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Abstract
We propose a novel algorithm to register multiple 3D point sets within a common reference frame using a manifold
optimization approach. The point sets are obtained with multiple laser scanners or a mobile scanner. Unlike most
prior algorithms, our approach performs an explicit optimization on the manifold of rotations, allowing us to
formulate the registration problem as an unconstrained minimization on a constrained manifold. This approach
exploits the Lie group structure of SO3 and the simple representation of its associated Lie algebra so3 in terms of
R

3.
Our contributions are threefold. We present a new analytic method based on singular value decompositions that
yields a closed-form solution for simultaneous multiview registration in the noise-free scenario. Secondly, we use
this method to derive a good initial estimate of a solution in the noise-free case. This initialization step may be
of use in any general iterative scheme. Finally, we present an iterative scheme based on Newton’s method on
SO3 that has locally quadratic convergence. We demonstrate the efficacy of our scheme on scan data taken both
from the Digital Michelangelo project and from scans extracted from models, and compare it to some of the other
well known schemes for multiview registration. In all cases, our algorithm converges much faster than the other
approaches, (in some cases orders of magnitude faster), and generates consistently higher quality registrations.

1. Introduction

Constructing a 3D computer model of a real object from 3D
surface measurement data has various applications in com-
puter graphics, virtual reality, computer vision and reverse
engineering. To construct such a model, a single view of the
object is often insufficient due to self occlusion, the pres-
ence of shadows and limitations of the field of view of the
3D scanner. Multiple partial views of the object from dif-
ferent viewpoints are therefore needed to describe the entire
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object. Typically the views are obtained from multiple scan-
ners or from a single scanner stationed at different locations
and orientation, or even a fixed scanner taking time-sampled
images of an object on a moving turntable. The images are
often simplified as a set of features such as points and the rel-
ative position and orientation (pose) between views are only
known imprecisely (if at all). Thus, these partially overlap-
ping views need to be registered within a common reference
frame to determine the unknown relative pose.

Two-view (pairwise) registration is a well studied prob-
lem in the literature. It is known that a closed-form solution
can be obtained in this case; this was shown by Faugeras and
Herbert [FH86], Horn [Hor87], and Arun et al. [AHB87].
An overview of these techniques can be found in [Kan94]
and a comparison of these methods has been presented in
[LEF95].

Multiview registration is a more difficult problem. There
are two strategies towards solving the problem, local (se-
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quential) registration and global (simultaneous) registration.
The sequential registration approach (of which ICP [BM92]
is the most well-known) involves the alignment of two over-
lapping views at a time followed by an integration step to
ensure all views are combined. This widely used approach
does not give an optimal solution because errors can accu-
mulate and propagate, as other researchers have pointed out.
On the other hand, global registration attempts to aligns all
scans at the same time by distributing the registration error
evenly over all overlapping views.

The particular problem of multiview registration is that
the function to be minimized is a nonconvex function of a
set of rotations (translations can usually be eliminated, as we
shall see). Any algorithm that minimizes this function must
also maintain the constraint that the rotations remain so dur-
ing the course of an iterative procedure (other approaches
have been proposed; Pottmannet al. [PHYH04] suggest us-
ing the underlying affine space, applying the rigidity con-
straints only towards the end). Thus, standard optimization
approaches either use Lagrange constraints or have to per-
form projection steps after each iteration to ensure that this
(nonlinear) constraint is maintained.

A different approach that has been considered is to per-
form the minimization directly on the constraint mani-
fold. R

n is a manifold, albeit of very special type, and by
translating the usual notions of derivatives and tangents in
their differential-geometric generalizations, it is conceivable
that standard numerical methods like Newton/Gauss itera-
tions and conjugate gradients can be translated into their
manifold-based analogues. This area has received consid-
erable attention over the past few decades. Much work
has gone into both theoretical and practical approaches to
manifold-based optimization, and although a detailed review
of the literature is beyond the scope of this paper, a good
review can be found in the work by Edelman, Arias and
Smith [EAS99] on implementing Newton’s method and con-
jugate gradients on the Grassman and Stiefel manifolds.

In graphics, vision, and robotics, the “natural” constraint
manifolds arise from transformations groups like SO3,SE3
and the like. The group structure allows us to view these
manifolds as Lie groups, with associated Lie algebras. For
SO3 in particular, many of the relevant formulae (the ex-
ponential map, the logarithmic map, geodesic curves) are
easy to write down, making this approach very tractable both
mathematically and computationally. There are now several
examples of the use of Lie group methods in areas like pose
estimation [LM04, Gov04], path planning [Agr05], and ani-
mation [Ale02].

1.1. Our Work

In this paper, we consider the simultaneous registration of
multiview 3D point sets with known correspondences be-
tween overlapping scans.

We address the global registration task as an uncon-
strained optimization problem on a constraint manifold. Our
novel algorithm involves iterative cost function reduction on
the smooth manifold formed by the N-fold product of spe-
cial orthogonal groups. The optimization is based on locally
quadratically convergent Newton-type iterations on this con-
straint manifold. The proposed algorithm is fast, converges
at a local quadratic rate, computation per iteration is low
since the iteration cost is independent of the number of data
points in each view.

In addition, we present a new closed form solution based
on singular value decomposition for simultaneous registra-
tion of multiple point sets. In the noise free case, it gives
correct registrations in a single step. In the presence of noise
an additional projection step to the constraint manifold is re-
quired. This analytical solution is a useful initial estimate for
any iterative algorithm.

Paper Outline We start with a review of prior art in the
area in Section 2. After a high level overview of our method
in Section 3, we formulate the global point registration prob-
lem as an unconstrained optimization on a constraint mani-
fold in Sections 5. We present a compact reformulation of
the problem in 6, following which we describe our analytic
noise-free solution and our noisy initialization steps in Sec-
tion 7. A brief introduction to Lie groups and related mathe-
matical basics is described in Section 8. This is followed by
a presentation of our iterative scheme in Sections 9 and 10.
Experimental evaluation follows in Section 11.

2. Related Work

The first work on pairwise scan alignment was done by
Faugeras and Herbert [FH86], Horn [Hor87], and Arunet
al. [AHB87]. In all cases, the authors obtained simple closed
form expression for the single transformation minimizing
the least squares error between the registered scans. Such
pairwise schemes were used as modules in general multi-
view approaches like Iterative Closest Point (ICP) [BM92]
and the work of Chen and Medioni [CM92]. Simultane-
ous multiview registration schemes were considered by nu-
merous researchers [CM92], [BSGL96], [EFF98], [Pul99],
[SLW04], [SBB03]; among the more recent are papers
by Benjemaa and Schmitt [BS98] and Williams and Ben-
namoun [WB01], the former group formulating the opti-
mization in quaternion space, and the latter deriving a similar
approach using matrix representations. A comparative study
of simultaneous multiview registration schemes was per-
formed by Cunnington and Stoddart [CS99]; however this
comparison predates the work of Williams and Bennamoun.

The ICP algorithm has become the most common method
for aligning three-dimensional models based purely on the
geometry. The algorithm is widely used for registering the
outputs of 3D scanners, which typically only scan an object
from one direction at a time. ICP starts with two meshes and
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an initial guess for their relative rigid-body transform, and it-
eratively refines the transform by repeatedly generating pairs
of corresponding points on the meshes and minimizing an er-
ror metric. Generating the initial alignment can be done by a
variety of heuristics, such as tracking scanner position, iden-
tification and indexing of surface features [FH86, SM92],
"spin-image" surface signatures [JH97], computing princi-
pal axes of scans [DWJ97], exhaustive search for corre-
sponding points [CHC98, CHC99], or via user input.

Registration of corresponding points is not the only ap-
proach to solving multiview registration in general. ICP it-
self uses other heuristics to align surfaces, and in many cases
matching a point to a surface can provide a better fit than
simple point-point matching [RL01]. Due to space limita-
tions, we will not discuss these approaches further.

The most directly relevant prior art is a paper by Adler et
al. [ADM∗02] that considers the problem of spine realign-
ment. There, the problem is to determine correct poses for
individual vertebrae on the spinal cord such that misalign-
ment between adjacent vertebrae is minimized and a balance
criterion (expressed as an affine condition over the poses) is
maintained. They demonstrate that a good solution to this
problem closely resembles a healthy spinal alignment. Their
approach, like ours, is to view the problem as a minimiza-
tion over a product manifold of SO3, and use a Newton-type
method to solve it. The specifics of their approach are differ-
ent in that they derive an iterative scheme from first prin-
ciples by using the covariant derivative ∇X on the mani-
fold; our approach uses the Lie-algebraic representation of
the tangent space to yield an more direct approach.

It may be viewed that our requirement for apriori knowl-
edge of point correspondences from overlapping scans is a
major limitation, since this is usually not the case in prac-
tice. However, our algorithm is meant to work in conjunction
with methods like ICP which provide a general framework
for model registration. The crucial inner step of the ICP al-
gorithm is to refine the transform such that it minimizes a
error metric. It is this step that we consider in this paper.

3. Overview and Intuition

To help explain our algorithms, we present a brief overview
of how to perform Newton-type methods on manifolds. This
is intended to capture the intuition behind our methods and
is not intended to be mathematically rigorous. A reader fa-
miliar with Lie groups and basic differential geometry may
go directly to the algorithm description.

A traditional unconstrained or constrained optimization
methods performs searches in R

N . Directions of motion are
computed using Newton’s method (or other approaches) and
a small step is made in this direction. The standard iterative
step is of the form xk+1 = xk + aωk, where xk is the kth iter-
ate, a is a scalar, and ωk is a descent direction. The descent
directions lie in the tangent space of R

N , which is R
N itself,

a crucial fact that allows us to combine the terms xk and ωk.

When we move to a general manifold, almost every aspect
of the above iteration needs to be reinterpreted. Firstly, the
descent direction ωk lies in the tangent space at xk, which is
in general different to the tangent space at any other point,
and is different in general from the manifold itself. Thus,
some mapping is needed to pull back the tangent to the man-
ifold. Secondly, the operator + is specific to R

N as a group
operator that takes two elements of a group and maps to a
third element.

For a Lie group, the tangent space at a point can be ex-
pressed in terms of the associated Lie algebra. For SO3, the
associated Lie algebra so3 is the space of three dimensional
skew-symmetric matrices. Thus the descent direction can be
represented by a skew-symmetric matrix. The pull back op-
erator is called the exponential map. For matrices, it is in fact
the function eA (see Section 4 for the definition). The oper-
ator + is replaced by the group operator ◦ of the Lie group
(which for SO3 is matrix multiplication). What we then ob-
tain is an iteration of the form Rk+1 = Rk ◦ eaA, where once
again, a is a scalar. We will additionally exploit the isomor-
phism of so3 with R

3, allowing us to parametrize the matrix
A by coordinates in R

3.

4. Preliminaries

We introduce some common matrix operators that we will
use in subsequent sections. If M is an n× k matrix, then
vec(M) is a nk × 1 vector formed by writing down the
columns of M one at a time. The Kronecker product or ten-
sor product A⊗ B of two matrices A and B is the matrix
formed by replacing each element ai j of A by the matrix
ai jB. This is different from the direct sum ⊕ of matrices,
which is equal to a block diagonal matrix with the individ-
ual matrices as the diagonal blocks. Let tr(A) = ∑i aii de-
note the trace of a square matrix A. The following identi-
ties are well-known: tr(AB) = tr(BA) if A and B are both
square, (X ⊗Y )> = X> ⊗Y>,(X ⊗Y )−1 = X−1 ⊗Y−1

when the inverses exist, (X ⊗ Y )(A ⊗ B) = (XA ⊗ Y B),
and vec(XY Z) = (Z> ⊗ X)vec(Y ). A useful fact is that
tr(X>Y ) = tr(XY>) = vec>(x)vec(Y ), which implies that
for vectors u,v, the dot product u · v = u>v can be written as
u · v = tr(uv>). The exponential eA of a matrix A is defined
as eA = ∑i

Ai

i! .

5. The Problem Formulation

Given possibly noisy surface measurements from multiple
3D images and point correspondences among overlapped
images, the registration process is to find the rigid body
transformations between each image coordinate frame in or-
der to align sets of surface measurements into a reference
frame.

5.1. 3D Object Points and Multiple Views

Consider a 3D object as a set of 3D points W := {wk ∈
R

3 | k = 1,2, · · · ,n} in a ‘world’ reference frame (Fig. 1(a)).
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Throughout the paper we indicate the kth point in a set by a
superscript k.

Now consider multiple views of the object, each view be-
ing from a different vantage point and viewing direction and
each viewing being of possibly only a subset of the n 3D
points. For N views, let us denote the relative rotations and
translations as (R1, t1), · · · ,(RN , tN), that is, relative to the
‘world’ reference frame, where Ri is a 3×3 rotation matrix,
satisfying R>

i Ri = I3, det(Ri) = +1, and ti ∈ R
3 is a trans-

lation vector.

The ith view is limited to ni points Wi = {wk
i ∈ R

3 | k =
1,2, · · · ,ni} ⊂ W and is denoted Vi = {vk

i ∈ R
3 | k =

1,2, · · · ,ni} and consists of the images of the ni points in Wi
with relative rotation matrices and translation vectors given
by (Ri, ti). Thus in the noise free case,

wk
i = Riv

k
i + ti, k = 1,2, · · · ,ni. (1)

Let Wi j = Wi∩W j be the set of ni j points in Wi for which
there are corresponding points in W j , for i, j = 1, · · · ,N. That
is, Wi j = W ji consists of ni j = n ji points wk

i j = wk
ji ∈ R

3,
k = 1, · · · ,ni j . In view Vi the set of images of these points
is denoted Vi j := {vk

i j ∈ R
3 | k = 1,2, · · · ,ni j} ⊂ Vi and

of course for view V j it is denoted V ji := {vk
ji ∈ R

3 | k =
1,2, · · · ,ni j} ⊂ V j . In the noise free case, it is immediate
that

wk
i j = Riv

k
i j + ti = R jv

k
ji + t j

∀ i, j = 1,2, · · · ,N, k = 1,2, · · · ,ni j,
(2)

5.2. Registration Error Cost Function

When there is measurement noise, it makes sense to work
with a cost functions that penalizes the error (Rivk

i j + ti)−
(R jvk

ji + t j) for all i, j = 1,2, · · · ,N and k = 1,2, · · · ,ni j .
Trivially the error is zero for i = j. The cost index for all
the registrations which first comes to mind is given by the
sum of the squared Euclidean distances between the corre-
sponding points in all overlaps,

g(R,T ) =
N

∑
i=1

N

∑
j=i+1

ni j

∑
k=1
‖(Riv

k
i j + ti)− (R jv

k
ji + t j)‖

2,

=
N

∑
i=1

N

∑
j=i+1

ni j

∑
k=1

(‖Riv
k
i j−R jv

k
ji‖

2

+2(ti− t j)
>(Riv

k
i j−R jv

k
ji)+‖ti− t j‖

2).

(3)

6. A More Compact Reformulation

Let ei denote the ith column of the N×N identity matrix IN
and let ei j := ei− e j . Let

R :=
[
R1 R2 · · · RN

]
∈ R

3×3N (4)

and

T :=
[
t1 t2 · · · tN

]
∈ R

3×N (5)

then we have

Ri =R(e>i ⊗ I3), ti = T ei, ti− t j = T ei j. (6)

Let ak
i j := (ei⊗ I3)v

k
i j − (e j ⊗ I3)v

k
ji. Substituting the value

of Ri from Eq.(6),

Riv
k
i j−R jv

k
ji =Rak

i j

and thus

‖Riv
k
i j−R jv

k
ji‖

2 =Rak
i j ·Rak

i j

Similarly substituting the value of ti, we can rewrite the inner
expression of Eq.(3) as

Rak
i j ·Rak

i j +2T ei j ·Rak
i j +T ei j · T ei j

Let
[

A B
B> C

]
=

N

∑
i=1

N

∑
j=i+1

ni j

∑
k=1

[
ak

i j
ei j

][
ak>

i j e>i j

]
≥ 0 (7)

Using the fact that u · v = tr(uv>), we can now rewrite
Eq.(3) as

g(R,T ) = tr(RAR> +2RBT > +T CT >)

= tr
([
R T

][
A B

B> C

][
R>

T >

])
≥ 0,

(8)

or equivalently, as

g(R,T ) = tr(RAR>)+2vec>(T )vec(RB)

+vec>(T )(C⊗ I3)vec(T ),
(9)

since tr(XY>) = vec>(X)vec(Y ).

6.1. Eliminating T

Equation (9) is a quadratic function of vec(T ). This function
is convex (and thus has a unique minimum) iff C⊗ I3 is pos-
itive definite. An element cii of C is ∑k 6=i nik and ci j =−ni j
for j 6= i. Unfortunately, this implies that C is singular, since
C1 (where 1 is the all-ones vector) vanishes.

This is a consequence of the fact that we can only re-
cover relative transformations from our input, not absolute
transformations. We can fix (say) the first reference frame
(R1, t1) = (I3,0), where 0 is the zero vector, and eliminate
the first row and column from all the matrices. We will abuse
notation by continuing to use the same variables for R,T
and other matrices.

Eliminating the first row and column from C leaves a ma-
trix that is symmetric and strictly diagonally dominant i.e.,
each diagonal element is in absolute value strictly larger than
the sum of the absolute values of off-diagonal entries in that
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row. It is a basic property that such matrices are positive def-
inite, which consequently implies that C⊗ I3 is positive def-
inite, and thus g(R,T ) has a unique minimum for fixed R
and varying T . The minimizing value of T is then

vec(T ∗(R)) =−(C−1⊗ I3)vec(RB) =−vec(RBC−1)

T ∗(R) =−RBC−1. (10)

Substituting T ∗(R) from Eq.(10) into (8) leads to a reg-
istration error cost function depending only on rotations,

f (R) := g(R,T (R)) = tr(RMR>)

= vec>(R>)(I3⊗M)vec(R>)

(11)

whereM := A−BC−1B>, is the Schur complement of the
matrix defined in the left hand side of equation (7).

7. Initialization

Here we present a new closed form solution based on sin-
gular value decomposition that simultaneously registers all
range images which is used as the initial guess for the pro-
posed iterative algorithm of the previous section. In the noise
free case, it gives optimal and thus exact rotation matrices
in a single step. In the presence of noise, this step leads to
an ‘optimal’ matrix R ∈ R

3×3N but such that Ri /∈ SO3 for
some i typically. Thus, an additional projection step to the
manifold is required.

7.1. Noise Free Solution

In the noise free case, forR∈ SON
3 , the optimal value of the

cost function (11) is zero, as

vec>(R>)vec(MR>) = 0⇒ vec(MR>) = 0

⇒ MR> = 0.
(12)

SinceM is symmetric, a singular value decomposition gives

M=UΣU> =
[
Ua Ub

][
Σa 0
0 0

][
U>

a
U>

b

]

⇒MUb = 0.

(13)

To obtainR such that R1 = I3, let Û :=
[
I3 0

]
Ub, then the

closed form solution is

R= Û−>U>
b . (14)

7.2. Initialization in Noisy Case

In the presence of noise, the optimal cost function is no
longer equal to zero. In this case, Ub is chosen to be the set
of right singular vectors associated with 3 least singular val-
ues of M, which may not be zero. These singular vectors
might not be on SON

3 . Thus, an additional projection step is
required. Denoting Gi := Û−>Ub(ei⊗ I3), we have

Ropt
i = arg min

Ri∈SO3
‖Ri−Gi‖= arg max

Ri∈SO3
tr(R>

i Gi). (15)

By applying a singular value decomposition on Gi, we obtain

Gi = WΛZ>, Ropt
i = W

[
I2 0
0 det(WZ>)

]
Z>, (16)

where det(Ropt
i ) = +1.

8. The Product Manifold of SO3

Here we review the geometry of the special orthogonal group
and its product manifold. Let SO3 denote the group of 3×3
orthogonal matrices with determinant +1, then Ri ∈ SO3 for
i = 1, · · · ,N.

SO3 is a Lie group with the group operator being matrix
multiplication. Its associated Lie algebra so3 is the set of
3×3 skew symmetric matrices of the form,

Ω =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 . (17)

There is a well known isomorphism from the Lie algebra
(R3,×) to the Lie algebra (so3, [., .]), where × denotes the
cross product and [., .] denotes the matrix commutator. This
allows one to identify so3 with R

3 using the mapping in (17),
which maps a vector ω =

[
ωx ωy ωz

]
∈ R

3 to a matrix
Ω ∈ so3. Denoting

Qx :=




0 0 0
0 0 −1
0 1 0


 , Qy :=




0 0 1
0 0 0
−1 0 0


and

Qz :=




0 −1 0
1 0 0
0 0 0




(18)

note that

Ω = Ω(ω) = Qxωx +Qyωy +Qzωz. (19)

An identity that we will make use of later is:vec(Ω>) = Qω.
In this paper we will consider the N-fold product manifold
of SO3 which is a smooth manifold of dimension 3N, given
by

SON
3 =

N times︷ ︸︸ ︷
SO3×·· ·×SO3 . (20)

8.1. Tangent Space of SON
3

First recall that the tangent space of SO3 at Ri is given as
TRi SO3 = {RiΩi | Ωi ∈ so3} and the affine tangent space is
T a f f

Ri
SO3 = {Ri +RiΩi |Ωi ∈ so3}. Define

Ω̃ := Ω1⊕Ω2⊕·· ·⊕ΩN , Ωi ∈ so3. (21)

The direct sum, ⊕, of matrices is equal to a block diagonal
matrix with the individual matrices as its diagonal blocks.
Due to isomorphism, the tangent space of SON

3 at R =

[R1 R2 · · · RN ] ∈ SON
3 can be identified as, TRSON

3 = RΩ̃
and the affine tangent space is T a f f

R SON
3 =R+RΩ̃.
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8.2. Local Parameterization of SON
3

LetN (0)⊂R
3 denotes a sufficiently small open neighbour-

hood of the origin in R
3, and let Ri ∈ SO3. Then the expo-

nential mapping

µ :N (0)⊂ R
3→ SO3, ωi 7→ Rie

Ωi(ωi), (22)

is a local diffeomorphism from N (0) onto a neighbourhood
of Ri in SO3. Due to isomorphism, the product manifold SON

3
atR∈ SON

3 can be locally parameterized by

ϕ :N (0)×·· ·×N (0)⊂ R
3N → SON

3 ,

ω =




ω1
ω2
...

ωN


 7→ R

(
eΩ(ω1)⊕ eΩ(ω2)⊕·· ·⊕ eΩ(ωN)

)

=ReΩ̃(ω) (23)

9. Constructing A Local Approximation

We are now ready to present our algorithm. Firstly, we con-
struct a local approximation of f , using a second order Tay-
lor expansion. Instead of differentiating f , we will use the
local parametrization of SO3 described earlier, performing
the approximation on the function f ◦ ϕ, whose domain is
R

3N . Intuitively, the use of the local parametrization ϕ en-
sures that we always stay on the manifold.

The second order Taylor (2− jet) approximation of f ◦ϕ
is given by the function j(2)( f ◦ϕ) : R

3N → R,

ω 7→
(

( f ◦ϕ)(tω)+
d
dt

( f ◦ϕ)(tω)

+
1
2

d2

dt2 ( f ◦ϕ)(tω)

)∣∣∣∣∣
t=0

. (24)

As with a univariate Taylor expansion, the above ex-
pression can be written in the form ( f ◦ ϕ)(0) + ω>∇+
1
2 ω>Hω, where ∇ is the gradient and H is the Hessian of
the function f ◦ϕ.

The first term in (24) is ( f ◦ ϕ)(0) = tr(RMR>). The
second term is

d
dt

( f ◦ϕ)(tω)

∣∣∣∣
t=0

= ω>∇( f ◦ϕ)(0)

= 2tr(RΩ̃MR>),

(25)

Recall that tr(RΩ̃MR>) can be written as
vec>(Ω̃R>)vec(MR>).

vec>(Ω̃R>) = [vec(Ω̃R>)]>

= [vec(I3NΩ̃R>)]>

= [(R⊗ I3N)vec(Ω̃)]> (26)

Let Q̃ := Qe1 ⊕Qe2 ⊕·· ·⊕QeN , Qei :=




ei⊗Qx
ei⊗Qy
ei⊗Qz


. Then,

using (18), we have vec(Ω̃) = Q̃ω, and then (26) can be writ-
ten as

vec>(Ω̃R>) = ω>J>

where J := (R⊗ I3N)Q̃. Substituting back into (25),

∇( f ◦ϕ)(0) = 2J> vec(MR>) (27)

Finally, the quadratic term in (24) consists of a sum of two
terms. The first term is given as

tr(RΩ̃MΩ̃>R>) = ω>Ĥ( f◦ϕ)(0)ω, (28)

and the second quadratic term is

tr(RΩ̃2MR>) = vec>(Ω̃>)vec(MR>RΩ̃)

= ω>H̃( f◦ϕ)(0)ω
(29)

By applying similar methods as above, we obtain the Hes-
sian of f ◦ϕ evaluated at zero:

H( f◦ϕ)(0) = Ĥ( f◦ϕ)(0) + H̃( f◦ϕ)(0), (30)

where

Ĥ( f◦ϕ)(0) = J>(I3⊗M)J � 0 (31)

H̃( f◦ϕ)(0) =−Q̃>(I3N ⊗MR
>R)Q̃. (32)

Note that H is a sum of the positive semidefinite term Ĥ
and the term H̃. Since H̃ is nonzero, we cannot guarantee
that f has a unique (global) minimum. However, the fact that
we can decompose H as a sum of a positive definite term and
another term will prove to be useful in the iterative algorithm
we present next.

We note that H̃ vanishes when there are only two views, il-
lustrating the known fact that the two-view registration prob-
lem can be solved optimally.

10. The Algorithm

The proposed algorithm consists of the iteration,

s = π2 ◦π1 : SON
3 → SON

3 , (33)

where π1 maps a point R on the product manifold SON
3

to an element in the affine tangent space that minimizes
j(2)( f ◦ ϕ)(0) and π2 maps that element back to SON

3 by
means of the parametrization ϕ. The mapping π1 is a stan-
dard iterative scheme that uses a modified Newton method
to determine a descent direction and a line search to move
along this direction. We would like to observe that while we
use a line search strategy in our implementation, it is just as
easy to adapt it to the trust-region (also known as Levenberg-
Marquardt) method. Both methods generate iterates with the
help of a quadratic model of the objective function. The main
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difference lies in their use of the model. Line search meth-
ods use the model to generate only a search direction, while
trust-region methods define a region around the current it-
erate within which they trust the model to be an adequate
representation of the objective function and then choose a
step which is the approximate minimizer of the model in
this trust region (choose the direction and step size simul-
taneously). In what follows, we describe the line search ap-
proach in brief; the reader is referred to the text by Nocedal
and Wright [NW99] for more details.

10.1. Optimization in Local Parameter Space

Optimization in the local parameter space consists of two
steps. First we calculate a suitable descent direction, and
then we search for a step length that ensures reduction in
cost function. These two steps are described by the mapping

π1 = πb
1 ◦πa

1 : SON
3 → R

3N×3N . (34)

In the first step, πa
1 is used to obtain a descent direction,

πa
1 : SON

3 → R
3N×3N , R 7→R+RΩ̃(ωopt),

where ωopt is given by the Newton direction

ωopt(ϕ(ω)) =−H−1
( f◦ϕ)(ω)∇( f ◦ϕ)(ω), (35)

or a Gauss direction

ωopt(ϕ(ω)) =−Ĥ−1
( f◦ϕ)(ω)∇( f ◦ϕ)(ω). (36)

Once an optimal direction is computed, an approximate
one dimensional line search is carried out in this direction,
denoted by the mapping πb

1. We proceed with a search that
ensures that the cost function is reduced at every step. We use
backtracking line search ([NW99]) for this purpose. Since
we are using a descent direction, choosing a sufficiently
small step size will ensure that the cost function goes down-
hill. Backtracking line search starts with a step size of 1 and
iteratively updates the step size until certain termination con-
ditions are satisfied ([NW99], Section 3.4). Let λopt be the
step size returned by the backtracking procedure that reduces
the cost function in direction ωopt . Thus,

πb
1 : R

3N×3N → R
3N×3N ,

R+RΩ̃(ωopt) 7→ R+RΩ̃(λoptωopt). (37)

10.2. Projecting back via parametrization

Once the descent direction and downhill step size is ob-
tained, we map the resulting point back to the manifold via
the parametrization π2 : R

3N×3N → SON
3 :

R+ Ω̃(λoptωopt) 7→ ReΩ̃(λopt ωopt )

=R
(

e(Ω1(λopt ωopt
1 ))⊕·· ·⊕ eΩN(λopt ωopt

N )
)

(38)

since ωopt =
[
ωopt>

1 · · · ωopt>
N

]>
.

We summarize the algorithm in Algorithm 10.1:

Algorithm 10.1 Iterative Algorithm

Initialize R =R0 = [R1 R2 · · · RN ] ∈ SON
3 using the ini-

tialization procedure described in Section 7.2
repeat

{/* Step 1: Carry out optimization */}
Compute ∇( f ◦ϕ)(0), H( f◦ϕ)(0) via (27), (30) respec-
tively.
if H( f◦ϕ)(0) � 0 then

ωopt = H−1
( f◦ϕ)(0)

∇( f ◦ϕ)(0) {Newton step}
else

ωopt = Ĥ−1
( f◦ϕ)(0)

∇( f ◦ϕ)(0) {Gauss step}
end if
Compute optimum step size λopt in direction ωopt . Set
R′← πb

1(Rk) (37)

{/* Step 2: Map back to manifold */}
Rk+1← π2(R

′) (38)
until ‖∇( f ◦ϕ)(0)‖> ε

Theorem 10.1 Consider the iterationRk+1 = s(Rk) defined
by a single step of Algorithm 10.1 and denoteR∗ = ϕ(0) as
belonging to the set of local minima of j(2)( f ◦ϕ)(ω). Fur-
ther assume thatR∗ is an isolated minimum in that H−1

( f◦ϕ)(0)

exists. Then s converges locally quadratically toR∗.

We omit a detailed proof. The reader may refer to Lee’s the-
sis ([Lee05]) for more details.

Implementation Notes We use a simple eigenvalue com-
putation to determine whether the Hessian H is positive def-
inite. This is not the most efficient approach; other, more
sophisticated numerical methods can simplify this step, and
even avoid computing the Hessian directly. We defer a de-
tailed implementation study to an extended version of this
paper. To reduce computational effort per iteration of the al-
gorithm, the sparse matrix J (27) that we use for Hessian and
gradient computation can be manipulated further as follows.
Recalling Ω from (17),

J =
[
(R1⊗ I3N)Qe1(R2⊗ I3N)Qe2 · · ·(RN ⊗ I3N)QeN

]

=




Ω(ē>1 R1)⊕Ω(ē>1 R2)⊕·· ·⊕Ω(ē>1 RN)

Ω(ē>2 R1)⊕Ω(ē>2 R2)⊕·· ·⊕Ω(ē>2 RN)

Ω(ē>3 R1)⊕Ω(ē>3 R2)⊕·· ·⊕Ω(ē>3 RN)


 .

(39)

In general, determining a suitable modification to a non-
positive-definite Hessian to make it positive definite is the
core of the modified Newton method that we employ. It is
interesting that for this problem, the Hessian decomposes
cleanly into positive definite and non-positive-definite por-
tions, and this might be a sign of further structure in the
problem that a better iterative scheme might exploit.
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Model Number of vertices Number Total size Number of Time (in secs.) per
of scans of all scans view pairs generated iteration (MBR)

DRILL 1961 20 23298 77 0.015

DRAGON 100250 20 1142487 98 0.016

BUDDHA 32328 50 252580 526 0.093

Table 1: Statistics for the synthetic 3D models used for global registration

11. Experimental Evaluation

We now present an experimental study of our algorithm, fo-
cusing primarily on the quality of the registrations it pro-
duces, and the convergence rate of the method.

Methods We will compare our algorithm (which we will re-
fer to as MBR (Manifold-based registration)) to the schemes
proposed by Benjemaa and Schmitt [BS98] (QUAT) and
Williams and Bennamoun [WB01] (MAT). MBR and MAT
are matrix based and are written in MATLAB. MAT, which
uses quaternions in its formulation, is written in C. We used
a maximum iteration limit of 1000 for all the methods. Our
method of comparison between various algorithms will be
based on both visual quality as well as iteration counts and
error convergence rates (we will not use clock time).

Data Our first data set consists of actual 3D models from
the Stanford 3D Scanning Repository. For each of three
models, we generated a collection of views as follows: we
first generate a unit vector (representing a view) and ex-
tracted the points on all front-facing triangles with respect to
this view. Next, each view is randomly rotated and translated
into a local coordinate system. Finally, each point in each
view is randomly perturbed using a Gaussian noise model.
This yields a collection of views that possess a global noisy
registration. With this data, we have ground truth (exact cor-
respondences) since we have the original model. Table 1
summarizes the statistics of this data.

Our second data set consists of 3D range scan data from
the Digital Michelangelo Project [LPC∗00]. The individual
scans come with an original alignment (stored in .xf files).
We perform ICP on pairs of scans, using the routines built
into scanalyze, and retain all pairs of scans that have at
least three points in common as determined by ICP. In each
instance, we run ICP five times and take the best alignment
thus generated (each instance of ICP runs for ten iterations).
The model of correspondence used is point-point.

11.1. 3D Models

We first ran the three algorithms on the view pairs obtained
from the three 3D models. In Figure 1 we show the out-
put registrations obtained by MBR. For these examples, the
other two schemes produced similar registrations, although

with higher error. In Table 2, we compare the performance of
the three schemes on the models, in terms of both the num-
ber of iterations till convergence, and the final error. The final
error is computed by evaluating the function defined in (9).

What is striking about the numbers is that although in the
end the other approaches mostly (except for DRILL) yield
comparable error, their iteration counts are orders of magni-
tude higher than that of our scheme. This is a clear demon-
stration of locally quadratic convergence properties of our
scheme.

Factors that influence iteration counts Since our method
converges significantly faster than the other algorithms, we
attempted to investigate other factors that might improve
their performance. Some of the parameters that influence it-
eration counts are the density of the correspondence graph
i.e. how many view pairs are provided, and the strength of
match for each pair (average number of points in each view
pair).

In all cases, the number of iterations required by our
method to converge was unaffected by these parameters.
However, for the other methods, we noticed a fairly weak
correlation between the density of the correspondence graph
and the number of iterations needed; as the graph got denser,
implying a more constrained system, the number of itera-
tions needed to converge reduced. For example, the iteration
counts for MAT and QUAT went from close to 1000 (for a
sparse graph in the Dragon) to 47 (for a dense graph in the
Drill).

Cost per iteration We do not provide a comparison of ac-
tual time per iteration for the three methods because they
have been implemented on different platforms. However,
MBR and MAT exhibit cubic dependence on the number of
scans (for N scans, each iteration takes O(N3) time), while
QUAT take quadratic time per iteration at the expense of
many more iterations. There is no running time dependence
on the actual size of the model or size of each scan; there is
however a preprocessing cost dependent on the total size of
the corresponding points. Using our Matlab code, we mea-
sured the time per iteration only for our algorithm, MBR,
and is shown in the last column of Table 1. All timing mea-
surements were performed on a PC running Windows XP
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(a) Drill (b) Dragon (c) Buddha

Figure 1: Registrations produced by our Optimization-on-a-Manifold algorithm, MBR, on synthetic data sets.

with a 2.8 GHz Pentium IV processor and 512 MBytes of
RAM. For the models we tried in this paper, we roughly had
anywhere from 8 to 80 corresponding points between pairs
of scans.

11.2. Range Scan Data

Having evaluated the performance of our scheme in relation
to prior art in a controlled setting where ground truth (exact
correspondences) are known, we now present the results of
running the schemes on range scan data. We focus on the
model of David, specifically the views corresponding to the
head and bust region. After implementing the view gener-
ation procedure described earlier, we obtain a 10-scan in-
stance of the bust and a 38-scan instance of the head. We
also use a 21-scan instance that has bad starting alignment.

MBR MAT QUAT
Iter. Error Iter. Error Iter. Error

Drill 2 3.5e-7 47 3.5e-7 48 7e-7

Dragon 4 5e-3 933 1e-2 1000 1e-2

Buddha 2 2e-4 534 2e-3 718 3e-3

Table 2: Performance of the three registration methods
- our Optimization-on-a-Manifold method MBR, Williams
and Bennamoun’s SVD-based method MAT and Benjemaa
and Schmitt’s Quaternion-based method QUAT on the syn-
thetic data sets

Figure 2 shows the registrations obtained by MBR, MAT,
and QUAT. In all cases, the registration produced by our al-
gorithm is quite plausible. The other methods do not fare
so well; a typical problem is that the two halves of David’s
face do not register properly, creating the false effect of two
heads. Table 3 summarizes the performance of the three al-
gorithms in terms of iteration counts. For absolute times per
iteration, our algorithm, MBR, took 9 milliseconds for the

10-scan instance of the bust, 47 milliseconds for the 38-scan
instance of the head and 20 milliseconds for the 21-scan in-
stance of the bust with bad initial alignment.

MBR MAT QUAT
Iter. Iter. Iter.

Head 48 247 1000

Bust 12 1000 1000

Bust - Bad
Alignment 81 1000 1000

Table 3: Performance of the three registration methods
- our Optimization-on-a-Manifold method MBR, Williams
and Bennamoun’s SVD-based method MAT and Benjemaa
and Schmitt’s Quaternion-based method QUAT on the David
model - courtesy of the Digital Michelangelo project

12. Conclusion and Future Work

In this paper, we have presented a novel algorithm for si-
multaneous registration of multiple 3D point sets. The al-
gorithm is iterative in nature, based on an optimization-on-
a-manifold approach. The algorithm is locally quadratically
convergent, and converges much faster than prior methods
for simultaneous registration. We also propose a new ana-
lytic method that provides a closed form solution based on
singular value decomposition. It gives exact solutions in the
noise free case and can be used as a good initial estimate for
any iterative algorithm.
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(a) The head of David (detailed: 38 scans)

(b) The head and bust of David (10 scans)

(c) Head and bust: Bad initial alignment (21 scans)

Figure 2: This figure shows the results of three algorithms for simultaneous registration of multiple 3D point sets - our
Optimization-on-a-Manifold method MBR, Williams and Bennamoun’s SVD-based method MAT, and Benjemaa and Schmitt’s
Quaternion-based method QUAT (from left to right) on different instances of the David model.
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