rem for planar graphs [Tut63, GGT06]: positive weights as-
sociated to edges yield a straight-line embedding of an ab-
stract planar graph. For fixed boundary vertices, this embed-
ding is unique, and it satisfies (LIN) by construction.

POSITIVE SEMI-DEFINITENESS (PSD): L is symmetric
positive semi-definite with respect to the standard inner
product and has a one-dimensional kernel. Motivation: The
non-negative discrete Dirichlet energy is given by ED(u) =
∑i, j ωi j(ui−u j)2. Note that (SYM) and (POS) imply (PSD),
but (PSD) does not imply (POS).

CONVERGENCE (CON): Ln → ∆, in the sense that solu-
tions to the discrete Dirichlet problem, involving Ln, con-
verge to the solution of the smooth Dirichlet problem, in-
volving ∆, under appropriate refinement conditions and in
appropriate norms [HPW07]. Motivation: (CON) is indis-
pensable when seeking to approximate solutions to PDEs.

Examples We briefly survey several Laplacians used
in computer graphics. Purely combinatorial Lapla-
cians [Zha04], such as the umbrella operator (ωi j = 1
iff vertex i and j share edge) and the Tutte Laplacian,
(ωi j = 1/di, where di denotes the valence of vertex i) fail
to be geometric, i.e., they violate (LIN). Floater’s mean
value weights and the Wachspress coordinates are widely
used for mesh parameterization [FH05], but violate (SYM)
and (CON). The ubiquitous cotan weights [PP93] and their
variants, commonly used for mesh de-noising, violate (POS)
on general meshes.

To resolve cotan’s violation of (POS), [BS05] uses the in-
trinsic Delaunay triangulation of the polyhedral surface, at
the cost of violating (LOC). One could alter the definition of
(LOC) so that it refers to the intrinsic Delaunay triangulation
instead of the input mesh, Γ (in general these two triangu-
lations have differing edges). Even so, an extended notion
of locality would be violated: there is no universal (input-
independent) integer k, such that the Delaunay edges inci-
dent to i can be computed from the knowledge only of a
k-neighborhood of i in Γ. We refer to §3.3 for further dis-
cussion, and summarize the situation:
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Figure 1: Left: Primal graph (solid lines) and orthogonal dual (dashed lines), with edge ei j and its dual highlighted. The dark shaded region
defines the dual cell, ?i. Middle: Mean value weights correspond to dual edges tangent to the unit circle around the center vertex. Right: The
projection of the Schönhardt polytope is not regular, so it does not allow for a discrete Laplacian satisfying (SYM)+(LOC)+(LIN)+(POS).

SYM LOC LIN POS PSD CON

MEAN VALUE ◦ • • • ◦ ◦
INTRINSIC DEL • ◦ • • • ?

COMBINATORIAL • • ◦ • • ◦
COTAN • • • ◦ • •

Observe that none of the Laplacians considered in graph-
ics fulfill all desired properties. Even more: none of them
satisfy the first four properties. This is not a coincidence:

3. No free lunch

Main result Not all meshes admit Laplacians satisfying
properties (SYM), (LOC), (LIN), and (POS) simultaneously.

We prove our main result by interpreting a theorem known
to Maxwell and Cremona [Max64, Cre90]. Our contribution
is to relate their classical result to the study of discrete Lapla-
cians (and barycentric coordinates) in graphics. While the
technical tools used here are not new, we use them in de-
veloping the central obstruction to the existence of ‘perfect’
discrete Laplacians.

As a first step of deriving this obstruction (§3.1),
we establish a correspondence between properties
(SYM)+(LOC)+(LIN) and orthogonal (reciprocal)
dual graphs, based on the Maxwell-Cremona theorem.
In a second step (§3.2), we show that orthogonal duals
which additionally satisfy (POS) correspond to regular
triangulations. Since not every mesh is regular, it follows
that general meshes do not admit Laplacians that satisfy
(SYM)+(LOC)+(LIN)+(POS).

3.1. Geometric Laplacians and orthogonal dual graphs

Maxwell-Cremona view One may view the weights, ωi j,
as stresses on a planar framework (with ωi j > 0 correspond-
ing to pulling stresses and ωi j < 0 for pushing stresses).
Then (2) is the Euler-Lagrange equation of the equilibrium
state of the framework when all boundary vertices are held
fixed. The Maxwell-Cremona theorem states that the frame-
work is in equilibrium if and only if there exists a orthogonal
(reciprocal) dual framework.

Orthogonal duals Consider a planar graph, Γ, embedded
into the plane with straight edges that do not cross. An
orthogonal dual is a realization of the dual graph, Γ

∗ =
(V∗,E∗,F∗) = (F,E,V ), in the plane, with straight edges
orthogonal to primal edges (viewed as vectors in the plane)‡,
see Figure 1-left.

To relate orthogonal duals to our properties, first consider
a Laplacian on Γ that satisfies (SYM)+(LOC)+(LIN). For
each primal edge ei j of Γ, viewed as a vector in the plane,
we can define a corresponding dual edge by

?ei j = R90(ωi jei j) ,

where R90 denotes rotation by 90 degrees in the plane. In
general, dual edges do not necessarily form closed cycles
when moving around an interior primal vertex, i.e., in gen-
eral, ∑ j ?ei j 6= 0. However, in our case, it is straightforward
to check that (2) provides exactly the requisite cycle con-
dition. Therefore, we obtain a realization of the dual graph
in the plane whose edges are orthogonal to primal edges
(viewed as vectors in the plane). Observe that the (straight)
edges of Γ

∗ are allowed to cross because we allow for nega-
tive (primal) weights.

Vice versa, consider a pair (Γ,Γ∗) of a primal graph and
a corresponding orthogonal dual, both embedded into the
plane with straight edges. We obtain weights per primal edge
via

ωi j :=
|? ei j|
|ei j|

. (3)

Here, |ei j| denotes the usual Euclidean length, and | ? ei j|
denotes the signed Euclidean length of the dual edge. The
sign is obtained as follows. The dual edge, ?ei j, connects
two dual vertices ? f1 and ? f2, corresponding to the primal
faces f1 and f2. The sign of | ? ei j| is positive if along the
direction of the ray from ? f1 through ? f2, the primal face f1

‡ Our definition of orthogonal duals is different from the one
of [Aur87] who considers what we call positive orthogonal duals
here.
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lies before f2. The sign is negative otherwise. With this sign
convention, one readily checks that (3) implies (2). We there-
fore obtain a Laplacian satisfying (SYM)+(LOC)+(LIN).

Examples Discrete Laplacians derived from orthogonal du-
als on arbitrary (including non-planar) triangular surfaces
were recently introduced in [Gli05], however, without not-
ing the equivalence to (SYM)+(LOC)+(LIN) in the planar
case. A prominent example of orthogonal duals are the cotan
weights [PP93], which (as noted in [DHLM05]) arise from
assigning dual vertices to circumcenters of primal triangles.

If we drop (SYM) from the previous discussion, we still
obtain an orthogonal dual face per primal vertex, although
these dual faces no longer fit into a consistent dual graph.
When the dual edges all have positive length, we obtain
an operator satisfying (LOC)+(LIN)+(POS) but not (SYM).
[FHK06] explored a subspace of this case: a one-parameter
family of linear precision barycentric coordinates, includ-
ing mean value and Wachspress coordinates (see Figure 1-
middle). [LBS06] showed that each member of this family
corresponds to a specific choice of orthogonal dual face per
primal vertex.

3.2. Positive Laplacians and regular triangulations

We now show the central obstruction: A triangulation
of the plane allows for discrete Laplacians which satisfy
(SYM)+(LOC)+(LIN)+(POS) if and only if the triangula-
tion is regular.

While there are various equivalent definitions of regu-
larity [Ede01], the above obstruction immediately follows
when combining the previous discussion with an observa-
tion of Aurenhammer [Aur87]: a straight-line triangulation
of the plane is regular if and only if it allows for a positive
orthogonal dual, i.e., a dual with positive weights, ωi j. Un-
fortunately, an arbitrary input mesh, Γ, is not guaranteed to
be regular, see Figure 1-right. This completes the proof of
our main result: there are no ’perfect’ discrete Laplacians
for general meshes.

3.3. Discussion

Extended notion of locality To encompass additional pos-
sibilities for discrete operators, one could consider extend-
ing (LOC) from 1-rings to k-rings for some fixed k > 1, i.e.,
where ωi j is allowed to be non-zero if i and j are no more
than k edges apart. Such an extension would accommodate,
e.g., methods using higher-order basis functions. The Lapla-
cians provided in [Xu04], based on Loop subdivision bases,
use k = 2, but they break (SYM) and (POS). We conjecture,
but do not prove, that extending (LOC) to k > 1 does not
remove the fundamental obstruction to a perfect Laplacian.

Regularity-restoring approaches Motivated by [BS05],
one could attempt to circumvent the central obstruction to
perfect Laplacians by considering an algorithm that first

modifies the input (Γ) mesh combinatorics to ensure regular-
ity. One might then modify the definition of (LOC) to refer to
the intrinsic triangulation rather than Γ. We discuss this pos-
sibility and conjecture that this route violates another notion
of locality of the Laplacian, which we call (LOC2): the exis-
tence of a universal (mesh-independent) integer k such that
the weights ωi j can be computed from the k-neighborhood
of i in the original triangulation Γ.

As in the planar picture, one can turn any (non-flat) tri-
angular mesh into a regular one without changing its in-
trinsic structure by intrinsic edge flips [Gli05, FSBS]. Af-
ter regularity has been restored via intrinsic edge flips,
one could redefine (LOC) with respect to the intrinsic tri-
angulation, rather than Γ, to obtain Laplacians satisfying
(SYM)+(LOC)+(LIN)+(POS). Unfortunately, for the spe-
cific case of an intrinsic Delaunay re-triangulation of Γ, we
observed in §2 that (LOC2) would still be violated.

We conjecture that any approach that intrinsically re-
stores regularity must violate (LOC2). Our belief stems from
the link between regularity and weighted Delaunay trian-
gulation [Ede01]: given a weighted Delaunay triangulation,
when a vertex (arbitrarily far away from a given vertex i)
is moved, the restoration of the weighted-Delaunay invari-
ants can require re-tessellation or re-assignment of weights
locally around i.

3.4. Taxonomy of the literature

In hindsight, our result explains the diversity of discrete
Laplacians considered in graphics, each application choos-
ing the subset of properties closest tailored to their needs:
dropping (LOC) yields intrinsic (weighted) Delaunay (or
meshless) Laplacians, dropping (SYM) gives rise to barycen-
tric coordinates, dropping (LIN) yields combinatorial Lapla-
cians, and dropping (POS) gives rise to cotan weights and
their generalization (3).

4. General construction for discrete Laplacians

In this final section, we offer a framework for construct-
ing discrete Laplacians using adjoint operators and L2 inner
products. We show that (SYM) and (LOC) arise from choos-
ing diagonal inner products, (LOC2) holds if inner products
depend only on local k-neighborhoods of Γ, (POS) corre-
sponds to inner products with positive entries, (PSD) arises
from positive semi-definite inner products, and (LIN) corre-
sponds to a geometric choice.

Construction It is known from the continuous setting that
the Laplacian on functions can be written as ∆ = δdu, where
d denotes the usual metric-free derivative taking 0-forms
(functions) to 1-forms, and δ is the adjoint operator, taking
1-forms to 0-forms. Using L2 inner products, δ is defined by
the identity (du,α)L2

1
= (u,δα)L2

0
, where u is a function and

α is a 1-form. Notice that d is defined independent of any
metric, whereas δ cannot be defined without a metric. For

© The Eurographics Association 2007.

36



Wardetzky, Mathur, Kälberer, and Grinspun / Discrete Laplace operators: No free lunch

the Laplacian we obtain

(∆u,v)L2
0
= (δdu,v)L2

0
= (du,dv)L2

1
. (4)

In the discrete case, we identify 0-forms with values at
vertices, and 1-forms with values at edges. The metric-
independent derivative, d, taking 0-forms to 1-forms is

(du)(ei j) = u j−ui .

It remains to define the adjoint operator, δ. As before, its def-
inition is metric-dependent. Denoting edge lengths by |e|, we
obtain L2 inner products for 0-forms and 1-forms by sum-
ming over all vertex pairs ( j, j′), respectively all edge pairs
(e,e′):

(u,v)L2
0
= ∑

j, j′
m j j′u jv j′ and (α,β)L2

1
= ∑

e,e′
lee′

α(e)
|e|

β(e′)
|e′| .

Notice that the square matrix (m j j′) is vertex-based, while
the square matrix (lee′) is edge-based. In the specific case
of diagonal matrices, we can treat (lee′) as vertex-based by
setting li j := lei jei j . From (4) we obtain

(Lu)i := (∆u,1i)L2
0
= mii(∆u)i = ∑

j

li j

|ei j|2
(
ui−u j

)
, (5)

where 1i is the discrete Dirac delta function, which has unit
value at vertex i and vanishes on all others. Observe that by
appropriate choice of inner products, li j, we recover all dis-
crete Laplacians (1) which satisfy (LOC) and (SYM).

Properties Observe that (LOC) and (SYM) are satisfied au-
tomatically in (5), (LOC2) holds if li j can be computed from
local mesh information, (POS) is equivalent to li j ≥ 0, and
(PSD) is equivalent to (du,du)L2

1
≥ 0 with equality only if

u is constant. Finally, (LIN) corresponds to geometric inner
products. To see this, recall from §3.1 that (LIN) corresponds
to orthogonal duals. The geometric view is obtained by set-
ting mii = | ? i| (area of the dual cell), and li j = | ? ei j||ei j|
(where | ? ei j| is signed length), exactly reproducing the
weights of (3).

As a concluding remark we note that our inner product
view generalizes the approach of [DHLM05], which con-
structs δ and ∆ from a discrete Hodge star, based on cir-
cumcentric duals. Indeed, while it is straightforward to gen-
eralize the Hodge star framework of [DHLM05] from cir-
cumcentric to arbitrary orthogonal duals, it is not obvious
whether this approach generalizes to Laplacians not arising
from a dual mesh. In contrast, our inner product view is en-
tirely primal-based, with the use of a dual mesh restricted to
a special (geometric) case.
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