Global Registration of Multiple 3D Point Sets via Optimization-on-a-Manifold

Shankar Krishnan ${ }^{1}$, Pei Yean Lee ${ }^{23 \dagger}$, John B. Moore ${ }^{23 \dagger}{ }^{\dagger}$, Suresh Venkatasubramanian ${ }^{1}$
${ }^{1}$ AT\&T Labs - Research, Florham Park, New Jersey, U.S.A
${ }^{2}$ National ICT Australia Ltd., Australia
${ }^{3}$ Australian National University, Australia

Abstract

We propose a novel algorithm to register multiple $3 D$ point sets within a common reference frame using a manifold optimization approach. The point sets are obtained with multiple laser scanners or a mobile scanner. Unlike most prior algorithms, our approach performs an explicit optimization on the manifold of rotations, allowing us to formulate the registration problem as an unconstrained minimization on a constrained manifold. This approach exploits the Lie group structure of SO_{3} and the simple representation of its associated Lie algebra $\mathfrak{s o}_{3}$ in terms of \mathbb{R}^{3}. Our contributions are threefold. We present a new analytic method based on singular value decompositions that yields a closed-form solution for simultaneous multiview registration in the noise-free scenario. Secondly, we use this method to derive a good initial estimate of a solution in the noise-free case. This initialization step may be of use in any general iterative scheme. Finally, we present an iterative scheme based on Newton's method on SO_{3} that has locally quadratic convergence. We demonstrate the efficacy of our scheme on scan data taken both from the Digital Michelangelo project and from scans extracted from models, and compare it to some of the other well known schemes for multiview registration. In all cases, our algorithm converges much faster than the other approaches, (in some cases orders of magnitude faster), and generates consistently higher quality registrations.

1. Introduction

Constructing a 3D computer model of a real object from 3D surface measurement data has various applications in computer graphics, virtual reality, computer vision and reverse engineering. To construct such a model, a single view of the object is often insufficient due to self occlusion, the presence of shadows and limitations of the field of view of the 3D scanner. Multiple partial views of the object from different viewpoints are therefore needed to describe the entire

[^0]object. Typically the views are obtained from multiple scanners or from a single scanner stationed at different locations and orientation, or even a fixed scanner taking time-sampled images of an object on a moving turntable. The images are often simplified as a set of features such as points and the relative position and orientation (pose) between views are only known imprecisely (if at all). Thus, these partially overlapping views need to be registered within a common reference frame to determine the unknown relative pose.

Two-view (pairwise) registration is a well studied problem in the literature. It is known that a closed-form solution can be obtained in this case; this was shown by Faugeras and Herbert [FH86], Horn [Hor87], and Arun et al. [AHB87]. An overview of these techniques can be found in [Kan94] and a comparison of these methods has been presented in [LEF95].

Multiview registration is a more difficult problem. There are two strategies towards solving the problem, local (se-
quential) registration and global (simultaneous) registration. The sequential registration approach (of which ICP [BM92] is the most well-known) involves the alignment of two overlapping views at a time followed by an integration step to ensure all views are combined. This widely used approach does not give an optimal solution because errors can accumulate and propagate, as other researchers have pointed out. On the other hand, global registration attempts to aligns all scans at the same time by distributing the registration error evenly over all overlapping views.

The particular problem of multiview registration is that the function to be minimized is a nonconvex function of a set of rotations (translations can usually be eliminated, as we shall see). Any algorithm that minimizes this function must also maintain the constraint that the rotations remain so during the course of an iterative procedure (other approaches have been proposed; Pottmannet al. [PHYH04] suggest using the underlying affine space, applying the rigidity constraints only towards the end). Thus, standard optimization approaches either use Lagrange constraints or have to perform projection steps after each iteration to ensure that this (nonlinear) constraint is maintained.

A different approach that has been considered is to perform the minimization directly on the constraint manifold. \mathbb{R}^{n} is a manifold, albeit of very special type, and by translating the usual notions of derivatives and tangents in their differential-geometric generalizations, it is conceivable that standard numerical methods like Newton/Gauss iterations and conjugate gradients can be translated into their manifold-based analogues. This area has received considerable attention over the past few decades. Much work has gone into both theoretical and practical approaches to manifold-based optimization, and although a detailed review of the literature is beyond the scope of this paper, a good review can be found in the work by Edelman, Arias and Smith [EAS99] on implementing Newton's method and conjugate gradients on the Grassman and Stiefel manifolds.

In graphics, vision, and robotics, the "natural" constraint manifolds arise from transformations groups like $\mathrm{SO}_{3}, \mathrm{SE}_{3}$ and the like. The group structure allows us to view these manifolds as Lie groups, with associated Lie algebras. For SO_{3} in particular, many of the relevant formulae (the exponential map, the logarithmic map, geodesic curves) are easy to write down, making this approach very tractable both mathematically and computationally. There are now several examples of the use of Lie group methods in areas like pose estimation [LM04, Gov04], path planning [Agr05], and animation [Ale02].

1.1. Our Work

In this paper, we consider the simultaneous registration of multiview 3D point sets with known correspondences between overlapping scans.

We address the global registration task as an unconstrained optimization problem on a constraint manifold. Our novel algorithm involves iterative cost function reduction on the smooth manifold formed by the N-fold product of special orthogonal groups. The optimization is based on locally quadratically convergent Newton-type iterations on this constraint manifold. The proposed algorithm is fast, converges at a local quadratic rate, computation per iteration is low since the iteration cost is independent of the number of data points in each view.

In addition, we present a new closed form solution based on singular value decomposition for simultaneous registration of multiple point sets. In the noise free case, it gives correct registrations in a single step. In the presence of noise an additional projection step to the constraint manifold is required. This analytical solution is a useful initial estimate for any iterative algorithm.

Paper Outline We start with a review of prior art in the area in Section 2. After a high level overview of our method in Section 3, we formulate the global point registration problem as an unconstrained optimization on a constraint manifold in Sections 5. We present a compact reformulation of the problem in 6 , following which we describe our analytic noise-free solution and our noisy initialization steps in Section 7. A brief introduction to Lie groups and related mathematical basics is described in Section 8. This is followed by a presentation of our iterative scheme in Sections 9 and 10. Experimental evaluation follows in Section 11.

2. Related Work

The first work on pairwise scan alignment was done by Faugeras and Herbert [FH86], Horn [Hor87], and Arunet al. [AHB87]. In all cases, the authors obtained simple closed form expression for the single transformation minimizing the least squares error between the registered scans. Such pairwise schemes were used as modules in general multiview approaches like Iterative Closest Point (ICP) [BM92] and the work of Chen and Medioni [CM92]. Simultaneous multiview registration schemes were considered by numerous researchers [CM92], [BSGL96], [EFF98], [Pul99], [SLW04], [SBB03]; among the more recent are papers by Benjemaa and Schmitt [BS98] and Williams and Bennamoun [WB01], the former group formulating the optimization in quaternion space, and the latter deriving a similar approach using matrix representations. A comparative study of simultaneous multiview registration schemes was performed by Cunnington and Stoddart [CS99]; however this comparison predates the work of Williams and Bennamoun.

The ICP algorithm has become the most common method for aligning three-dimensional models based purely on the geometry. The algorithm is widely used for registering the outputs of 3D scanners, which typically only scan an object from one direction at a time. ICP starts with two meshes and
an initial guess for their relative rigid-body transform, and iteratively refines the transform by repeatedly generating pairs of corresponding points on the meshes and minimizing an error metric. Generating the initial alignment can be done by a variety of heuristics, such as tracking scanner position, identification and indexing of surface features [FH86, SM92], "spin-image" surface signatures [JH97], computing principal axes of scans [DWJ97], exhaustive search for corresponding points [CHC98, CHC99], or via user input.

Registration of corresponding points is not the only approach to solving multiview registration in general. ICP itself uses other heuristics to align surfaces, and in many cases matching a point to a surface can provide a better fit than simple point-point matching [RL01]. Due to space limitations, we will not discuss these approaches further.

The most directly relevant prior art is a paper by Adler et al. [$\mathrm{ADM}^{*} 02$] that considers the problem of spine realignment. There, the problem is to determine correct poses for individual vertebrae on the spinal cord such that misalignment between adjacent vertebrae is minimized and a balance criterion (expressed as an affine condition over the poses) is maintained. They demonstrate that a good solution to this problem closely resembles a healthy spinal alignment. Their approach, like ours, is to view the problem as a minimization over a product manifold of SO_{3}, and use a Newton-type method to solve it. The specifics of their approach are different in that they derive an iterative scheme from first principles by using the covariant derivative ∇_{X} on the manifold; our approach uses the Lie-algebraic representation of the tangent space to yield an more direct approach.

It may be viewed that our requirement for apriori knowledge of point correspondences from overlapping scans is a major limitation, since this is usually not the case in practice. However, our algorithm is meant to work in conjunction with methods like ICP which provide a general framework for model registration. The crucial inner step of the ICP algorithm is to refine the transform such that it minimizes a error metric. It is this step that we consider in this paper.

3. Overview and Intuition

To help explain our algorithms, we present a brief overview of how to perform Newton-type methods on manifolds. This is intended to capture the intuition behind our methods and is not intended to be mathematically rigorous. A reader familiar with Lie groups and basic differential geometry may go directly to the algorithm description.

A traditional unconstrained or constrained optimization methods performs searches in \mathbb{R}^{N}. Directions of motion are computed using Newton's method (or other approaches) and a small step is made in this direction. The standard iterative step is of the form $x_{k+1}=x_{k}+a \omega_{k}$, where x_{k} is the $k^{\text {th }}$ iterate, a is a scalar, and ω_{k} is a descent direction. The descent directions lie in the tangent space of \mathbb{R}^{N}, which is \mathbb{R}^{N} itself, a crucial fact that allows us to combine the terms x_{k} and ω_{k}.

When we move to a general manifold, almost every aspect of the above iteration needs to be reinterpreted. Firstly, the descent direction ω_{k} lies in the tangent space at x_{k}, which is in general different to the tangent space at any other point, and is different in general from the manifold itself. Thus, some mapping is needed to pull back the tangent to the manifold. Secondly, the operator + is specific to \mathbb{R}^{N} as a group operator that takes two elements of a group and maps to a third element.

For a Lie group, the tangent space at a point can be expressed in terms of the associated Lie algebra. For SO_{3}, the associated Lie algebra $\mathfrak{s o}_{3}$ is the space of three dimensional skew-symmetric matrices. Thus the descent direction can be represented by a skew-symmetric matrix. The pull back operator is called the exponential map. For matrices, it is in fact the function e^{A} (see Section 4 for the definition). The operator + is replaced by the group operator o of the Lie group (which for SO_{3} is matrix multiplication). What we then obtain is an iteration of the form $R_{k+1}=R_{k} \circ e^{a A}$, where once again, a is a scalar. We will additionally exploit the isomorphism of $\mathfrak{s o}_{3}$ with \mathbb{R}^{3}, allowing us to parametrize the matrix A by coordinates in \mathbb{R}^{3}.

4. Preliminaries

We introduce some common matrix operators that we will use in subsequent sections. If M is an $n \times k$ matrix, then $\operatorname{vec}(M)$ is a $n k \times 1$ vector formed by writing down the columns of M one at a time. The Kronecker product or tensor product $A \otimes B$ of two matrices A and B is the matrix formed by replacing each element $a_{i j}$ of A by the matrix $a_{i j} B$. This is different from the direct sum \oplus of matrices, which is equal to a block diagonal matrix with the individual matrices as the diagonal blocks. Let $\operatorname{tr}(A)=\sum_{i} a_{i i}$ denote the trace of a square matrix A. The following identities are well-known: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ if A and B are both square, $(X \otimes Y)^{\top}=X^{\top} \otimes Y^{\top},(X \otimes Y)^{-1}=X^{-1} \otimes Y^{-1}$ when the inverses exist, $(X \otimes Y)(A \otimes B)=(X A \otimes Y B)$, and $\operatorname{vec}(X Y Z)=\left(Z^{\top} \otimes X\right) \operatorname{vec}(Y)$. A useful fact is that $\operatorname{tr}\left(X^{\top} Y\right)=\operatorname{tr}\left(X Y^{\top}\right)=\operatorname{vec}^{\top}(x) \operatorname{vec}(Y)$, which implies that for vectors u, v, the dot product $u \cdot v=u^{\top} v$ can be written as $u \cdot v=\operatorname{tr}\left(u v^{\top}\right)$. The exponential e^{A} of a matrix A is defined as $e^{A}=\sum_{i} \frac{A^{i}}{i!}$.

5. The Problem Formulation

Given possibly noisy surface measurements from multiple 3D images and point correspondences among overlapped images, the registration process is to find the rigid body transformations between each image coordinate frame in order to align sets of surface measurements into a reference frame.

5.1. 3D Object Points and Multiple Views

Consider a 3D object as a set of 3D points $W:=\left\{w^{k} \in\right.$ $\left.\mathbb{R}^{3} \mid k=1,2, \cdots, n\right\}$ in a 'world' reference frame (Fig. 1(a)).

Throughout the paper we indicate the $k^{\text {th }}$ point in a set by a superscript k.

Now consider multiple views of the object, each view being from a different vantage point and viewing direction and each viewing being of possibly only a subset of the $n 3 \mathrm{D}$ points. For N views, let us denote the relative rotations and translations as $\left(R_{1}, t_{1}\right), \cdots,\left(R_{N}, t_{N}\right)$, that is, relative to the 'world' reference frame, where R_{i} is a 3×3 rotation matrix, satisfying $R_{i}^{\top} R_{i}=I_{3}, \operatorname{det}\left(R_{i}\right)=+1$, and $t_{i} \in \mathbb{R}^{3}$ is a translation vector.

The $i^{\text {th }}$ view is limited to n_{i} points $W_{i}=\left\{w_{i}^{k} \in \mathbb{R}^{3} \mid k=\right.$ $\left.1,2, \cdots, n_{i}\right\} \subset W$ and is denoted $V_{i}=\left\{v_{i}^{k} \in \mathbb{R}^{3} \mid k=\right.$ $\left.1,2, \cdots, n_{i}\right\}$ and consists of the images of the n_{i} points in W_{i} with relative rotation matrices and translation vectors given by $\left(R_{i}, t_{i}\right)$. Thus in the noise free case,

$$
\begin{equation*}
w_{i}^{k}=R_{i} v_{i}^{k}+t_{i}, \quad k=1,2, \cdots, n_{i} . \tag{1}
\end{equation*}
$$

Let $W_{i j}=W_{i} \cap W_{j}$ be the set of $n_{i j}$ points in W_{i} for which there are corresponding points in W_{j}, for $i, j=1, \cdots, N$. That is, $W_{i j}=W_{j i}$ consists of $n_{i j}=n_{j i}$ points $w_{i j}^{k}=w_{j i}^{k} \in \mathbb{R}^{3}$, $k=1, \cdots, n_{i j}$. In view V_{i} the set of images of these points is denoted $V_{i j}:=\left\{v_{i j}^{k} \in \mathbb{R}^{3} \mid k=1,2, \cdots, n_{i j}\right\} \subset V_{i}$ and of course for view V_{j} it is denoted $V_{j i}:=\left\{v_{j i}^{k} \in \mathbb{R}^{3} \mid k=\right.$ $\left.1,2, \cdots, n_{i j}\right\} \subset V_{j}$. In the noise free case, it is immediate that

$$
\begin{align*}
& w_{i j}^{k}=R_{i} v_{i j}^{k}+t_{i}=R_{j} v_{j i}^{k}+t_{j} \tag{2}\\
& \quad \forall i, j=1,2, \cdots, N, k=1,2, \cdots, n_{i j},
\end{align*}
$$

5.2. Registration Error Cost Function

When there is measurement noise, it makes sense to work with a cost functions that penalizes the error $\left(R_{i} v_{i j}^{k}+t_{i}\right)-$ $\left(R_{j} v_{j i}^{k}+t_{j}\right)$ for all $i, j=1,2, \cdots, N$ and $k=1,2, \cdots, n_{i j}$. Trivially the error is zero for $i=j$. The cost index for all the registrations which first comes to mind is given by the sum of the squared Euclidean distances between the corresponding points in all overlaps,

$$
\begin{align*}
g(\mathcal{R}, \mathcal{T})= & \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k=1}^{n_{i j}}\left\|\left(R_{i} v_{i j}^{k}+t_{i}\right)-\left(R_{j} v_{j i}^{k}+t_{j}\right)\right\|^{2} \\
= & \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k=1}^{n_{i j}}\left(\left\|R_{i} v_{i j}^{k}-R_{j} v_{j i l}^{k}\right\|^{2}\right. \\
& \left.\quad+2\left(t_{i}-t_{j}\right)^{\top}\left(R_{i} v_{i j}^{k}-R_{j} v_{j i}^{k}\right)+\left\|t_{i}-t_{j}\right\|^{2}\right) \tag{3}
\end{align*}
$$

6. A More Compact Reformulation

Let e_{i} denote the $i^{\text {th }}$ column of the $N \times N$ identity matrix I_{N} and let $e_{i j}:=e_{i}-e_{j}$. Let

$$
\mathcal{R}:=\left[\begin{array}{llll}
R_{1} & R_{2} & \cdots & R_{N} \tag{4}
\end{array}\right] \in \mathbb{R}^{3 \times 3 N}
$$

and

$$
\mathcal{T}:=\left[\begin{array}{llll}
t_{1} & t_{2} & \cdots & t_{N} \tag{5}
\end{array}\right] \in \mathbb{R}^{3 \times N}
$$

then we have

$$
\begin{equation*}
R_{i}=\mathcal{R}\left(e_{i}^{\top} \otimes I_{3}\right), \quad t_{i}=\mathcal{T} e_{i}, \quad t_{i}-t_{j}=\mathcal{T} e_{i j} \tag{6}
\end{equation*}
$$

Let $a_{i j}^{k}:=\left(e_{i} \otimes I_{3}\right) v_{i j}^{k}-\left(e_{j} \otimes I_{3}\right) v_{j i}^{k}$. Substituting the value of R_{i} from Eq.(6),

$$
R_{i} v_{i j}^{k}-R_{j} v_{j i}^{k}=\mathcal{R} a_{i j}^{k}
$$

and thus

$$
\left\|R_{i} v_{i j}^{k}-R_{j} v_{j i i}^{k}\right\|^{2}=\mathcal{R} a_{i j}^{k} \cdot \mathcal{R} a_{i j}^{k}
$$

Similarly substituting the value of t_{i}, we can rewrite the inner expression of Eq.(3) as

$$
\mathcal{R} a_{i j}^{k} \cdot \mathcal{R} a_{i j}^{k}+2 \mathcal{T} e_{i j} \cdot \mathcal{R} a_{i j}^{k}+\mathcal{T} e_{i j} \cdot \mathcal{T} e_{i j}
$$

Let

$$
\left[\begin{array}{cc}
A & B \tag{7}\\
B^{\top} & C
\end{array}\right]=\sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k=1}^{n_{i j}}\left[\begin{array}{l}
a_{i j}^{k} \\
e_{i j}
\end{array}\right]\left[\begin{array}{ll}
a_{i j}^{k^{\top}} & e_{i j}^{\top}
\end{array}\right] \geq 0
$$

Using the fact that $u \cdot v=\operatorname{tr}\left(u v^{\top}\right)$, we can now rewrite Eq.(3) as

$$
\begin{align*}
g(\mathcal{R}, \mathcal{T}) & =\operatorname{tr}\left(\mathcal{R} A \mathcal{R}^{\top}+2 \mathcal{R} B \mathcal{T}^{\top}+\mathcal{T} C \mathcal{T}^{\top}\right) \\
& =\operatorname{tr}\left(\left[\begin{array}{ll}
\mathcal{R} & \mathcal{T}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]\left[\begin{array}{l}
\mathcal{R}^{\top} \\
\mathcal{T}^{\top}
\end{array}\right]\right) \geq 0, \tag{8}
\end{align*}
$$

or equivalently, as

$$
\begin{align*}
g(\mathcal{R}, \mathcal{T})= & \operatorname{tr}\left(\mathcal{R} A \mathcal{R}^{\top}\right)+2 \operatorname{vec}^{\top}(\mathcal{T}) \operatorname{vec}(\mathcal{R} B) \\
& +\operatorname{vec}^{\top}(\mathcal{T})\left(C \otimes I_{3}\right) \operatorname{vec}(\mathcal{T}), \tag{9}
\end{align*}
$$

since $\operatorname{tr}\left(X Y^{\top}\right)=\operatorname{vec}^{\top}(X) \operatorname{vec}(Y)$.

6.1. Eliminating \mathcal{T}

Equation (9) is a quadratic function of $\operatorname{vec}(T)$. This function is convex (and thus has a unique minimum) iff $C \otimes I_{3}$ is positive definite. An element $c_{i i}$ of C is $\sum_{k \neq i} n_{i k}$ and $c_{i j}=-n_{i j}$ for $j \neq i$. Unfortunately, this implies that C is singular, since $C \mathbf{1}$ (where $\mathbf{1}$ is the all-ones vector) vanishes.

This is a consequence of the fact that we can only recover relative transformations from our input, not absolute transformations. We can fix (say) the first reference frame $\left(R_{1}, t_{1}\right)=\left(I_{3}, \mathbf{0}\right)$, where $\mathbf{0}$ is the zero vector, and eliminate the first row and column from all the matrices. We will abuse notation by continuing to use the same variables for \mathcal{R}, \mathcal{T} and other matrices.
Eliminating the first row and column from C leaves a matrix that is symmetric and strictly diagonally dominant i.e., each diagonal element is in absolute value strictly larger than the sum of the absolute values of off-diagonal entries in that
row. It is a basic property that such matrices are positive definite, which consequently implies that $C \otimes I_{3}$ is positive definite, and thus $g(\mathcal{R}, \mathcal{T})$ has a unique minimum for fixed \mathcal{R} and varying \mathcal{T}. The minimizing value of \mathcal{T} is then

$$
\begin{align*}
& \operatorname{vec}\left(\mathcal{T}^{*}(\mathcal{R})\right)=-\left(C^{-1} \otimes I_{3}\right) \operatorname{vec}(\mathcal{R} B)=-\operatorname{vec}\left(\mathcal{R} B C^{-1}\right) \\
& \mathcal{T}^{*}(\mathcal{R})=-\mathcal{R} B C^{-1} \tag{10}
\end{align*}
$$

Substituting $\mathcal{T}^{*}(\mathcal{R})$ from Eq.(10) into (8) leads to a registration error cost function depending only on rotations,

$$
\begin{align*}
f(\mathcal{R}):=g(\mathcal{R}, \mathcal{T}(\mathcal{R})) & =\operatorname{tr}\left(\mathcal{R} \mathcal{M} \mathcal{R}^{\top}\right) \\
& =\operatorname{vec}^{\top}\left(\mathcal{R}^{\top}\right)\left(I_{3} \otimes \mathcal{M}\right) \operatorname{vec}\left(\mathcal{R}^{\top}\right) \tag{11}
\end{align*}
$$

where $\mathcal{M}:=A-B C^{-1} B^{\top}$, is the Schur complement of the matrix defined in the left hand side of equation (7).

7. Initialization

Here we present a new closed form solution based on singular value decomposition that simultaneously registers all range images which is used as the initial guess for the proposed iterative algorithm of the previous section. In the noise free case, it gives optimal and thus exact rotation matrices in a single step. In the presence of noise, this step leads to an 'optimal' matrix $\mathcal{R} \in \mathbb{R}^{3 \times 3 N}$ but such that $R_{i} \notin \mathrm{SO}_{3}$ for some i typically. Thus, an additional projection step to the manifold is required.

7.1. Noise Free Solution

In the noise free case, for $\mathcal{R} \in S O_{3}^{N}$, the optimal value of the cost function (11) is zero, as

$$
\begin{align*}
\operatorname{vec}^{\top}\left(\mathcal{R}^{\top}\right) \operatorname{vec}\left(\mathcal{M} \mathcal{R}^{\top}\right)=0 & \Rightarrow \operatorname{vec}\left(\mathcal{M} \mathcal{R}^{\top}\right)=0 \tag{12}\\
& \Rightarrow \mathcal{M} R^{\top}=0
\end{align*}
$$

Since \mathcal{M} is symmetric, a singular value decomposition gives

$$
\begin{align*}
\mathcal{M}= & U \Sigma U^{\top}=\left[\begin{array}{ll}
U_{a} & U_{b}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{a} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
U_{a}^{\top} \\
U_{b}^{\top}
\end{array}\right] \tag{13}\\
& \Rightarrow \mathcal{M} U_{b}=0 .
\end{align*}
$$

To obtain \mathcal{R} such that $R_{1}=I_{3}$, let $\widehat{U}:=\left[\begin{array}{ll}I_{3} & 0\end{array}\right] U_{b}$, then the closed form solution is

$$
\begin{equation*}
\mathcal{R}=\widehat{U}^{-\top} U_{b}^{\top} \tag{14}
\end{equation*}
$$

7.2. Initialization in Noisy Case

In the presence of noise, the optimal cost function is no longer equal to zero. In this case, U_{b} is chosen to be the set of right singular vectors associated with 3 least singular values of \mathcal{M}, which may not be zero. These singular vectors might not be on $S O_{3}^{N}$. Thus, an additional projection step is required. Denoting $G_{i}:=\widehat{U}^{-\top} U_{b}\left(e_{i} \otimes I_{3}\right)$, we have

$$
\begin{equation*}
R_{i}^{\mathrm{opt}}=\arg \min _{R_{i} \in S O_{3}}\left\|R_{i}-G_{i}\right\|=\arg \max _{R_{i} \in S O_{3}} \operatorname{tr}\left(R_{i}^{\top} G_{i}\right) \tag{15}
\end{equation*}
$$

By applying a singular value decomposition on G_{i}, we obtain

$$
G_{i}=W \Lambda Z^{\top}, \quad R_{i}^{\mathrm{opt}}=W\left[\begin{array}{cc}
I_{2} & 0 \tag{16}\\
0 & \operatorname{det}\left(W Z^{\top}\right)
\end{array}\right] Z^{\top}
$$

where $\operatorname{det}\left(R_{i}^{\mathrm{opt}}\right)=+1$.

8. The Product Manifold of SO_{3}

Here we review the geometry of the special orthogonal group and its product manifold. Let SO_{3} denote the group of 3×3 orthogonal matrices with determinant +1 , then $R_{i} \in \mathrm{SO}_{3}$ for $i=1, \cdots, N$.
SO_{3} is a Lie group with the group operator being matrix multiplication. Its associated Lie algebra $\mathfrak{s o}_{3}$ is the set of 3×3 skew symmetric matrices of the form,

$$
\Omega=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \tag{17}\\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

There is a well known isomorphism from the Lie algebra $\left(\mathbb{R}^{3}, \times\right)$ to the Lie algebra $\left(\mathfrak{s o}_{3},[.,].\right)$, where \times denotes the cross product and $[.,$.$] denotes the matrix commutator. This$ allows one to identify $\mathfrak{s o}_{3}$ with \mathbb{R}^{3} using the mapping in (17), which maps a vector $\omega=\left[\begin{array}{lll}\omega_{x} & \omega_{y} & \omega_{z}\end{array}\right] \in \mathbb{R}^{3}$ to a matrix $\Omega \in \mathfrak{s o}_{3}$. Denoting

$$
\begin{gather*}
Q_{x}:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], Q_{y}:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \text { and } \tag{18}\\
Q_{z}:=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gather*}
$$

note that

$$
\begin{equation*}
\Omega=\Omega(\omega)=Q_{x} \omega_{x}+Q_{y} \omega_{y}+Q_{z} \omega_{z} \tag{19}
\end{equation*}
$$

An identity that we will make use of later is:vec $\left(\Omega^{\top}\right)=Q \omega$. In this paper we will consider the N -fold product manifold of SO_{3} which is a smooth manifold of dimension 3 N , given by

$$
\begin{equation*}
\mathrm{SO}_{3}^{N}=\overbrace{\mathrm{SO}_{3} \times \cdots \times \mathrm{SO}_{3}}^{N \text { times }} . \tag{20}
\end{equation*}
$$

8.1. Tangent Space of SO_{3}^{N}

First recall that the tangent space of SO_{3} at R_{i} is given as $T_{R_{i}} S O_{3}=\left\{R_{i} \Omega_{i} \mid \Omega_{i} \in \mathfrak{s o}_{3}\right\}$ and the affine tangent space is $T_{R_{i}}^{\mathrm{a} f f} \mathrm{SO}_{3}=\left\{R_{i}+R_{i} \Omega_{i} \mid \Omega_{i} \in \mathfrak{s o}_{3}\right\}$. Define

$$
\begin{equation*}
\widetilde{\Omega}:=\Omega_{1} \oplus \Omega_{2} \oplus \cdots \oplus \Omega_{N}, \quad \Omega_{i} \in \mathfrak{s o}_{3} \tag{21}
\end{equation*}
$$

The direct sum, \oplus, of matrices is equal to a block diagonal matrix with the individual matrices as its diagonal blocks. Due to isomorphism, the tangent space of SO_{3}^{N} at $\mathcal{R}=$ $\left[R_{1} R_{2} \cdots R_{N}\right] \in S O_{3}^{N}$ can be identified as, $T_{\mathcal{R}} S O_{3}^{N}=\mathcal{R} \widetilde{\Omega}$ and the affine tangent space is $T_{\mathcal{R}}^{\mathrm{a} f f} S O_{3}^{N}=\mathcal{R}+\mathcal{R} \widetilde{\Omega}$.

8.2. Local Parameterization of $\mathrm{SO}_{3}^{\mathrm{N}}$

Let $\mathcal{N}(0) \subset \mathbb{R}^{3}$ denotes a sufficiently small open neighbourhood of the origin in \mathbb{R}^{3}, and let $R_{i} \in \mathrm{SO}_{3}$. Then the exponential mapping

$$
\begin{equation*}
\mu: \mathcal{N}(0) \subset \mathbb{R}^{3} \rightarrow S O_{3}, \quad \omega_{i} \mapsto R_{i} e^{\Omega_{i}\left(\omega_{i}\right)} \tag{22}
\end{equation*}
$$

is a local diffeomorphism from $\mathcal{N}(0)$ onto a neighbourhood of R_{i} in SO_{3}. Due to isomorphism, the product manifold SO_{3}^{N} at $\mathcal{R} \in S O_{3}^{N}$ can be locally parameterized by

$$
\begin{align*}
\varphi & : \mathcal{N}(0) \times \cdots \times \mathcal{N}(0) \subset \mathbb{R}^{3 N} \rightarrow S O_{3}^{N} \\
\omega=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\vdots \\
\omega_{N}
\end{array}\right] & \mapsto \mathcal{R}\left(e^{\Omega\left(\omega_{1}\right)} \oplus e^{\Omega\left(\omega_{2}\right)} \oplus \cdots \oplus e^{\Omega\left(\omega_{N}\right)}\right) \\
& =\mathcal{R} e^{\widetilde{\Omega}(\omega)} \tag{23}
\end{align*}
$$

9. Constructing A Local Approximation

We are now ready to present our algorithm. Firstly, we construct a local approximation of f, using a second order Taylor expansion. Instead of differentiating f, we will use the local parametrization of SO_{3} described earlier, performing the approximation on the function $f \circ \varphi$, whose domain is $\mathbb{R}^{3 N}$. Intuitively, the use of the local parametrization φ ensures that we always stay on the manifold.

The second order Taylor $(2-j e t)$ approximation of $f \circ \varphi$ is given by the function $j^{(2)}(f \circ \varphi): \mathbb{R}^{3 N} \rightarrow \mathbb{R}$,

$$
\begin{align*}
\omega \mapsto & \left((f \circ \varphi)(t \omega)+\frac{\mathrm{d}}{\mathrm{~d} t}(f \circ \varphi)(t \omega)\right. \\
& \left.+\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}(f \circ \varphi)(t \omega)\right)\left.\right|_{t=0} \tag{24}
\end{align*}
$$

As with a univariate Taylor expansion, the above expression can be written in the form $(f \circ \varphi)(0)+\omega^{\top} \nabla+$ $\frac{1}{2} \omega^{\top} H \omega$, where ∇ is the gradient and H is the Hessian of the function $f \circ \varphi$.

The first term in (24) is $(f \circ \varphi)(0)=\operatorname{tr}\left(\mathcal{R} \mathcal{M} \mathcal{R}^{\top}\right)$. The second term is

$$
\begin{align*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}(f \circ \varphi)(t \omega)\right|_{t=0} & =\omega^{\top} \nabla(f \circ \varphi)(0) \tag{25}\\
& =2 \operatorname{tr}\left(\mathcal{R} \widetilde{\Omega} \mathcal{M} \mathcal{R}^{\top}\right)
\end{align*}
$$

Recall that $\operatorname{tr}\left(\mathcal{R} \widetilde{\Omega} \mathcal{M} \mathcal{R}^{\top}\right)$ can be written as $\operatorname{vec}^{\top}\left(\widetilde{\Omega} \mathcal{R}^{\top}\right) \operatorname{vec}\left(\mathcal{M} \mathcal{R}^{\top}\right)$.

$$
\begin{align*}
\operatorname{vec}^{\top}\left(\widetilde{\Omega} \mathcal{R}^{\top}\right) & =\left[\operatorname{vec}\left(\widetilde{\Omega} \mathcal{R}^{\top}\right)\right]^{\top} \\
& =\left[\operatorname{vec}\left(I_{3 N} \widetilde{\Omega} \mathcal{R}^{\top}\right)\right]^{\top} \\
& =\left[\left(R \otimes I_{3 N}\right) \operatorname{vec}(\widetilde{\Omega})\right]^{\top} \tag{26}
\end{align*}
$$

Let $\widetilde{Q}:=Q_{e_{1}} \oplus Q_{e_{2}} \oplus \cdots \oplus Q_{e_{N}}, \quad Q_{e_{i}}:=\left[\begin{array}{c}e_{i} \otimes Q_{x} \\ e_{i} \otimes Q_{y} \\ e_{i} \otimes Q_{z}\end{array}\right]$. Then, using (18), we have $\operatorname{vec}(\widetilde{\Omega})=\widetilde{Q} \omega$, and then (26) can be written as

$$
\operatorname{vec}^{\top}\left(\widetilde{\Omega} \mathcal{R}^{\top}\right)=\omega^{\top} J^{\top}
$$

where $J:=\left(\mathcal{R} \otimes I_{3 N}\right) \widetilde{Q}$. Substituting back into (25),

$$
\begin{equation*}
\nabla(f \circ \varphi)(0)=2 J^{\top} \operatorname{vec}\left(\mathcal{M} \mathcal{R}^{\top}\right) \tag{27}
\end{equation*}
$$

Finally, the quadratic term in (24) consists of a sum of two terms. The first term is given as

$$
\begin{equation*}
\operatorname{tr}\left(\mathcal{R} \widetilde{\Omega} \mathcal{M} \widetilde{\Omega}^{\top} \mathcal{R}^{\top}\right)=\omega^{\top} \widehat{H}_{(f \circ \varphi)(0)} \omega \tag{28}
\end{equation*}
$$

and the second quadratic term is

$$
\begin{align*}
\operatorname{tr}\left(\mathcal{R} \widetilde{\Omega}^{2} \mathcal{M} \mathcal{R}^{\top}\right) & =\operatorname{vec}^{\top}\left(\widetilde{\Omega}^{\top}\right) \operatorname{vec}\left(\mathcal{M} \mathcal{R}^{\top} \mathcal{R} \widetilde{\Omega}\right) \\
& =\omega^{\top} \widetilde{H}_{(f \circ \varphi)(0)} \omega \tag{29}
\end{align*}
$$

By applying similar methods as above, we obtain the Hessian of $f \circ \varphi$ evaluated at zero:

$$
\begin{equation*}
H_{(f \circ \varphi)(0)}=\widehat{H}_{(f \circ \varphi)(0)}+\widetilde{H}_{(f \circ \varphi)(0)} \tag{30}
\end{equation*}
$$

where

$$
\begin{gather*}
\widehat{H}_{(f \circ \varphi)(0)}=J^{\top}\left(I_{3} \otimes \mathcal{M}\right) J \succeq 0 \tag{31}\\
\widetilde{H}_{(f \circ \varphi)(0)}=-\widetilde{Q}^{\top}\left(I_{3 N} \otimes \mathcal{M} \mathcal{R}^{\top} \mathcal{R}\right) \widetilde{Q} \tag{32}
\end{gather*}
$$

Note that H is a sum of the positive semidefinite term \widehat{H} and the term \widetilde{H}. Since \widetilde{H} is nonzero, we cannot guarantee that f has a unique (global) minimum. However, the fact that we can decompose H as a sum of a positive definite term and another term will prove to be useful in the iterative algorithm we present next.

We note that \widetilde{H} vanishes when there are only two views, illustrating the known fact that the two-view registration problem can be solved optimally.

10. The Algorithm

The proposed algorithm consists of the iteration,

$$
\begin{equation*}
s=\pi_{2} \circ \pi_{1}: S O_{3}^{N} \rightarrow S O_{3}^{N} \tag{33}
\end{equation*}
$$

where π_{1} maps a point \mathcal{R} on the product manifold SO_{3}^{N} to an element in the affine tangent space that minimizes $j^{(2)}(f \circ \varphi)(0)$ and π_{2} maps that element back to $S O_{3}^{N}$ by means of the parametrization φ. The mapping π_{1} is a standard iterative scheme that uses a modified Newton method to determine a descent direction and a line search to move along this direction. We would like to observe that while we use a line search strategy in our implementation, it is just as easy to adapt it to the trust-region (also known as LevenbergMarquardt) method. Both methods generate iterates with the help of a quadratic model of the objective function. The main
difference lies in their use of the model. Line search methods use the model to generate only a search direction, while trust-region methods define a region around the current iterate within which they trust the model to be an adequate representation of the objective function and then choose a step which is the approximate minimizer of the model in this trust region (choose the direction and step size simultaneously). In what follows, we describe the line search approach in brief; the reader is referred to the text by Nocedal and Wright [NW99] for more details.

10.1. Optimization in Local Parameter Space

Optimization in the local parameter space consists of two steps. First we calculate a suitable descent direction, and then we search for a step length that ensures reduction in cost function. These two steps are described by the mapping

$$
\begin{equation*}
\pi_{1}=\pi_{1}^{b} \circ \pi_{1}^{a}: S O_{3}^{N} \rightarrow \mathbb{R}^{3 N \times 3 N} \tag{34}
\end{equation*}
$$

In the first step, π_{1}^{a} is used to obtain a descent direction,

$$
\pi_{1}^{a}: S O_{3}^{N} \rightarrow \mathbb{R}^{3 N \times 3 N}, \quad \mathcal{R} \mapsto \mathcal{R}+\mathcal{R} \widetilde{\Omega}\left(\omega_{\mathrm{opt}}\right)
$$

where ω_{opt} is given by the Newton direction

$$
\begin{equation*}
\omega_{\mathrm{opt}}(\varphi(\omega))=-H_{(f \circ \varphi)(\omega)}^{-1} \nabla(f \circ \varphi)(\omega), \tag{35}
\end{equation*}
$$

or a Gauss direction

$$
\begin{equation*}
\omega_{\mathrm{opt}}(\varphi(\omega))=-\widehat{H}_{(f \circ \varphi)(\omega)}^{-1} \nabla(f \circ \varphi)(\omega) . \tag{36}
\end{equation*}
$$

Once an optimal direction is computed, an approximate one dimensional line search is carried out in this direction, denoted by the mapping π_{1}^{b}. We proceed with a search that ensures that the cost function is reduced at every step. We use backtracking line search ([NW99]) for this purpose. Since we are using a descent direction, choosing a sufficiently small step size will ensure that the cost function goes downhill. Backtracking line search starts with a step size of 1 and iteratively updates the step size until certain termination conditions are satisfied ([NW99], Section 3.4). Let $\lambda_{o p t}$ be the step size returned by the backtracking procedure that reduces the cost function in direction ω_{opt}. Thus,

$$
\begin{align*}
\pi_{1}^{b}: \mathbb{R}^{3 N \times 3 N} & \rightarrow \mathbb{R}^{3 N \times 3 N} \\
\mathcal{R}+\mathcal{R} \widetilde{\Omega}\left(\omega_{\mathrm{o} p t}\right) & \mapsto \mathcal{R}+\mathcal{R} \widetilde{\Omega}\left(\lambda_{\mathrm{o} p t} \omega_{\mathrm{o} p t}\right) \tag{37}
\end{align*}
$$

10.2. Projecting back via parametrization

Once the descent direction and downhill step size is obtained, we map the resulting point back to the manifold via the parametrization $\pi_{2}: \mathbb{R}^{3 N \times 3 N} \rightarrow S O_{3}^{N}$:

$$
\begin{gather*}
\mathcal{R}+\widetilde{\Omega}\left(\lambda_{\mathrm{opt}} \omega_{\mathrm{opt}}\right) \mapsto \mathcal{R} e^{\widetilde{\Omega}\left(\lambda_{\mathrm{opt}} \omega_{\mathrm{opt}}\right)} \\
=\mathcal{R}\left(e^{\left(\Omega_{1}\left(\lambda_{\mathrm{opt}} \omega_{1}^{\mathrm{opt}}\right)\right)} \oplus \cdots \oplus e^{\Omega_{N}\left(\lambda_{\mathrm{opt}} \omega_{N}^{\mathrm{opt}}\right)}\right) \tag{38}
\end{gather*}
$$

since $\omega_{\mathrm{opt}}=\left[\begin{array}{lll}\omega_{1}^{\mathrm{opt}}{ }^{\top} & \cdots & \omega_{N}^{\mathrm{opt}}{ }^{\top}\end{array}\right]^{\top}$.
We summarize the algorithm in Algorithm 10.1:

```
Algorithm 10.1 Iterative Algorithm
    Initialize \(\mathcal{R}=\mathcal{R}_{0}=\left[R_{1} R_{2} \cdots R_{N}\right] \in S O_{3}^{N}\) using the ini-
    tialization procedure described in Section 7.2
    repeat
        \{/*Step 1: Carry out optimization */\}
        Compute \(\nabla(f \circ \varphi)(0), H_{(f \circ \varphi)(0)}\) via (27), (30) respec-
        tively.
        if \(H_{(f \circ \varphi)(0)} \succ 0\) then
            \(\omega_{\mathrm{opt}}=H_{(f \circ \varphi)(0)}^{-1} \nabla(f \circ \varphi)(0)\{\) Newton step \(\}\)
        else
            \(\omega_{\text {opt }}=\widehat{H}_{(f \circ \varphi)(0)}^{-1} \nabla(f \circ \varphi)(0)\{\) Gauss step \(\}\)
        end if
        Compute optimum step size \(\lambda_{\mathrm{o} p t}\) in direction \(\omega_{\mathrm{opt}}\). Set
        \(\mathcal{R}^{\prime} \leftarrow \pi_{1}^{b}\left(\mathcal{R}_{k}\right)(37)\)
```

 \{/* Step 2: Map back to manifold */\}
 \(\mathcal{R}_{k+1} \leftarrow \pi_{2}\left(\mathcal{R}^{\prime}\right)(38)\)
 until \(\|\nabla(f \circ \varphi)(0)\|>\varepsilon\)
 Theorem 10.1 Consider the iteration $\mathcal{R}_{k+1}=s\left(\mathcal{R}_{k}\right)$ defined by a single step of Algorithm 10.1 and denote $\mathcal{R}_{*}=\varphi(0)$ as belonging to the set of local minima of $j^{(2)}(f \circ \varphi)(\omega)$. Further assume that \mathcal{R}_{*} is an isolated minimum in that $H_{(f \circ \varphi)(0)}^{-1}$ exists. Then s converges locally quadratically to \mathcal{R}_{*}.

We omit a detailed proof. The reader may refer to Lee's thesis ([Lee05]) for more details.

Implementation Notes We use a simple eigenvalue computation to determine whether the Hessian H is positive definite. This is not the most efficient approach; other, more sophisticated numerical methods can simplify this step, and even avoid computing the Hessian directly. We defer a detailed implementation study to an extended version of this paper. To reduce computational effort per iteration of the algorithm, the sparse matrix J (27) that we use for Hessian and gradient computation can be manipulated further as follows. Recalling Ω from (17),

$$
\begin{align*}
J & =\left[\left(R_{1} \otimes I_{3 N}\right) Q_{e_{1}}\left(R_{2} \otimes I_{3 N}\right) Q_{e_{2}} \cdots\left(R_{N} \otimes I_{3 N}\right) Q_{e_{N}}\right] \\
& =\left[\begin{array}{l}
\Omega\left(\bar{e}_{1}^{\top} R_{1}\right) \oplus \Omega\left(\bar{e}_{1}^{\top} R_{2}\right) \oplus \cdots \oplus \Omega\left(\bar{e}_{1}^{\top} R_{N}\right) \\
\Omega\left(\bar{e}_{2}^{\top} R_{1}\right) \oplus \Omega\left(\bar{e}_{2}^{\top} R_{2}\right) \oplus \cdots \oplus \Omega\left(\bar{e}_{2}^{\top} R_{N}\right) \\
\Omega\left(\bar{e}_{3}^{\top} R_{1}\right) \oplus \Omega\left(\bar{e}_{3}^{\top} R_{2}\right) \oplus \cdots \oplus \Omega\left(\bar{e}_{3}^{\top} R_{N}\right)
\end{array}\right] . \tag{39}
\end{align*}
$$

In general, determining a suitable modification to a non-positive-definite Hessian to make it positive definite is the core of the modified Newton method that we employ. It is interesting that for this problem, the Hessian decomposes cleanly into positive definite and non-positive-definite portions, and this might be a sign of further structure in the problem that a better iterative scheme might exploit.
S. Krishnan et. al. / Global Registration via Optimization-on-a-Manifold

Model	Number of vertices	Number of scans	Total size of all scans	Number of view pairs generated	Time (in secs.) per iteration (MBR)
DRILL	1961	20	23298	77	0.015
DRAGON	100250	20	1142487	98	0.016
BUDDHA	32328	50	252580	526	0.093

Table 1: Statistics for the synthetic 3D models used for global registration

11. Experimental Evaluation

We now present an experimental study of our algorithm, focusing primarily on the quality of the registrations it produces, and the convergence rate of the method.

Methods We will compare our algorithm (which we will refer to as MBR (Manifold-based registration)) to the schemes proposed by Benjemaa and Schmitt [BS98] (QUAT) and Williams and Bennamoun [WB01] (MAT). MBR and MAT are matrix based and are written in MATLAB. MAT, which uses quaternions in its formulation, is written in C. We used a maximum iteration limit of 1000 for all the methods. Our method of comparison between various algorithms will be based on both visual quality as well as iteration counts and error convergence rates (we will not use clock time).

Data Our first data set consists of actual 3D models from the Stanford 3D Scanning Repository. For each of three models, we generated a collection of views as follows: we first generate a unit vector (representing a view) and extracted the points on all front-facing triangles with respect to this view. Next, each view is randomly rotated and translated into a local coordinate system. Finally, each point in each view is randomly perturbed using a Gaussian noise model. This yields a collection of views that possess a global noisy registration. With this data, we have ground truth (exact correspondences) since we have the original model. Table 1 summarizes the statistics of this data.

Our second data set consists of 3D range scan data from the Digital Michelangelo Project [LPC*00]. The individual scans come with an original alignment (stored in .xf files). We perform ICP on pairs of scans, using the routines built into scanalyze, and retain all pairs of scans that have at least three points in common as determined by ICP. In each instance, we run ICP five times and take the best alignment thus generated (each instance of ICP runs for ten iterations). The model of correspondence used is point-point.

11.1. 3D Models

We first ran the three algorithms on the view pairs obtained from the three 3D models. In Figure 1 we show the output registrations obtained by MBR. For these examples, the other two schemes produced similar registrations, although
with higher error. In Table 2, we compare the performance of the three schemes on the models, in terms of both the number of iterations till convergence, and the final error. The final error is computed by evaluating the function defined in (9).

What is striking about the numbers is that although in the end the other approaches mostly (except for DRILL) yield comparable error, their iteration counts are orders of magnitude higher than that of our scheme. This is a clear demonstration of locally quadratic convergence properties of our scheme.

Factors that influence iteration counts Since our method converges significantly faster than the other algorithms, we attempted to investigate other factors that might improve their performance. Some of the parameters that influence iteration counts are the density of the correspondence graph i.e. how many view pairs are provided, and the strength of match for each pair (average number of points in each view pair).

In all cases, the number of iterations required by our method to converge was unaffected by these parameters. However, for the other methods, we noticed a fairly weak correlation between the density of the correspondence graph and the number of iterations needed; as the graph got denser, implying a more constrained system, the number of iterations needed to converge reduced. For example, the iteration counts for MAT and QUAT went from close to 1000 (for a sparse graph in the Dragon) to 47 (for a dense graph in the Drill).

Cost per iteration We do not provide a comparison of actual time per iteration for the three methods because they have been implemented on different platforms. However, MBR and MAT exhibit cubic dependence on the number of scans (for N scans, each iteration takes $O\left(N^{3}\right)$ time), while QUAT take quadratic time per iteration at the expense of many more iterations. There is no running time dependence on the actual size of the model or size of each scan; there is however a preprocessing cost dependent on the total size of the corresponding points. Using our Matlab code, we measured the time per iteration only for our algorithm, MBR, and is shown in the last column of Table 1. All timing measurements were performed on a PC running Windows XP
S. Krishnan et. al. / Global Registration via Optimization-on-a-Manifold

Figure 1: Registrations produced by our Optimization-on-a-Manifold algorithm, MBR, on synthetic data sets.
with a 2.8 GHz Pentium IV processor and 512 MBytes of RAM. For the models we tried in this paper, we roughly had anywhere from 8 to 80 corresponding points between pairs of scans.

11.2. Range Scan Data

Having evaluated the performance of our scheme in relation to prior art in a controlled setting where ground truth (exact correspondences) are known, we now present the results of running the schemes on range scan data. We focus on the model of David, specifically the views corresponding to the head and bust region. After implementing the view generation procedure described earlier, we obtain a 10 -scan instance of the bust and a 38 -scan instance of the head. We also use a 21 -scan instance that has bad starting alignment.

	MBR		MAT		QUAT	
	Iter.	Error	Iter.	Error	Iter.	Error
Drill	$\mathbf{2}$	$3.5 \mathrm{e}-7$	47	$3.5 \mathrm{e}-7$	48	$7 \mathrm{e}-7$
Dragon	$\mathbf{4}$	$5 \mathrm{e}-3$	933	$1 \mathrm{e}-2$	1000	$1 \mathrm{e}-2$
Buddha	$\mathbf{2}$	$2 \mathrm{e}-4$	534	$2 \mathrm{e}-3$	718	$3 \mathrm{e}-3$

Table 2: Performance of the three registration methods - our Optimization-on-a-Manifold method MBR, Williams and Bennamoun's SVD-based method MAT and Benjemaa and Schmitt's Quaternion-based method QUAT on the synthetic data sets

Figure 2 shows the registrations obtained by MBR, MAT, and QUAT. In all cases, the registration produced by our algorithm is quite plausible. The other methods do not fare so well; a typical problem is that the two halves of David's face do not register properly, creating the false effect of two heads. Table 3 summarizes the performance of the three algorithms in terms of iteration counts. For absolute times per iteration, our algorithm, MBR, took 9 milliseconds for the

10 -scan instance of the bust, 47 milliseconds for the 38 -scan instance of the head and 20 milliseconds for the 21-scan instance of the bust with bad initial alignment.

	MBR Iter.	MAT Iter.	QUAT Iter.
Head	48	247	1000
Bust	12	1000	1000
Bust - Bad Alignment	81	1000	1000

Table 3: Performance of the three registration methods - our Optimization-on-a-Manifold method MBR, Williams and Bennamoun's SVD-based method MAT and Benjemaa and Schmitt's Quaternion-based method QUAT on the David model - courtesy of the Digital Michelangelo project

12. Conclusion and Future Work

In this paper, we have presented a novel algorithm for simultaneous registration of multiple 3D point sets. The algorithm is iterative in nature, based on an optimization-on-a-manifold approach. The algorithm is locally quadratically convergent, and converges much faster than prior methods for simultaneous registration. We also propose a new analytic method that provides a closed form solution based on singular value decomposition. It gives exact solutions in the noise free case and can be used as a good initial estimate for any iterative algorithm.

Acknowledgements

We acknowledge Prof. Marc Levoy and the Digital Michelangelo Project at Stanford University for providing access to the raw scan data used in this paper.

References

[ADM* 02] Adler R., Dedeiu J.-P., Margulies J. Y., Martens M., Shub M.: Newton's method on riemannian manifolds and a geometric model for the human spine. IMA Journal of Numerical Analysis 22 (2002), 359-390. 3
[Agr05] Agrawal M. A.: Lie algebraic approach for consistent pose registration for general euclidean motion. In Proc. IEEE ICRA (2005). 2
[AHB87] Arun K., Hwang T. S., Bolstein S.: Least squares fitting of two 3D point sets. IEEE PAMI. (1987), 698-700. 1, 2
[Ale02] AlEXA M.: Linear combination of transformations. ACM Trans. Graph. 21, 3 (2002), 380-387. 2
[BM92] Besl P. J., McKay N. D.: A method for registration of 3d shapes. IEEE PAMI. 14, 2 (1992), 239-256. 2
[BS98] Benjemaa R., Schmitt F.: A solution for the registration of multiple 3 d point sets using unit quaternions. In Proc. ECCV (1998), pp. 34-50. 2, 8
[BSGL96] Bergevin R., Soucy M., Gagnon H., LaUrendeau D.: Towards a general multi-view registration technique. IEEE Trans. Pattern Anal. Mach. Intell. 18, 5 (1996), 540-547. 2
[CHC98] Chen C., Hung Y., Cheng J.: A fast automatic method for registration of partially-overlapping range images. In Proc. ICCV (1998). 3
[CHC99] Chen C., Hung Y., Cheng J.: Ransac-based darces: A new approach to fast automatic registration of partially overlapping range images. IEEE PAMI 21, 11 (1999), 1229-1234. 3
[CM92] Chen Y., Medioni G.: Object modelling by registration of multiple range images. Image Vision Comput. 10, 3 (1992). 2
[CS99] Cunnington S., Stoddart A. J.: N-view point set registration: A comparison. In British Machine Vision Conference (1999). 2
[DWJ97] Dorai C., Weng J., Jain A. K.: Optimal registration of object views using range data. IEEE PAMI 19, 10 (1997), 1131-1138. 3
[EAS99] Edelman A., Arias T. A., Smith S. T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 2 (1999), 303-353. 2
[EFF98] Eggert D. W., Fitzgibbon A. W., Fisher R. B.: Simultaneous registration of multiple range views for use in reverse engineering of cad models. Comput. Vis. Image Underst. 69, 3 (1998), 253-272. 2
[FH86] Faugeras O. D., Herbert M.: The representation, recognition, and location of 3d objects. Intnl. J. Robotics Research 5, 3 (1986), 27-52. 1, 2, 3
[Gov04] Govindu V. M.: Lie-algebraic averaging for globally consistent motion estimation. In Proc. IEEE CVPR (2004). 2
[Hor87] Horn K. P.: Closed form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A (1987). 1, 2
[JH97] Johnson A., Hebert M.: Surface registration by matching oriented points. In 3DIM (1997). 3
[Kan94] Kanatani K.: Analysis of 3D rotation fitting. IEEE PAMI 16, 5 (1994), 543-549. 1
[Lee05] LEE P. Y.: Geometric Optimization for Computer Vision. PhD thesis, Australian National University, 2005. 7
[LEF95] Lorusso A., Eggert D. W., Fisher R. B.: A comparison of four algorithms for estimating 3d rigid transformations. In British Machine Vision Conference (1995). 1
[LM04] Lee P. Y., Moore J. B.: Pose estimation via a Gauss-Newton-on-manifold approach. In 16th International Symposium on Mathematical Theory of Network and System (MTNS) (2004). 2
[LPC*00] Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D., Pereira L., Ginzton M., Anderson S., Davis J., Ginsberg J., Shade J., FUlK D.: The digital Michelangelo project: 3d scanning of large statues. In Proc. SIGGRAPH (2000), pp. 131-144. 8
[NW99] Nocedal J., Wright S. J.: Numerical Optimization. Springer, August 1999. 7
[PHYH04] Pottmann H., Huang Q.-X., Yang Y.-L., HU S.-M.: Geometry and convergence analysis of algorithms for registration of $3 D$ shapes. Tech. Rep. 117, TU Wien, 2004. 2
[Pul99] Pulli K.: Multiview registration for large data sets. In Proc. 3DIM (1999), pp. 160-168. 2
[RL01] RUSINKIEWICZ S., LEVOY M.: Efficient variants of the icp algorithm. In 3DIM (2001). 3
[SBB03] Silva L., Bellon O. R. P., Boyer K. L.: Enhanced, robust genetic algorithms for multiview range image registration. In Proc. 3DIM (2003), pp. 268-275. 2
[SLW04] Sharp G. C., Lee S. W., Wehe D. K.: Multiview registration of 3 d scenes by minimizing error between coordinate frames. IEEE PAMI. 26, 8 (2004), 1037-1050. 2
[SM92] Stein F., Medioni G.: Structural indexing: Efficient 3-d object recognition. IEEE PAMI 14, 2 (1992), 125-145. 3
[WB01] Williams J., Bennamoun M.: Simultaneous registration of multiple corresponding point sets. Comput. Vis. Image Underst. 81, 1 (2001), 117-142. 2, 8
S. Krishnan et. al. / Global Registration via Optimization-on-a-Manifold

(b) The head and bust of David (10 scans)

(c) Head and bust: Bad initial alignment (21 scans)

Figure 2: This figure shows the results of three algorithms for simultaneous registration of multiple 3D point sets - our Optimization-on-a-Manifold method MBR, Williams and Bennamoun's SVD-based method MAT, and Benjemaa and Schmitt's Quaternion-based method QUAT (from left to right) on different instances of the David model.

[^0]: \dagger National ICT Australia is funded by the Australian Department of Communications, Information Technology and the Arts and the Australian Research Council through Backing Australia's Ability and the ICT Centre of Excellence Program
 \ddagger This research is supported in part by the ARC discovery grants A0010582 and DP0450539

