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Abstract
In this paper, we review, analyze and compare representations for simplicial complexes. We classify such repre-
sentations, based on the dimension of the complexes they can encode, into dimension-independent structures, and
data structures for three- and for two-dimensional simplicial complexes. We further classify the data structures in
each group according to the basic kinds of the topological entities they represent. We present a description of each
data structure in terms of the entities and topological relations encoded, and we evaluate it based on its expressive
power, on its storage cost and on the efficiency in supporting navigation inside the complex, i.e., in retrieving
topological relations not explicitly encoded. We compare the various data structures inside each category based
on the above features.

1. Introduction
Cell and simplicial complexes are widely used representa-
tions for multi-dimensional geometric objects in geometric
and solid modeling, in finite element analysis and in visu-
alisation. In particular, simplicial complexes have received
great attention, since their combinatorial properties make
them easier to encode and manipulate. Here, we review data
structures for general simplicial complexes, i.e., for sim-
plicial complexes which describe non-manifold and non-
regular objects in two, three and higher dimensions. A man-
ifold (with boundary) is a subset of the Euclidean space for
which the neighborhood of each internal point is homeomor-
phic to an open ball and the neighborhood of each boundary
point to an open half-ball. Objects that do not fulfill such
properties at one or more points are called non-manifold
objects. Non-manifold objects, which are also non-regular,
contain parts of different dimensionalities.

Several data structures have been proposed in the litera-
ture for representing manifold objects discretized as cell or
simplicial complexes. Data structures for two-dimensional
cell complexes include the Winged-Edge [Bau72], the Half-
Edge [Man87], the DCEL [MP78], the Quad edge [GS85]
and the Lath [JLM02]. The Corner table [RSS01] data struc-
ture has been proposed for two-dimensional simplicial com-
plexes. The Facet-Edge [DL89] and the Handle-Face [LT97]
data structures have been proposed for three-dimensional
complexes. Dimension-independent data structures include
the Cell Tuple [Bri89] and the nG-map [Lie91] for cell com-

plexes, and the Indexed data structure with adjacencies (IA)
[Nie97, PBCF93] for simplicial complexes. Data structures
for two- and three-dimensional simplicial complexes have
been reviewed in [DKP04].

Here, we focus on data structures for general simpli-
cial complexes. We classify such data structures into three
groups: incidence-based, adjacency-based, and edge-based.
Incidence-based data structures encode only the incidence
relations among simplexes. Such data structures provide a
hierarchical perspective of the boundaries and co-boundaries
of simplexes. Adjacency-based data structures encode only
top simplexes (i.e., simplexes of maximal dimension or
which are not on the boundary of any other simplex) with
their vertices and their adjacent top simplexes. Usually, this
leads to more compact representations. Edge-based data
structures are specific for two-dimensional complexes em-
bedded in the 3D Euclidean space. They encode the edge as
basic entity and its relations with other simplexes (vertices
and triangles). We classify the data structures also in terms
of the dimensions of the complexes they describe.

The remainder of this paper is organized as follows.
Section 2 provides some background notions. Section 3
reviews and compares three dimension-independent data
structures, namely, the Initial Quasi-Manifold data structure
[DMMP03], the Incidence Graph[Ede87] and the Simpli-
fied Incidence Graph[DGH04]. Section 4 describes a spe-
cialized data structure for three-dimensional simplicial com-
plexes, namely the Non-Manifold Indexed data structure
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with Adjacencies[DH03], and compares it with the 3D in-
stances of the dimension-independent data structures ana-
lyzed in Section 3. Section 5 reviews data structures for
two-dimensional simplicial complexes embedded in the 3D
Euclidean space. Specifically, we describe a specialization
of the Partial Entities data structure[LL01] developed for
cell complexes, the Loop Edge-use data structure[McM00]
and the Directed Edge data structure[CKS98], which are
edge-based. We also describe a compact adjacency-based
data structure, the Triangle Segment[DMPS04], which ex-
plicitly encodes only vertices and top simplexes. Such data
structures are compared also with the 2D instances of the
dimension-independent data structures presented in Section
3. Finally, Section 6 presents some concluding remarks.

2. Background Notions
In this Section, we review some basic notions about Eu-
clidean simplicial complexes in arbitrary dimensions, and
about topological relations.

A Euclidean simplex σ of dimension k is the convex hull
of k+1 linearly independent points in the n-dimensional Eu-
clidean space En, 0 ≤ k ≤ n. We simply call a Euclidean
simplex of dimension k a k-simplex. k is called the dimen-
sion of σ and is denoted dim(σ). Let Vσ be a set of vertices.
Any Euclidean p-simplex σ′, with 0 ≤ p ≤ k, generated by
a set of vertices Vσ′ ⊆Vσ of cardinality p+1 ≤ d, is called a
p-face of σ. Whenever no ambiguity arises, the dimension-
ality of σ′ can be omitted, and σ′ is simply called a face of
σ. Any face σ′ of σ such that σ′ 6= σ is called a proper face
of σ. The empty set is a (-1)-face of all simplexes. If σ′ is a
face of σ, then σ is called a co-face of σ′.

A finite collection Σ of Euclidean simplexes forms a Eu-
clidean simplicial complex if and only if (i), for each simplex
σ ∈ Σ, all faces of σ belong to Σ, and (ii), for each pair of
simplexes σ and σ′, either σ∩σ′ = ∅ or σ∩σ′ is a face of
both σ and σ′. If d is the maximum of the dimensions of the
simplexes in Σ, we call Σ a d-dimensional simplicial com-
plex, or a simplicial d-complex. The domain, or carrier, of
a Euclidean simplicial d-complex Σ embedded in En, with
0 ≤ d ≤ n, is the subset of En defined by the union, as point
sets, of all the simplexes in Σ.

The boundary b(σ) of a simplex σ is the set of all proper
faces of σ in Σ. The co-boundary, or star, of a simplex σ is
defined as ?σ = {ξ ∈ Σ | σ is a face of ξ}. In the following,
we will call restricted star of a simplex σ, ?σ−{σ}, and
we denote it as st(σ). The link of a simplex σ is defined as
lk(σ) = {τ ∈ Σ | ∃ξ ∈ st(σ) such that τ is a co-face of ξ
and τ 6∈ st(σ)}. A simplex σ is called a top simplex of Σ if
?σ = {σ} A d-complex Σ, in which all top simplexes are
d-simplexes, is called regular (or uniformly d-dimensional).

Two simplexes are called k-adjacent if they share a k-
face. Two p-simplexes, 0 < p ≤ d, are said to be adjacent
if they are (p−1)-adjacent. Two vertices (i.e., 0-simplexes)
are called adjacent if they are both incident at a common
1-simplex. An h-path is a sequence of (h+1)-simplexes

(σi)
k
i=0 such that two consecutive simplexes σi−1 and σi in

the sequence are h-adjacent, 0≤h≤d−1. Two simplexes σ
and σ∗ are said to be h-connected if and only if there ex-
ists an h-path (σi)

k
i=0 such that σ is a face of σ0 and σ∗ is

a face of σk. A sub-complex of Σ is defined by any subset
Σ∗ of simplexes of Σ such that Σ∗ is a simplicial complex.
A sub-complex Σ∗ of a complex Σ is called h-connected
if and only if any two simplexes of Σ∗ are h-connected.
Any maximal h-connected sub-complex of a complex Σ is
called an h-connected component of Σ. A 0-connected com-
ponent is called a connected component. We call an h-cluster
an (h−1)-connected component in which all top simplexes
have dimension h.

An h-simplex σ in a regular d-complex Σ, 0≤ h ≤ d−1
is a manifold h-simplex if and only if there are at most two
(h+1)-simplexes incident at σ. An h-path such that any two
consecutive simplexes in the path are adjacent through a
manifold h-simplex is called a manifold path. Two (h+1)-
simplexes are h-manifold connected if and only if there ex-
ists a manifold h-path connecting them. A regular (d−1)-
connected d-complex in which all (d−1)-simplexes are
manifold is called a (combinatorial) pseudo-manifold (pos-
sibly with boundary). Figure 1(a) shows a complex, which is
a 2-cluster but not a pseudo-manifold. A regular d-complex
Σ is called an initial quasi-manifold if and only if every pair
of d-simplexes in the restricted star of every vertex of Σ are
(d−1)-manifold-connected within the restricted star. Figure
1(b) shows an example of a pseudo-manifold that is not an
initial quasi-manifold (because of the star of vertex v).

1df

2df

3df
v

(a) (b)
Figure 1: (a) A 2-cluster which is not a pseudo-manifold, (b)
a pseudo-manifold which is not an initial quasi-manifold.

A simplicial d-complex Σ embedded in the Euclidean d-
dimensional space Ed has the following properties:
1. Σ is a pseudo-manifold;
2. The top simplexes incident at any (d−2)-simplex σ can

be ordered around σ.
If a simplicial d-complex is embedded in the En, where n >
d, then Σ is not necessarily a pseudo-manifold, i.e., we can
have several d-simplexes in the star of a (d−1)-simplex. The
second property holds for all (n−2)-simplexes, if d ≤ n−1.

We call a k-simplex σ in a simplical d-complex a non-
manifold simplex if and only if lk(σ) consists of more than
one connected component. Figure 2 shows examples of non-
manifold simplexes in a simplicial 3-complex. Figure 2(a)
shows a non-manifold edge e, the link of e is highlighted in
Figure 2(b). Figure 2(c) shows an example of a non-manifold
vertex v.
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Figure 2: Singularities in 3D simplicial complexes

Σ
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(a) (b)
Figure 3: A 3D simplicial complex Σ (a) and a hexagonal
pinched pie subdivided in Σ (b)

There is a distinction between the non-manifold proper-
ties of a simplicial complex and the non-manifold properties
of its domain. For instance, vertex v in the pinched pie in
Figure 3(a) does not satisfy our definition of a non-manifold
vertex, but it is a non-manifold singularity in the domain of
the complex, see Figure 3(b).

Let Σ be a simplicial d-complex and let σ ∈ Σ, with 0≤
p≤ d. We define the following topological relations:
• For 0 ≤ q ≤ p−1, boundary relation Rp,q(σ) consists of

the set of q-simplexes in the set of faces of σ.
• For p+1 ≤ q ≤ d, co-boundary relation Rp,q(σ) consists

of the set of q-simplexes in the star of σ.
• For p > 0, adjacency relation Rp,p(σ) is the set of p-

simplexes in Σ that are (p−1)-adjacent to σ.
• Adjacency relation R0,0(σ), where σ is a vertex, consists

of the set of vertices σ′ such that {σ,σ′} is an edge of Σ.
We call constant any relation which involves a constant

number of entities. Note that boundary relations are constant
in a simplicial complex. Relations, which involve a variable
number of entities, are called variable. Co-boundary and ad-
jacency relations are variable relations. We call an algorithm
which retrieves a topological relation R optimal if and only if
it retrieves relation R in time linear in the number of entities
involved in R.

3. Data structures for d-dimensional simplicial
complexes

A widely-used dimension-independent data structure for
simplicial d-complexes is the Indexed data structure, which
encodes, for each top k-simplex σ, relation Rk,0(σ), i.e., the
indexes to its (k + 1)-vertices. Only boundary relations of
type Rk, j(σ), j < k, for any top k-simplex σ, can be ex-
tracted in optimal time from it. Note that the j-simplexes
on the boundary of σ are described through j + 1 vertex in-
dexes. Here, however, we are interested in so-called topolog-
ical data structures, which also encode adjacency and inci-
dence information among simplexes.

A very common data structure used for simplicial pseudo-
manifolds is the Indexed data structure with Adjacencies

(IA)[Nie97] (also called winged representation [PBCF93]),
which encodes, for each d-simplex σ in a complex, relations
Rd,0(σ) and Rd,d(σ) (which is a constant relation for pseudo-
manifolds). The IA data structure can be extended, when re-
stricted to initial quasi-manifolds, by encoding, for each ver-
tex v, relation R0,d(v), i.e., one d-simplex in the star of v.
This extension allows extracting all simplexes in the star of
a vertex in time linear in the number of such simplexes, i.e.,
all R0,k(v) relations, where 0 ≤ k ≤ d, in time linear in the
number of k-simplexes in R0,k(v), which is optimal.

To the extent of our knowledge, only three dimension-
independent topological data structures have been proposed
in the literature for d-dimensional simplicial complexes with
a completely general domain, namely, the Initial Quasi-
Manifold (IQM) data structure [DMMP03], the Incidence
Graph [Ede87] and the Simplified Incidence Graph (SIG)
[DGH04].

3.1. The Initial Quasi-Manifold data structure
The Initial Quasi-Manifold (IQM) data structure [DMMP03]
describes the decomposition of a simplicial complex into k-
dimensional initial quasi-manifold components, which are
nearly manifold in their properties. Intuitively, the decom-
position of Σ is obtained by cutting the complex at non-
manifold simplexes. Figure 4(b) shows an example of a de-
composition of the complex shown in Figure 4(a) into three
initial quasi-manifold components. In [DMMP03], an algo-
rithm has been proposed, which computes a unique decom-
position, called standard decomposition, of a simplicial d-
complex into initial quasi-manifold components.

The basis of the IQM data structure are an extended in-
dexed data structure with adjacencies to encode each IQM
component and a hypergraph describing how the compo-
nents are connected together in the decomposition. An h-
dimensional IQM can be effectively described by an ex-
tended indexed data structure with adjacencies, since the star
of each vertex in the IQM can be traversed by using relations
R∗

0,h plus Rh,h.
The connection among components is described through

the vertices bounding the k-simplexes, which are shared by
more than one IQM component. A vertex v of Σ, which is
shared by several IQM components, is called a split vertex.
The copy of split vertex v in a component Ci, to which vertex
v belongs, is denoted as vi and it is called a vertex copy. The
relations among the components in an IQM decomposition
of a complex described by the split vertices is represented
as a hypergraph H, in which the nodes correspond to IQM
components and each hyperarc corresponds to a split vertex
v and it connects all components Ci sharing v. In the example
shown in Figure 4, vertex v in Figure 4(a) is split into vertices
v1, v2 and v3 in the decomposition shown in Figure 4(b). In
the hypergraph shown in Figure 4(c), a hyperarc associates
v with the three components C1, C2 and C3 through the three
vertex copies.

The hypergraph is encoded in the following data structure:
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Figure 4: IQM decomposition of a complex

• for each component Ci: a reference to the extended IA
data structure describing Ci;

• for each hyperarc: the corresponding split vertex v and the
vertex copies of v;

• for every vertex copy vi corresponding to split vertex v:
– the component containing vi;
– a reference to its hyperarc, i.e., v.

The hypergraph supports a vertex-based traversal among
components connected through the same hyperarc. Given a
vertex copy vi from any component Ci, we can follow the
reference to its hyperarc and find all other vertex copies v j
connected with v, as well as all other components sharing v.

3.2. The Incidence Graph
The Incidence Graph (IG) [Ede87] encodes all the simplexes
of any given simplicial d-complex Σ, and the following topo-
logical relations:
• for each p-simplex σ, where 0< p≤d, boundary relations

Rp,p−1(σ),
• for each p-simplex σ, where 0≤ p<d, co-boundary rela-

tions Rp,p+1(σ)

Thus, for each p-simplex σ, the IG encodes its immediate
boundary, and its immediate co-boundary.

3.3. The Simplified Incidence Graph
The Simplified Incidence Graph (SIG) [DGH04] is based on
the concept of h-cluster (see Section 2. The SIG encodes all
simplexes in a simplicial complex Σ as well as the following
topological relations:
• for each p-simplex σ, where 0< p≤d, boundary relations

Rp,p−1(σ),
• for each p-simplex σ, where 0 ≤ p < d, partial co-

boundary relations R∗

p,q(σ) (where q > p), which is de-
fined as follows: R∗

p,q(σ) consists of one arbitrarily-
selected q-simplex, for each q-cluster in the restricted star
st(σ) of σ. In the example of Figure 2(c), t2 and t3 form a
3-cluster. R∗

0,3(v) = {t1, t2, t4}.
Note that partial co-boundary relation R∗

d−1,d(σ) is the same
as co-boundary relation Rd−1,d(σ). If the domain of Σ is
manifold, all partial co-boundary relations are empty with
the exception of R∗

p,d(σ), which consists of at most two d-
simplexes.

3.4. Comparison
All three data structures have the same expressive power.
While the IQM data structure is obviously decomposition-
based, the SIG encodes somehow a decomposition of the star

of a simplex. Note that the two decompositions are not the
same. A manifold-connected h-component is generally more
tightly connected than an h-cluster. The star of vertex v in the
complex in Figure 5(a) consists of four IQM components as
shown in Figure 5(b), but it has only two 3-clusters and one
2-cluster, as shown in Figure 5(c).

3t
1t

2t 1df 2df

3df
v

(a) (b) (c)
Figure 5: (a) Star of v; (b) IQM components at v; and (c)
Clusters at v

The IQM data structure encodes only the top simplexes
and the vertices, while both the IG and the SIG encode all
simplexes. The IQM data structure is adjacency-based, since
it encodes the adjacency relation among top simplexes just
like the IA data structure and its extensions. The other two
are incidence-based, since they encode only incidence rela-
tions. In the IG, the number of co-boundary relations en-
coded is the same as the boundary relations encoded. The
number of partial co-boundary relations encoded in the SIG
depends on the number of q-clusters incident at each sim-
plex. The IG is conceptually simpler, but definitely less com-
pact than the other two data structures.

A p-simplex σ, that is not explicitly encoded in the IQM
data structure, is represented either through a subset of ver-
tices in Rk,0(σ′), where σ′ is a top k-simplex incident at σ,
or by addressing σ as a p-face of σ′. Since it generalizes the
extended indexed data structure with adjacencies, the IQM
structure most efficiently answers queries on top h-simplex
σ regarding its vertices (i.e., Rh,0(σ) relation) and its neigh-
bours of dimension h (i.e., Rh,h(σ) relation). For extracting
co-boundary relation for a simplex σ, the general strategy is
to retrieve a vertex v of σ, traverse all the top simplexes in-
cident at v and extract from them the relevant simplexes that
are incident at σ.

The IG most efficiently supports queries about the imme-
diate boundary Rh,h−1(σ), or co-boundary Rh,h+1(σ) of an
h-simplex σ. It supports a simple recursive strategy to re-
trieve all other topological boundary and co-boundary rela-
tions. Adjacencies relations are retrieved in two steps: first,
the immediate boundary of the query p-simplex σ is re-
trieved; and then, for each (p− 1)-face of σ, its immediate
co-boundary simplexes are extracted.

Boundary relations are retrieved from the SIG in the same
way as from the IG. The general strategy for retrieving co-
boundary relations at a simplex σ consists of performing a
traversal of the star of σ, and then retrieving the boundary re-
lations of the top simplexes in the star σ. The strategy for re-
trieving adjacency relations at σ consists of retrieving the co-
boundary relations for the simplexes that are in the boundary
relation of σ [DGH04].
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Figure 6: Properties of simplicial complexes in 3D space

In summary, all three data structures can support the re-
trieval of boundary relations Rp,q, p > q and of co-boundary
relation Rd−1,d and R0,q in optimal time. The other co-
boundary relations Rp,q(σ),0 < p < q can be retrieved from
the IG and the SIG in optimal time but not from the IQM
data structure. Similarly, in retrieving adjacency relations,
the IG and the SIG are optimal, but the IQM data structure
is not.[DH05]

4. Data structure for 3D simplicial complexes
In this Section, we discuss a data structures specific for
three-dimensional simplicial complexes, the Non-Manifold
Indexed data structure with Adjacencies (NMIA) [DH03].
We compare it with the three-dimensional instances of the
data structures described in Section 3.

We consider simplicial 3-complexes embedded in E3. In
such complexes, we call a top 2-simplex a dangling face (for
instance, triangle df in Figure 6(a)), and a top 1-simplex a
wire edge (for instance, edge we in Figure 6(a)). Each sub-
complex of st(e) bounded by a connected component of
lk(e) at an edge is called an edge-based cluster. An edge-
based cluster may consist of just one single dangling face
(such as df in Figure 6(b) and the three faces in Figure 6(c)),
one single tetrahedron, or a fan of tetrahedra (such as t1, t2
and t3 in Figure 6(b)).

4.1. The Non-Manifold Indexed data structure with
Adjacencies

The Non-Manifold Indexed data structure with Adjacencies
(NMIA) [DH03] encodes the vertices, all the top simplexes
of a simplicial 3-complex and the following topological re-
lations:
• For each tetrahedron t:

– relation R3,0(t);
– relation R3,3(t);
– for each non-manifold edge e of t, relation

R3,clusters(t), which encodes the preceeding and
the succeeding top simplexes, around e, when that top
simplex is not in the same edge-based cluster as t.
For example, in Figure 6(b), R3,clusters(t3) at edge e
consists of t4, but not t2.

• For each dangling face f :
– relation R2,0( f );
– for each non-manifold edge e of f , relation

R2,clusters( f ), which encodes the preceeding and the
succeeding top simplexes, around e. In Figure 6(b),
R2,clusters(d f ) at edge e consists of t4 and t1

• For each wire edge w: relation R1,0(w);
• For each vertex v: relation R0,clusters(v) which encodes

one top simplex from each connected component in the
restricted star of v
The NMIA data structure is a non-manifold exten-

sion of the extended IA data structure (IA) and thus it
is an adjacency-based data structure. The multiple con-
nected components at non-manifold vertices and non-
manifold edges through relations R2,clusters for dangling
faces, R3,clusters for tetrahedron, and R0,clusters at vertices.

The storage cost of the NMIA data structure is as follows:
8n3 + 3nt

2 + 2nt
1 + Ce +Cv, where n3 is the total number of

tetrahedra, nt
2 the total number of dangling faces, nt

1 the to-
tal number of wire edges, Ce the total number of edge-based
clusters at non-manifold edges and Cv the total number of
connected-components at all vertices. When the domain of
the complex is manifold, Ce = nt

2 = nt
1 = 0 and Cv = n0.

Thus the NMIA structure encodes 8n3 +n0, exactly the same
amount of information as the extended IA structure for sim-
plicial 3-complexes.

4.2. Comparison
Both the NMIA and the IQM data structures encode only
top simplexes, while the IG and the SIG encode all sim-
plexes. We can observe that the NMIA structure encodes
information on singularities mainly from the perspective of
the top simplexes, that is, given a top simplex, we can tell
whether it is a non-manifold singularity, or its boundary
is a non-manifold singularity. The IQM structure encodes
non-manifold information at the vertices. The SIG encodes
non-manifold information at the non-manifold simplexes,
namely, through the presence of several clusters in its star.
The IG makes no explicit distinction between manifold and
non-manifold simplexes.

We compare the storage cost of the NMIA, of the 3D in-
stances of the IG, the SIG and the IQM data structures on the
five data sets shown in Table 1(a). The bunny data set is man-
ifold. The spider contains comparable numbers of tetrahedra
and dangling faces. The other data sets have small number
of singularities. Table 1(b) shows the storage cost of the four
data structures. We can see the the IG uses about 1.38 times
as much storage as the SIG and at least 3 times the storage
size of the NMIA. The IQM data structure is only slightly
larger than the NMIA data structure and in the manifold case
they are almost equivalent.

All four data structure are able to support the retrieval of
all topological relations. The NMIA data structure behaves
like the IQM structure in extracting boundary relations. For
co-boundary relations, top simplexes incident at an edge e
are ordered as clusters. Thus, they can be retrieved by using
relations R3,clusters and R2,clusters at the top simplexes inci-
dent at e. Top simplexes incident at a vertex v must be re-
trieved by traversing the star of v through relation R0,clusters.

Table 2 summarizes the time complexity of the algorithms
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Data set V WE DF T Ce Cv−n0 niqm

bunny 443 0 0 1996 0 0 1
dragon 1485 0 0 4996 0 8 1
hand 3139 1 1 9986 4 4 2
chime 246 7 9 360 18 30 27
spider 1250 0 1989 503 44 0 2

(a)

Data set NMIA IQM IG SIG
bunny 16.4k 16.4k 51.4k 36.8k
dragon 41.46k 41.48k 137.2k 97.70k
hand 83.04k 83.05k 276.8k 197.1k
chime 3.20k 3.32k 11.90k 8.51k
spider 17.22k 17.36k 39.56k 30.06k

(b)
Table 1: (a) Five data sets: V=# vertices, WE=# wire edges,
DF=# dangling faces, T=# tetrahedra; (b) Storage cost of
the four data structures for the data sets in (a).

for retrieving topological relations for the NMIA data struc-
ture and the 3D instances of the IQM data structure, of the
SIG and of the IG. Relations R1,3 and R0,3 can be retrieved
from the NMIA data structure in sub-optimal time. [DH03]

Relations NMIA IQM IG & SIG
Rp,q, p < q optimal optimal optimal

R2,3 optimal optimal optimal
R1,3 O(nσ) O(nv) for optimal

v ∈ R1,0(σ)

R1,2 optimal O(nv) for optimal
v ∈ R1,0(σ)

R0,3 O(nσ) optimal optimal
R0,2 & R0,1 optimal optimal optimal

R3,3 optimal optimal optimal
R2,2 & R1,1 optimal O(nv) for optimal

v ∈ Rk,0(σ),k=1,2
R0,0 optimal optimal optimal

Table 2: Retrieving topological relations of a simplex σ in
3-complexes: nσ denotes the number of top simplexes in the
star of σ, v is a vertex of σ, and nv denotes the number of top
simplexes in the star of v.

Because of its compactness, the implementation of the
NMIA data structure is more complex than the SIG or the
IG. A non-optimized implementation of the IQM data struc-
ture is not difficult. The major problem is that the decompo-
sition algorithm needs to be applied to any given simplicial
complex for computing it [DMMP03]. Algorithm for updat-
ing an NMIA data structure through edge collapse and its

reverse, vertex split, are described in [DH04]. We have de-
veloped algorithms for performing vertex pair collapse on
the SIG [DH05]. Similar algorithms have been proposed for
the IG [PH97]. No algorithm has been developed to update
the decomposition on which the IQM data structure is based
when the underlying simplicial complex is modified.

5. Data structures for 2D simplicial complexes
In this Section, we discuss data structures for two-
dimensional simplicial complexes embedded in E3. We re-
view and analyze an adjacency-based data structure called
the Triangle-Segment (TS) data structure [DMPS04], which
extends the IA data structure to general simplicial com-
plexes, and three edge-based data structures, namely:
• a specialization we have performed of the Partial Edge

(PE) data structure [LL01] originally designed for cell 2-
complexes embedded in E3,

• the Loop Edge-use (LE) data structure [McM00], which
specializes the Radial Edge (RE) data structure proposed
by Weiler [Wei88] for cell 2-complexes to regular simpli-
cial 2-complexes, in which the star of a vertex consists of
a single connected component,

• the Directed Edge (DE) data structure [CKS98], which
can encode any simplicial complexes embedded in E3.

The specializations of the PE and the LE are detailed in
[DH05]. We have also defined a specialization of the RE
data structure to general simplicial complexes, which we do
not present here, since the PE data structure is a more com-
pact representation with the same expressive power as the
RE data structure [LL01].

5.1. The Triangle-Segment data structure
The Triangle-Segment (TS) data structure [DMPS04] en-
codes all vertices, and top simplexes, i.e., triangles and wire
edges in a simplicial complex toegether with the following
topological relations:
• For each triangle t:

– boundary relation R2,0(t);
– relation R∗

2,2(t) that, for each edge e of t, encodes the
triangle(s) that are immediately preceding and suc-
ceeding t in counter-clockwise order around edge e.
In the example of Figure 6(c), R∗

2,2( f2) = { f1, f3}.

• For each vertex v:
– relation R∗

0,2(v) which encodes one triangle for each
connected component of lk(v)

– relation R∗

0,0(v), which is the R0,0(v) relation restricted
to wire edges. Thus, w is in R∗

0,0(v) if and only if {v,w}
is a wire edge.

In the TS data structure, edges are not encoded. Wire
edges are implicitly represented through R∗

0,0 relations. No-
tice that relation R∗

2,2(t) in the TS is equivalent to the
R2,clusters(t) relation in the NMIA data structure. Relations
R∗

0,2(v) and R∗

0,0(v) together are equivalent to R0,clusters(v)
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relation. The only difference is that wire edges are implicitly
described in the TS data structure.

The storage cost of the TS data structure is equal to 6n2
+ Ce + Cv, where n2 is the total number of triangles, Ce the
total number of edge-based clusters at non-manifold edges
and Cv the total number of connected-components at all ver-
tices. For a manifold domain, Ce = 0 and Cv = n0, so the TS
encodes 6n2 + nv pieces of information, which is the same
as the space required by the 2D instance of the extended IA
data structure.

Algorithms for retrieving topological relations are de-
scribed in [DH05]. In [DMPS04], algorithms for perform-
ing vertex pair contraction and vertex split on a simplicial
complex encoded in the TS data structure are presented. All
topological relations can be retrieved in optimal time from
the TS data structure [DH05].

5.2. Edge-based data structures
5.2.1. The Partial Entities data structure
The Partial Entities (PE) data structure [LL01] has been
proposed for cell complexes. It encodes: edges, and vertices,
plus two oriented entities, i.e., faces and partial-edges. Each
face is bounded by one oriented loop, which consists of a
circle of partial-edges. Each partial-edge corresponds to the
appearance of an edge on the oriented loop bounding a face.
Thus, if there are m faces incident at edge e, the PE data
structure stores m partial-edges corresponding to e. A wire
edge we has a loop that consists of two partial-edges of we.

We have simplified the original PE data structure, by drop-
ping the loops and entities like the shell and the region,
which have been introduced in the PE structure to encode
objects with several boundaries and several connected com-
ponents. The PE data structure for simplicial complexes en-
codes the following information (we refer to Figure 7 to il-
lustrate it):

p4e
v

p6e

p2e
p3e

p1e

p5ep7e

e

f1
f2f3

Figure 7: Elements of the PE structure: relations at a non-
manifold edge e shared by three faces: f1, f2, f3

• For each face f : a reference to a partial-edge on its bound-
ary. (In Figure 7, f1 has a reference to ep1);

• For each edge e, a reference to a partial-edge that de-
scribes e. (In Figure 7, e has a reference to ep1);

• For each partial-edge ep bounding face f , there is a refer-
ence to each of the following: (see ep1 in Figure 7 as an
example)
– the corresponding edge e (e in the example);
– the face f ( f1 in the example);

– the previous adjacent partial-edge ordered in counter-
clockwise direction around e (ep4 in the example);

– the next adjacent partial-edge ordered around e (ep6 in
the example);

– the previous partial-edge in counter-clockwise direc-
tion on the boundary of f (ep3 in the example);

– the next partial-edge on the boundary of f (ep2 in the
example);

– the start vertex of ep (v in the example);

• For each vertex v: the list of partial-edges ep that start at v
(In Figure 7, v has references to ep1, ep5 and ep7.)
We can express the information encoded in the special-

ized PE data structure in terms of topological relations. The
formalization of the PE data structure can be summarized as
follows:
• For each triangle f : relation R∗

2,1( f ), which encodes one
edge on the boundary of f ,

• For each edge e:
– Relation R1,2(e), ordered around edge e, so that the

i-th element in R1,2(e) is the i-th triangle incident at e;
– Partial relation R∗

1,1(e) which is defined as follows:
R∗

1,1(e) consists of the edges on the boundary of the
triangles incident at e and sharing one extreme vertex
with e. The elements in relation R∗

1,1(e) are ordered
so that both the 2i-th and the (2i+1)-th elements in
R∗

1,1(e) are on the i-th triangle in R1,2(e).
– Relation R1,0(e);

• For each vertex v: relation R0,1(v), unordered.
Relations R1,2(e), R∗

1,1(e) and R1,0(e) for edge e describe the
information encoded at edges. R1,2(e) describes the relation
between an edge and a triangle defined by a partial-edge.
Relation R∗

1,1(e) captures the association between a partial-
edge ep and the edges following and preceeding ep in the
boundary of the triangle f with which ep is associated. The
adjacency of partial-edges at the same edge e is implicitly
expressed through the order in R∗

1,1(e).

5.2.2. The Loop Edge-use data structure
The Loop Edge-use (LE) data structure [McM00] simpli-
fies the RE data structure [Wei88] developed for cell 2-
complexes embedded in E3 to regular simplicial complexes
in which non-manifold singularities occur only at edges.
Thus, the LE data structure does not represent wire edges,
and is based on the assumption that the link of each vertex
consists of a single connected component.

In this representation, each 2-simplex has a single orienta-
tion. The entities encoded by the LE data structure are: faces,
edges, vertices and edge-uses, where an edge-use is similar
to the partial-edge in the PE data structure and represents the
association between an edge and a triangle incident at it. The
LE structure encodes the following information: (we refer to
the examples in Figure 8 to illustrate it)
• For each face f , a reference to one edge-use on the bound-

ary of f (In Figure 8(a), f1 has a reference to eu1);
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• For each edge e, a reference to one edge-use that is asso-
ciated with e (In Figure 8(a), e has a reference to eu1);

• For each edge-use eu on the boundary of face f , there is a
reference to each of the following: (We illustrate the fields
of eu with eu1 in Figure 8(a). For clarity, we illustrate the
last of field of eu with eu1 in Figure 8(b).)
– the face f ( f1 in the example);
– the corresponding unoriented edge e (e in the exam-

ple);
– the next adjacent edge-use ordered around e in

counter-clockwise direction (eu5 in the example);
– the edge-use following eu in counter-clockwise direc-

tion on the boundary of f (eu2 in the example);
– the start vertex v of eu (v in the example);
– the next edge-use that starts at v (In the example of Fig-

ure 8(b), the three edge-uses starting at v are eu1,eu5
and eu7 in counter-clockwise order. eu1 has a reference
to eu5);

• For each vertex v, a reference to an edge-use that starts at
v (In Figure 8(b), v has a reference to eu1);

u4e
v

u5e

u2e
u3e

u1e

u6e

e

f1
f2f3

f4
u2e

u3e

u1e

u4e
u6e

u5e

u7e

v

f2

f1f3

(a) (b)
Figure 8: Elements of the LE structure: (a) Edge-uses of a
non-manifold edge e shared by four faces: f1, f2, f3, f4; (b)
Edge-uses starting at a vertex v

The formalization of the LE data structure in terms of topo-
logical relations can be expressed as follows:
• For each triangle f : Relation R∗

2,1( f ),
• For each edge e:

– Relation R1,2(e), ordered around edge e, so that the
i-th element is the i-th triangle at e;

– Partial relation R∗

1,1(e), as defined for the PE data
structure (see Subsection 5.2.1);

– Relation R1,0(e);

• For each vertex v: Partial relation R∗

0,1(v), that associates
v with one edge incident at v.

Note that it is almost identical to that of the PE data struc-
ture. The only difference is that R0,1 is encoded as a partial
relation since the LE data structure does not represent non-
manifold singularities at vertices.

5.2.3. The Directed Edge data structure
The Directed Edge (DE) data structure [CKS98] is an exten-
sion of the Half-Edge data structure [Man87] proposed for
two-dimensional cell complexes with a manifold domain. It
is based on the concept of directed edge. A directed edge

ed of an edge e in a 2-complex is an occurence of e on the
boundary a triangle incident at e. A directed edge is similar
to the edge-use in the LE data structure and to the partial-
edge in the PE data structure.

In the DE data structure, the entities are directed edges
and vertices. Triangles and unoriented edges are not explic-
itly encoded. Triangles are implicitly encoded by the edges
on their boundary. The association between a triangle and
its three edges is through indexing. The i-th triangle, fi is
described by the 3i-th, (3i + 1)-th and (3i + 2)-th directed
edges, which form the oriented boundary of fi. Wire edges
are represented as directed edges. The DE data structure en-
codes the following information:

2v

1v

de’’

de’

re
de

f

f ’

Figure 9: An illustration of the relations encoded at a di-
rected edge ed

• For each triangle f , the three directed edges on the bound-
ary of f ;

• For each directed edge ed on the boundary of face f , there
is a reference to each of the following entities: (see Figure
9 for the illustration of the symbols)
– the start vertex v1;
– the end vertex v2;
– the adjacent directed edge er that is incident at v1 and

v2;
– the previous directed edge e′′d bounding f in counter-

clockwise order;
– the next directed edge e′d bounding f in counter-

clockwise order;

• For each vertex v, one directed edge from each connected
component of the link of v.
We can formalize the topological relations encoded in the

DE data structure as follows:
• For each face f : R2,1( f ), which is encoded implicitly (the

i-th directed edge belongs to the (i/3)-th triangle);
• For each edge e:

– Relation R1,0(e);
– Partial relation R∗

1,1(e), as defined for the PE data
structure (see Subsection 5.2.1);

• For each vertex v: Partial relation R∗

0,1(v), which consists
of one edge for each connected component of the link of
v

In our formalization, we have encoded the unoriented edge
e, instead of its oriented edges and, thus, the information in
the directed edges in the DE data structure has been trans-
ferred to the unoriented edge and described by partial rela-
tion R∗

1,1(e), and in its ordering.
Thus, the DE structure encodes almost the same relations

as the PE data structure except for relation R0,1(v) at vertex
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v which is partially encoded in the DE data structure, but
completely encoded in the PE data structure.

5.2.4. Discussion
The three edge-based structures are very similar. The LE
data structure has a storage cost that is half of that of the
PE data structure. In the PE data structure, each partial-edge
has a reference to its previous and next partial-edge in ccw
order on the same face, and a reference to its previous and
next adjacent partial-edge associated with the same edge e in
ccw order. In the LE data structure, only the edge-uses fol-
lowing in ccw order are referenced in both cases. Figure 10
illustrates the differences through the arrows which show the
references encoded in each structure. The DE data structure

p1e

p4e

p2e
p3e

e
v

f1
f2 u1e

u4e

u2e
u3e

e
v

(a) (b)
Figure 10: Comparison between (a) the PE and (b) the LE
data structures

is slightly more compact than the LE data structure because
faces and unoriented edges are not encoded explicitly.

All topological relations can be retrieved from the edge-
based data structures in optimal time, and the retrieval algo-
rithms are straightforward [DH05]. For example, retrieving
face-based boundary relations R2,1, R2,0 involves following
the oriented edges on the loop bounding the face. Retrieval
of R1,2(e) for an edge e involves extracting all the oriented
edges ordered around the unoriented edge e.

5.3. Comparison
The TS data structure and the 2D instance of the IQM data
structure encode only top simplexes. The IG, the SIG, the PE
and the LE data structures encode all simplexes. The DE data
structure encodes only oriented edges and vertices. The LE
data structure represents only a subset of regular simplicial
complexes while all others represent arbitrary non-manifold
complexes.

The TS and the IQM structures are the most compact
ones because they encode only top simplexes. We compare
the various data structures on the data sets in Table 3(a).
The duck and the head are manifold data sets. The grid
is a regular data set. The others contain non-manifold ver-
tices and edges. Generally, edge-based data structures re-
quire more space than the incidence-based structures. The
DE data structure is 1.3 to 1.5 times the size of the IG. It is
about 1.25 the size of the SIG. The IQM is slightly larger
than the TS.

All edge-based data structures (the PE, the LE and the
DE data structures), all the incidence-based data structures

Data set V WE F Ce Cv−n0

duck 93 0 182 0 0
head 426 0 829 0 0
grid 200 0 492 256 0
gull 33 1 56 26 2
finch 629 12 1220 6 24

butterfly 68 11 90 49 21

(a)

Data set PE LE DE TS IQM SIG IG
duck 6918 3278 2823 1185 1186 1731 2184
head 31.5k 14.9k 13.0k 5379 5380 7908 9990
grid 18.9k 8778 7644 3280 3728 4628 5776
gull 2139 - 876 366 379 534 664
finch 46.5k - 19.0k 7981 8069 11.6k 14.7k

butterfly 3539 - 1451 628 714 905 1112

(b)
Table 3: (a) Seven data sets: V=# vertices, WE=# wire
edges, F=# triangles; Storage cost of data structures (b) for
2D data sets in (a).

Aspect PE LE DE TS IQM SIG IG

Domain NM REG NM NM NM NM NM
Entities all all all top top all all

Storage cost high high med low low med med
Retrieval of opt opt opt opt cobound opt opt

relations sub-opt

Table 4: Summary of comparisons for data structures for 2-
complexes. For domain: NM=non-manifold, REG=regular.
For entities: top=top simplexes, all=all simplexes. For re-
trieval of relations: opt=optimal, sub-opt=sub-optimal.

(the IG and the SIG) and the TS data structure support the
retrieval of all topological relations in optimal time.

In the IQM data structure, relations R1,2 and R2,2 can be
retrieved in sub-optimal time because retrieving these rela-
tions from the IQM structure involves visiting all compo-
nents at a vertex of the edge, and these components may
consist of wire edges. Table 4 summarizes the comparisons
among the data structures for 2D simplicial complexes.

6. Conclusion
We have reviewed data structures for simplicial complexes.
The IQM data structure, the IG and the SIG are dimension-
independent. The NMIA data structure is specialized for
complexes in E3. We have reviewed the TS data structure
and three edge-based data structures, namely, the PE, the LE
and the DE data structures, for 2D simplicial complexes.

The most compact data structures are adjacency-based
representations, while edge-based ones are the most space-

c© The Eurographics Association 2005.



L. De Floriani & A. Hui / Data structures for simplicial complexes: an analysis and a comparison

consuming. Incidence-based structures are in the middle
range for storage cost.

Almost all these data structures support the retrieval of
topological relations in optimal time, except for the IQM and
the NMIA data structures for selected relations. The IQM
data structure is more difficult to update than the other ones
because the decomposition of the complex, on which it is
based, must be maintained at each update.
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