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Abstract
We introduce a novel method for approximate alignment of point-based surfaces. Our approach is based on de-
tecting a set of salient feature points using a scale-space representation. For each feature point we compute a
signature vector that is approximately invariant under rigid transformations. We use the extracted signed feature
set in order to obtain approximate alignment of two surfaces. We apply our method for the automatic alignment of
multiple scans using both scan-to-scan and scan-to-model matching capabilities.

1. Introduction

Surface acquisition methods are becoming popular for many
practical applications in manufacturing, art, and design. Of-
ten, multiple acquired scans need to be brought into cor-
respondence in order to be combined or compared. The
ICP method [CM92, BM92] and its recent modifications
[RL01, GIRL03] are very useful for the final high-precision
alignment of two surface patches. In order for ICP to con-
verge, the initial relative position of two surfaces needs to be
sufficiently close to the truth.

Several methods have been proposed for approx-
imate alignment of partially overlapping surfaces
[JH97, YF02, WG02, FHK∗04, SLW02, HH03, CHC99]. A
popular approach is to compute local shape descriptors at a
number of points sampled from each scan, match up points
with similar signatures, and use these matches to choose the
best alignment transformation. For instance, the spin-images
method [JH97] uses a random set of basis points at which a
local rotation-invariant point distribution signature is com-
puted. As the complexity of scanned point clouds increases
it becomes important to have a principled way to sample a
representative set of feature points from the scanned shape.
Surfaces acquired with modern scanning techniques can
be very complex and can contain distinguishing features at
different scales. The main contribution of this paper is to
introduce a multi-scale salient feature extraction algorithm
and analyze its performance in the context of approximate
surface alignment of point-based surfaces.

Our approach is inspired by the SIFT method of Lowe

[Low04] which uses multi-scale image features in order to
perform image matching with excellent results. We follow
the pipeline similar to SIFT: first, a set of reliable salient
feature points is found by considering the set of extrema for
a scale-space representation of a point-based input surface.
This produces a set of features with position, normal, and
scale attributed to each of them. Using these attributes we
compute a signature for each salient feature. Using features
whose signatures match, a voting procedure is invoked to
perform the surface matching (that is, to find a spatial trans-
formation that brings a set of features of the first object into
correspondence with the set of features of the second object).

Figure 11 shows an example of features extracted by our
algorithm for two overlapping scans from the Arrigo dataset.
The color of the surface is related to the sign of difference
between levels at each point, and circles represent features
found in each scan. The yellow circles with letters show
some features that can be matched for this pair of scans.
Scale of each feature is shown by the radius of the circle.

Our method is able to deal both with coarser noisy scans
used in the recent work of Huber and Hebert [HH03] and
with finely detailed scans. The main emphasis of our work
is on creating good quality feature sets, and our pairwise
and multiview matching approaches are much simpler than
the ones considered in [HH03]. Our matching procedure can
potentially deal with changes in scale, however most eval-
uation was performed with a known scale rigid transform
alignment.

Our paper is organized as follows: the following section
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describes related work. We proceed to define our scale-space
feature extraction procedure in Section 3.1. Section 3.3 ex-
plores repeatability of extracted features under various data
transformations such as resampling of the surface and intro-
duction of noise. We define local surface signatures in Sec-
tion 4, and use them for surface matching algorithm of Sec-
tion 5. Our surface alignment results are presented in Sec-
tion 6.

2. Related work

The idea of using scale-space processing for extracting
salient features is well established in image processing
[Wit83] [Lin94] [Low04]. There has also been applications
of multi-scale analysis of surface curvature distribution for
3D face recognition [HGY∗99]. In computer graphics, mul-
tiresolution processing of point-based surfaces is an active
area of research: robust modeling, rendering, and process-
ing approaches for point and surfel clouds have been re-
cently developed [PKKG03][ABCO∗03][PZvBG00]. A re-
cent work of Pauly et al. [PKG03] extracts line features using
a scale-space representation similar to ours. The method of
[GWM01] extracts meaningful features from point clouds.
In our application, we are not concerned that our feature
points represent visually important portions of the model.
Rather, our interest is in detecting a stable set of feature
points that can be used for surface matching. Additionally,
the features extracted by our approach are of the radial na-
ture (we do not extract ridge-like structures).

The ability to extract a small but representative set of key-
points is important for efficient surface matching. To be use-
ful the extracted features should be stable (or repeatable) un-
der resampling and rigid transformations. Therefore, invari-
ant characteristics of the surface such as curvature are of-
ten used for feature detection. For instance, in Yamany and
Farag [YF02], only a set of high curvature points is consid-
ered for signature computation. Another approach used in
[WG02] is to consider a set of bitangent points. An alter-
native simple method often used in practice is to uniformly
distribute the basis points over the shape [JH97] [FHK∗04].

There has been a variety of surface descrip-
tors used for computing feature point signatures
[JH97, YF02, WG02, FHK∗04, SM92, SLW02]. Frome
et al. [FHK∗04] evaluate various techniques in the context
of recognizing noisy range scans. It is observed that
signatures based on point distribution such as spin-images
and 3D shape contexts are robust to outlier points and can
handle noisy scans. This paper is oriented towards automatic
reconstruction of good quality 3D scans that contain little
noise. For such scans, the spin-image signatures become
less expressive, and may not capture fine variations of the
surface detail especially for small scales. Curvature-based
signatures are better equipped to handle fine surface detail
and can use normal data. Our local signatures are based

on the normal field near the surface and are approximately
invariant to rigid transformations.

The goal of our work is very similar to the objective in the
spin-image based work of Huber and Hebert [HH03] on fully
automatic registration of 3D scans. We evaluate our match-
ing method on some of the data sets used in that paper. The
results are given in Section 6.

3. Multi-scale surface features

We build a scale-space representation of the input shape, and
use the locations of level difference extrema as the salient
feature points. This process is similar to finding extrema of
the scale-normalized Laplacian of Gaussian in the 2D im-
age case [Low04], and is easy to implement for point-based
surfaces. In this section, we start by defining the scale-space
for surfel clouds, then introduce our feature point extraction
procedure and explore its stability under noise introduction
and resampling.

3.1. Scale-space representation for surfel clouds

Our smoothing procedure is based on the point-set surface
projection, as described in [AK04]. Given a surfel cloudP =
{(pi,ni)}i∈I , we define the projection operator Pro j[P ,h]
that can map a 3D point x onto the smoothed version of the
shape defined by the surfel cloud P and the scale parameter
h > 0. The projection is found by iterative minimization of
the following MLS error:

E[P ,h](x) := ∑
i∈I

θ
h
i (x)〈n[P ,h](x),x−pi〉2,

where n[P ,h](x) is the smoothed normal defined based on the
input cloud normals:

n[P ,h](x) := ∑
i∈I

θ
h
i (x)ni

and the weights θ
h are normalized Gaussian weights

θ
h
i (x) :=

Aie−d2(x,pi)/h2

∑ j∈I A je−d2(x,p j)/h2 .

We introduce the area weight Ai for each point: in the case
where mesh connectivity information is available, we assign
Ai to be the area associated to the vertex (one third of the
area of adjacent faces). If no information on the vertex areas
is given, we assign Ai = 1 for all the points. Introduction of
the area weight is important for stable computation of the
scale-space for point clouds with non-uniform point distri-
butions (such as the ones produced by an error-based mesh
simplification such as [GH97]), this is shown by our experi-
ments in Section 3.3.

Given a particular scale h, we define the smoothed ver-
sion of the surfel cloud P by mapping each point xh

i :=
Pro j[P ,h](xi), and computing its normal as xh

i := n[P ,h](xi).
We consider a sequence of scales h j = h0F j for some F > 1.
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We use F = 21/4 in this paper. The smoothed version of P
at the scale h j is denoted as P j := {(ph j

i ,nh j
i )}i∈I .

For the efficient computation of Pro j[P,h], we perform spa-
tial queries on the surfel cloud data using the KD-tree library
of [AMN∗98]. We define b(q,R)⊂ I to be the set of indices
such that the corresponding points lie within distance R from
the point q. Formally, b(q,R) := {k ∈ I : d(pk,q) < R}.
This query is always run within the original point cloud. The
found index set can then be used to access the smoothed ver-
sions of the point cloud.

3.2. Features

We can now describe the salient feature detection procedure.
We define the normal difference between two adjacent levels
of our multi-scale representation: d j(i) := 〈n j

i ,p
j
i − p j−1

i 〉,
for j ≥ 1 and i ∈ I. We call a point i on level j to be a
neighborhood maximum of d, if

d j(i) > d j−1(i
′) for all i′ ∈ b(pi,Ch j−1),

d j(i) > d j(i
′) for all i′ ∈ b(pi,Ch j)\{i},

d j(i) > d j+1(i
′) for all i′ ∈ b(pi,Ch j+1).

We use C = 1/2 in this paper for smaller scans. The neigh-
borhood minimum of d is defined analogously.

In other words, we compare the value of the normal dif-
ference at a point to its neighbors within the level as well as
to its neighbors on the two neighboring levels of the scale-
space hierarchy. If the difference is larger (smaller) than for
all of its neighbors within thus constructed neighborhood
then the neighborhood maximum (minimum) is detected.
The size of the neighborhood grows as we proceed to the
coarser scales.

We use the set of neighborhood minima and maxima for a
given shape as its salient feature set.

The intuition behind using the extrema of differences
between consecutive levels of the scale-space is that the
smoothing with a filter of effective radius R will not have
much effect on features whose scale is larger than R but will
eliminate most of the features at the scales smaller than R. As
we consider differences between two versions of the surface
smoothed at two scales R1 and R2, the most change will hap-
pen in the regions that contain features of scales between R1
and R2. For more information, see [Lin94]. In Figure 12 we
show a simple example of a scale-space for a sphere with two
differently sized bumps. The surface at each level is colored
green or red depending on the sign of the normal difference
between the current and the previous level. The intensity of
the color corresponds to the absolute value of change. The
circles denote detected extrema of the scale-space. We see
that on coarser levels two detected features correspond to
the surface bumps. Each feature gets a scale associated with
it that is represented by the radius of the circle in Figure 12.

The scale-space construction starts with a scale that is a

multiple of the median distance between points and their
closest neighbors (this can be easily found for a given point
cloud). The largest scale is specified by the user and is typi-
cally comparable to the model size. When several models are
given (and no rescaling is required) we use a fixed smallest
scale for all of them.

There are two sets of features: one corresponding to the
minima and one corresponding to the maxima of the nor-
mal difference. These two sets are treated separately in our
matching application (we assume that the surface corre-
sponds to the boundary of a solid object, thus the outside
normal direction is always well defined).

In order to get a more robust feature matching we exclude
features within flat noisy regions from consideration. This
filtering procedure is based on the signature computation and
is described in Section 4.3. We also perform a simple bound-
ary detection procedure on the input point cloud and exclude
the boundary feature points from the consideration.

3.3. Repeatability of features

Given two finely sampled surfel clouds representing the
same surface, we can hope that their scale-space representa-
tions will be similar and will result in a similar set of feature
points on scales that are sufficiently large in comparison to
the sampling density. We have explored the validity of this
assumption by applying several types of “attacks” to input
point clouds, and comparing the resulting sets of feature po-
sitions.

In order to evaluate the repeatability of our salient fea-
ture point set extraction procedure we applied the following
transformations to a set of 3D models:

• Uniform resampling: we subdivide the input mesh models
and then randomly remove a set of points until a desired
number of points is reached (see Figure 2 for an example).

• Noise addition: we displace the input position in the nor-
mal direction by 0.5% of the bounding box. For the Venus
model we recompute all the vertex normals using the re-
sulting mesh (see Figure 2 for an example). For Bunny
and Buddha models, each component of the normal vec-
tors is modified by noise uniformly distributed between
-0.05 and 0.05.

• Mesh simplification with the quadrics algorithm [GH97].

In our experiments, we extract the set of features before
and after a particular modification and compare the results
as follows: for a feature f with position x and scale h in one
model we see if there exist a feature f ′ in the other feature
set that is on the same or a neighboring level in the scale-
space representation (that means that the scale h′ of f ′ is
between 2−1/4h and 21/4h), and whose position x′ is within
distance h/2 from x (we consider the set of minima and max-
ima features separately). If such a similar feature exists, we
say that the feature f found a correspondence. We then count
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Figure 1: Feature set repeatability for the uniform resampling (top) and noise addition (bottom) transformation applied to
Venus, Buddha, and Bunny models. See text for more details.

the number of features in both models that have correspon-
dence and compare it to the overall number of features in
both models. We would like to have 100% of all the features
find their correspondences after the transformation.

Figure 1 shows the results of comparing feature sets of
original and uniformly resampled models for the venus head,
happy buddha, and Stanford bunny datasets. We see that on
coarser levels there is a good correspondence between the
original and resampled feature sets. Note that the original
venus and buddha models we used are already the result of
quadrics simplification procedure, hence the distribution of
samples in them is rather non-uniform. In this experiment,
we did not use any vertex area information so that all area
weights were set to 1 (see below for the area-corrected com-
parisons). The number of vertices in the original and resam-
pled models were roughly the same.

Figure 1 shows the comparison between the original and
noisy models for the same three datasets. We see that again
the percentage of corresponding features rises from about
50% for fine scales to almost 100% for the coarser scales.

Since many scans come with some mesh connectivity in-
formation, it is possible to use that mesh information to com-
pute area weights for every vertex. The error-based simpli-
fication typically results in very non-uniform surface sam-
pling which negatively affects the repeatability of extracted
feature sets. Using area weights however improves the situ-
ation significantly, as shown in Figure 3 where the original
Venus mesh with 50K vertices and quadrics-simplified mesh
with 30K vertices are compared first without and then with

Figure 2: Original, resampled, and noisy datasets for the
evaluation of feature point detection stability.

area weights. The plot on the right shows the percentage of
corresponding features. We see that with area correction the
percentage of corresponding features improves and gets to
almost 100% for coarse scales. See also the sets of extracted
features in Figure 13 where the corresponding features are
shown as yellow circles and non-corresponding features are
shown in magenta (note that one has to look not only on the
same but also on neighboring scale for finding correspon-
dences).

In our experience, the coarse features hold most signifi-
cant semantic shape information (see for example the nose
and eyes features in Figure 11). However, for matching ap-
plications, these are not the most useful features since there
are not so many of them. Rather, intermediate scale features
(of which there are hundreds) play more significant role.
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We have also evaluated the area-corrected smoothing in
the case when only one model has the connectivity informa-
tion while the other uses unit area weights. This works well
when the distribution of the non-weighted model samples is
uniform. Figure 4 shows the comparison of area corrected
and non-area corrected feature extraction for the resampled
happy buddha model.

For the surface scans used in our matching experiments,
the distribution of samples is rather uniform, hence we did
not use any area correction. For an example of extracted fea-
tures in that case see Figure 11.

4. Local surface signatures

Feature points from the preceding section have several at-
tributes (the position, the normal, and the scale) that can be
used to perform matching between partial scan of the same
shape. However, these attributes are not invariant under rigid
transformation or scaling. Such transformation can usually
relate the coordinate systems for a pair of scans. In order to
enable efficient matching between shapes given in different
coordinate systems, we endow each feature with a signature
that is invariant to such spatial transformation. Given a surfel
cloud P and a nearby point x∈R3 together with a normal di-
rection a and a scale h > 0, we define a local signature vector
σP(x,a,h) as is described below.

Figure 5: Projected normal patterns for eight “basis” sig-
natures (the black box shows which entry of a 6×4 signature
matrix is equal to one, white boxes are zeros).

4.1. Definition of signatures

Given a normal direction a we define an orthogonal local
frame (u,v,a). The choice of u and v is not unique as they
can rotate around the axis defined by a (we address this am-
biguity below by performing Fourier transform to obtain a
signature approximately invariant to the choice of u and v).

Our signature computation starts by defining a N×M ar-
ray of 3D points (ξkl) that sample a disc around point x:

ξkl := x+
2lh
M

(
cos(

2πk
N

)u+ sin(
2πk
N

)v
)

;

where k = 1..N and l = 1..M. Next, we define the corre-
sponding array of normals as νkl = n[P,h](ξkl).

We determine a N×M array of real num-
bers by projecting the normals onto the di-
rection connecting the signature center and
the current sample location as follows (see
the figure on the left for an example of sig-
nature samples with colors corresponding to
the value of skl):

skl =
〈ξkl −x,νkl〉
‖ ξkl −x ‖ (1)

We then apply a Discrete Cosine Transform to skl in the
radial l-direction, followed by Discrete Fourier Transform
in the k direction. We record the resulting magnitudes into
the array (s̃kl),k = 1..N, l = 1..M. The upper left corner of
this array contains the filtered values that are approximately
invariant to the choice of tangent vectors u and v if the num-
ber of samples N around the disk is sufficiently large. We
use N = 32 and M = 8.

We can now define signature vector by extracting the
upper-left corner of the array s̃ so that

σP(x,a,h) := (s̃kl)k=1...N′,l=1...M′ .

In most of our applications we use 24-dimensional signature
vector by choosing N′ = 6 and M′ = 4. Our signature con-
tains positive numbers and is invariant to rigid transforma-
tions. For the scaling transform, the invariance requires mul-
tiplying the point coordinates and the scale of the signature
by the same number. Since the absolute value of the Fourier
coefficients is taken, the signatures will also be invariant un-
der reflection transformation (for instance, the signatures of
features located on the left and the right ears would be simi-
lar).

Figure 5 visualizes eight “basis” normal vector projection
patterns for the 2×4 top-left corner of the signature matrix.
We can interpret the four columns of Figure 5 as follows:

• The first column corresponds to a local spherical point,
either convex or concave.

• The second column represents a non-symmetric compo-
nent of the signature – the numbers in this column will be
often close to zero.

• The third column shows a saddle-like behavior, near a hy-
perbolic point. It can also be used in a combination with
non-trivial first column in order to get an elliptic (non-
spherical) point.

• The fourth column would have non-zero entries near a
corner of a cube where three creases come together in a
symmetric fashion.

We can see that the first and the third columns have some
qualitative relation to the curvature at a point (although it is
hard to quantify that relation).

Also, note that while the input normals may be noisy,
for the signature computation we sample a smoothed nor-
mal field. Additional denoising happens when we exclude
the high frequency components of the Fourier transform.
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Figure 3: Feature set repeatability for the quadric simplification applied to the Venus model. The performance for the area
corrected version is evaluated.
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Figure 4: Feature set repeatability for the resampled Buddha model. The performance for the area corrected version is evalu-
ated. Only one of the models have the area information.

The local signatures introduced in this section can be
found for any position, normal, and scale values. In our ap-
plication, we shall only use signatures computed at the fea-
ture points. For a feature f = (x( f ),n( f ),h( f )) we denote
its signature as σ( f ) := σP(x( f ),n( f ),h( f )).

4.2. Signature stability

In our signature computation we use the normals evaluated
on the tangent disk to the surface, hence the actual locations
where the normal field is sampled are not on the surface.
We have experimented with computing normals at projected
surface locations but found that the surface projection op-
eration can be very discontinuous in that small noise in ei-
ther the tangent plane orientation or the underlying model
sampling can introduce huge changes in the computed sig-
nature. Figure 6 illustrates this by comparing the errors of
signatures extracted from the original Buddha model with
the signatures computed at the same locations with the same
normal and scale but on a resampled version of the model.
We see that the projection operation introduces a lot of out-
liers. Therefore, in our matching application we chose to use
signatures computed as described above in Section 4.1.

There should be more experiments comparing our signa-
ture vectors with other possible signature definitions used in
the literature. We leave this as future work.

4.3. Signature-filtered feature points

The feature-finding procedure of Section 3.2 does not per-
form any filtering on the found extrema of the scale-space
difference function. Thus, in an almost flat region with very
small amount of noisy displacement, there will appear a lot
of unreliable features. We notice that these “flat” feature
points will typically produce local signature vector of a small
magnitude. Therefore, we eliminate all the features with sig-
nature vector magnitudes below a user-specified threshold.
For all the datasets of this paper we remove all the features
whose signature vector has length less than 0.2 (note that the
signatures are based on a fixed number of unit normals thus
no additional normalization is required for this threshold).

5. Surface matching

We use our multi-scale surface features together with their
signatures as defined in the previous section to perform ap-
proximate matching of surfel clouds. While our method can
potentially handle change of scale, most of the scanned data
we obtained did not require estimating the scale. Thus, in
this section we will describe matching procedures for scans
and models that are related by rigid transformations.

Using the terminology from Huber and Hebert’s paper
[HH03], we start by describing pairwise matching proce-
dure, and then use its results for multiview matching. Be-
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Figure 6: Error of signatures computed at the same loca-
tions on resampled Buddha model. On the left, the signature
normals are computed at the projected surface locations, on
the right the signatures are computed off the surface (as de-
fined in Section 4.1). Each feature point is plotted with its
scale on the horizontal axis and its error on the vertical axis.
The three color curves show the 25%, 50%, and 75% error
percentiles for each scale.

fore performing the matching we initialize the set of features
with signatures for each input point-based surface as was de-
scribed in the preceding sections.

5.1. Pairwise surface matching

The input to our pairwise matching algorithm is a pair of sur-
faces given in different coordinate systems related by an un-
known rigid transformation. These could be either two scans
of roughly the same size, or a scan and a (partially) recon-
structed surface model which can be much bigger. The result
of matching is the best candidate for the rigid trasformation
(R, t) and the estimated percentage of overlap between two
surfaces.

We designate one of the surfaces as the model M and the
other one as the scan S. We compute the feature sets as ΩM
and ΩS for both surfaces, and compute the signatures at ev-
ery feature point (also using its normal and scale). Then, for
each feature s∈ΩS of the scan we find the set ωM(s) of K(s)
features whose signature vectors are the closest to σ(s). The
signatures of the model surface σ(ΩM) are placed in a KD-
tree data structure to facilitate fast spatial querying.

The number of model feature points K(s) that are in-
cluded in the set ωM(s) is determined as follows: we first
find a fixed constant number K′ of neighboring signatures
from σ(ΩM). Denote the feature points corresponding to the
found signatures as m1, . . . ,mK′ . We compute the distances
from each found signature to σ(s): ∆k = ‖ σ(mk)−σ(s) ‖,
and order the features in the order of increasing ∆k. Thus,
∆1 ≤ ∆2 ≤ . . .≤ ∆K′ and we find the smallest value of k > 0
such that ∆k+1 > 1.2∆1, and discard all the features that fol-
low this index k. Thus, at least one match is found for ev-
ery feature (we use K′ = 10 so at most ten matches can be
found).

The matching problem consists of finding a rotation ma-
trix R and a translation vector t such that after the transfor-

mation the two surfaces overlap within some common re-
gion. In order to find the transformation, we consider pairs
of scan features, and for each pair (s,s′) we consider all
the corresponding pairs of model features (m,m′) such that
m∈ωM(s) and m′ ∈ωM(s′), and for each match µ : (s,s′) 7→
(m,m′) we estimate the rigid transformation that maps the
positions and normals of the scan feature pair onto the cor-
responding positions and normals of the model feature pair.
Thus, a rigid transform (Rµ, tµ) is found using the normal
direction and position correspondences at the matched pair
of points by a method similar to unit quaternion method
of [HHN88]. Now, we need to quantify whether this found
transform gives a good overlap between the scan and the
model. Since this needs to happen for a large number of
matches µ, we cannot use an exact error evaluation. There-
fore, we shall use an approximate voting procedure that takes
into account the correspondences established by signature
matching.

The vote is computed for a rigid transform (R, t) by
summing the individual contributions V (s) of all the scan
features s ∈ ΩS. The contribution V (s) is computed as
the sum of unit votes for each m ∈ ωM(s) which satisfies
‖ Rx(s)+ t− x(m) ‖< d1. Here, d1 is the threshold that is set
to a multiple of the median distance between closest neigh-
bor points in the input data. Thus, only the features that are
brought close together by the transformation contribute to
the vote, and their contribution is proportional to the quality
of their match.

The search for the best rigid transform proceeds until all
the feature pairs are considered. The rigid transform with the
largest vote is returned as the found solution to the approxi-
mate matching problem.

Given the best transform candidate for two surfaces, we
compute an approximate overlap percentage OV (S,M) by
counting the percentage of points in S that are within a
threshold distance d2 from the model surface M. We choose
d2 to be the smallest scale of the scale-space (two times the
median distance between points in the input point cloud).
We only consider point matches that have consistent normals
(with angle difference less than ten degrees). This simple es-
timate works well for uniformly sampled surfel clouds. We
do not run ICP before computing the overlap estimate.

5.2. Multiview matching

In this section we describe a procedure that automatically
performs multiview alignment of a set of scans for an object.
Given a set of K scans, we run K(K− 1) pairwise approx-
imate matching as described in the preceding section and
order the resulting pairs of scans by their estimated overlap
percentage. Each pair has an estimated (R, t) whose quality
will deteriorate as we proceed down this ordered list to the
pairs with low overlap.

After the pairs are ordered, we start merging them pro-
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ceeding from the top of the list and performing ICP align-
ment for pairs of scans starting from the estimated approxi-
mate (R, t) (we use ICP implementation of [RL01]). We keep
track of who merged with whom and maintain a disjoint set
collection of scan indices (see Figure 10 for the illustration).
We skip all the pairs that already belong to the same merged
component. Each merged component has scans aligned and
specified in the same coordinate system. Effectively, we per-
form a greedy construction of a spanning tree for the set of
scans. This is a very simple procedure and we do not perform
cross-validation or discrete search as described in [HH03].
The fact that this simple merging algorithm works well at-
tests to the quality of our pairwise matching.

Figure 7: Result of automatic alignment of scans of the mod-
els Angel1, Angel2, and Angel3.

6. Results

We evaluated our approximate matching procedure on
several sets of laser scans. These included scan sets
for three angel models from the work of Huber and
Hebert [HH03], the scans of bunny and buddha model
from Stanford repository, and the Arrigo data set which
includes 177 fine scans of a basrelief. The follow-
ing table enumerates data sets with the number of
scans, average number of points per scan, and match-
ing times. The following discussion will give more detail.

Dataset Num.of Points Init Matching
scans per scan time time

Angel1 17 5K 3m28s 50s
Angel2 20 5K 4m24s 63s
Angel3 18 5K 3m41s 74s
Bunny 10 20K 10m 94s
Buddha 15 35-70K 31m 7m35s

Arrigo(I) 30 50-70K 90m 32m
Arrigo(II) 147 30-70K see text

6.1. Angels, bunny, and buddha datasets

We reconstruct the three angel models, the bunny model, and
the buddha model using the multiview matching procedure
described above without any user input. The timing results
are given in the table above and the reconstruction results

can be seen in Figures 7 and 8. Initialization time includes
computing the scale-space, extracting features, and comput-
ing signatures. The matching time includes all other opera-
tions for the multiview matching including ICP alignment.
We believe that our method is competitive with the method
of [HH03].

6.2. Arrigo reconstruction

The above multiview matching procedure requires quadratic
time with respect to the number of scans. For the datasets
that cover the same area multiple times it makes more sense
to perform two-stage processing. The first stage merges a set
of scans that cover most of the surface into a single com-
bined point cloud model using the multiview matching from
Section 5.2, and the set of features and signatures can be
computed for this combined model. In the second stage, all
the remaining non-merged scans can be matched to this com-
bined model one-by-one. Since the combined model covers
most of the surface, it will have non-trivial overlap with each
scan and the pairwise matching should work.

Figure 8: Result of automatic multiview matching and align-
ment of scans of the bunny and buddha models.

The data set of Arrigo basrelief consists of 177 scans sepa-
rated into four parts each corresponding to a single pass over
the whole surface. We took the smallest pass containing 30
scans and run the first stage of our multiview matching that
created a combined model consisting of 700K points shown
in Figure 10.

In the second stage of Arrigo reconstruction we performed
pairwise matching of each of the remaining 147 scans to the
combined model. As the result, 144 scans were matched suc-
cessfully and 3 scans could not be matched automatically.
Note that this second stage matches a small scan to a big
model: this would be impossible to do with a random search
initialization. See the final reconstruction result in Figure 10.

The three non-matched scans were easy to detect by
looking at the maximal error between the initialized point
cloud and its points after ICP transformation. All three
bad matches had error above 50mm, whereas all the good
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Figure 9: Histogram of maximal difference between the ini-
tialized pointcloud and the exactly aligned version after ICP.
The histogram is given for 144 scans matched in the second
stage to the combined data from the first stage. Horizontal
axis is in millimeters (the statue height is 600mm).

matches had their error below 25mm as shown in histogram
of Figure 9.

The processing for the Arrigo scans were split into two
stages: the preprocessing stage and the actual matching
stage. In a preprocessing stage each scan was first simpli-
fied to approximatedly 50K points, and all of the process-
ing happened with these simplified surfel clouds. For each
scan, a scale-space representation was built by smoothing
the model for 10 levels. This was the most time consum-
ing of the preprocessing steps and took about two minutes
(all the times will be given for a 50K point scan running
on a 2.8GHz Pentium 4 PC). In the remaining two steps,
the extrema of the inter-scale difference function was found
(5 seconds), and the signatures were computed for each ex-
tracted feature point. The number of features varied greatly
depending on the complexity of any given scan. For a 50K
point model, the number of found features were on the or-
der of 1% (or 500). We used the parameter value C = 1/

√
2

for the feature set extraction of Section 3.2 (this reduces the
number of features and makes the matching perform faster).
The signature computation time for these feature points was
about 30 seconds. The multiview matching of the first stage
was performed in about 32 minutes. The resulting combined
pointcloud was simplified to 700K points and the features
and signatures were computed for it in about 35 minutes. The
second stage processing for matching each of the 147 scans
to the combined model took about 16 seconds per scan (4
seconds for approximate matching and 12 seconds for ICP
final alignment). The current bottleneck of our processing
is the smoothing stage, this time should be significantly im-
proved by using fast multipole-like methods.

7. Conclusions

We have introduced an approach for approximate alignment
of point-based surfaces. Our method is based on detection of
salient features that persist under resampling, and on signa-
tures that are approximately invariant under spatial transfor-

mations. Future work should include other applications of
the proposed multi-scale signed features such as recognition
and search of a small surface patch in a database of multiple
surface models.
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level 7 level 8 level 9

Figure 11: Seven features shown with lettered yellow circles
are shared within levels 7,8,and 9 of scale-space representa-
tion for two overlapping Arrigo scans.

Figure 12: Simple example: while many features are de-
tected on the fine levels, on the coarser scales we detect ex-
actly two features with the scales corresponding to the sizes
of two bumps. Point colors correspond to the value of d j .

Figure 13: Comparison of scale-space features from two differently sampled surfel clouds representing the Venus head (top:
original, bottom: quadrics-simplified to 30K vertices). One needs to also look at the neighboring levels to find common features
(shown by yellow circles). These two models use the area correction. See also the central plot of Figure 3.
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