
Eurographics Symposium on Geometry Processing (2004)
R. Scopigno, D. Zorin, (Editors)

Two Algorithms for Fast Reclustering
of Dynamic Meshed Surfaces

Nathan A. Carr and John C. Hart

University of Illinois Urbana-Champaign

Abstract
Numerous mesh algorithms such as parametrization, radiosity, and collision detection require the decomposition
of meshes into a series of clusters. In this paper we present two novel approaches for maintaining mesh clusterings
on dynamically deforming meshes. The first approach maintains a complete face cluster tree hierarchy using a
randomized data structure. The second algorithm maintains a mesh decomposition for a fixed set of clusters. With
both algorithms we are able to maintain clusterings on dynamically deforming surfaces of over 100K faces in
fractions of a second.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Geometric algorithms

1. Introduction

The clustering of a mesh into collections of homoge-
neous collections of triangles is a well studied problem
in computer graphics with applications in texture map-
ping, collision detection, radiosity and compression
[SWG∗03, LPRM02, GWH01, GLM96, HSA91, KG00].
The maintenance of these clusters during the deformation
of a mesh is much less studied, but can be important when
dynamically updating cluster-based graphics solutions
during modeling or animation. This paper explores two
algorithms for maintaining good clusters on moving meshes
of over 100K faces in a fraction of a second on a modern
personal computer.

The first algorithm constructs and maintains a hierarchi-
cal cluster that equivocates reclustering with maintaining a
balanced tree of e.g. surface area, triangle count, sample dis-
tribution, or spatial spread. The challenge then becomes one
of ensuring the clusters remain connected and round. We de-
scribe a novel application of Bloom filters, a data structure
designed to provide fast probabilistic answers to set queries,
to maintaining and reducing the perimeter lengths of the
clusters. The Bloom filter data structure can get quite large
for large meshes, but a careful analysis of its parameters cou-
pled with run-length encoding of the data structure leads to
an amenable implementation on current personal computers,
e.g. we can recluster a 70K face bunny in 800ms using 22MB
of Bloom-filter memory (156MB uncompressed).

Figure 1: Simplified Buddha model (100K faces) being in-
teractively deformed and automatically re-clustered (with
256 clusters) at 10Hz. Clusters are optimized for planarity
and compactness.

The second algorithm improves iterative clustering, which
grows clusters from a set of cluster centers, then finds bet-
ter cluster centers for the resulting clusters, and repeats, e.g.
[SWG∗03]. These iterations are costly, running about 250ms

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Nathan A. Carr and John C. Hart / Fast Reclustering

each on a 100K face model, needing 20s to converge after 78
iterations. Our improvements capitalize on cluster coherence
to accelerate these iterations. The first maintains a separate
heap for each cluster to accelerate the region growing and
erosion algorithms used to recompute cluster centers, result-
ing in a 2.5× speedup. The second improvement is based
on the observation that some clusters converge before oth-
ers, and keeping track of which clusters have changed re-
duces the per-iteration costs after 30 iterations to 10% of the
version accelerated by the first improvement. These two im-
provements allow us to execute 78 reclustering iterations of
a 100K-face mesh in less than a second.

These two algorithms accelerate the clustering of dynamic
meshes to support interactive updates. The hierarchical al-
gorithm is especially well suited for hierarchical radiosity
of dynamic scenes and collision detection between articu-
lated objects. Both algorithms can be guided toward yielding
the compact planar clusters that are useful for the reparam-
eterization and signal-sensitive texture mapping needed to
adaptively sample a deforming surface properly. Moreover,
the improvements can be used to simply reduce the lengthy
cluster preprocessing of large static meshes.

2. Previous Work

Many algorithms exist in the literature for partitioning
graphs. Since any dual representation of a mesh provides a
graph, these algorithms may directly be applied.

Shi and Malek introduced the concept of finding nor-
malized cuts on a graph, and applied their result to image
segmentation for use in computer vision [SM00]. Such ap-
proach was attempted by Katz and Taln for the decomposi-
tion of meshes but found mixed results[KT03]. Furthermore,
the approach taken by Shi and Malek for solving the NP-
hard problem is involves solving the eigenvalue problem for
rather large systems, so does not provide a constructive ap-
proach for adaptive graphs.

Karypis and Kumar developed an algorithm that performs
k-way partitioning of a graph intok disjoint connected sub-
graphs [KK98]. They attempted to form sub-graphs that
arebalanced, and whose resultingcut is minimal. Thebal-
anceconstraint forms sub-graphs whose sum of scalar vertex
weights are all nearly equal. The minimalcut tries to reduce
the sum of the edge weights crossing between partitioned
sub-graphs. Although the results provided by this algorithm
are reasonably fast and of good quality, the solution must be
recomputed from scratch for any small perturbation in the
graph.

Garland et al. [GWH01] presented an agglomerative
method for constructing a complete face cluster hierarchy
for manifold meshes. Iterative edge contraction is performed
on the dual graph of the mesh to construct the face hierarchy.
Although reasonably fast, running inO(vlgv) for v vertices
in the dual graph, the issues of maintaining such a hierarchy

on dynamically deforming meshes are not addressed by this
research.

Greedy region growing methods are another popular
means for breaking a mesh into a collection of charts. They
have the benefit over hierarchical clustering methods in that
they optimize for a fixed set of face clusters, rather than all
levels of a complete hierarchy. The greedy regions grow-
ing algorithms may be recursively applied to sub-clusters
to build a full tree in a top down manner. Partition choices
made higher in the tree may lead to poor clustering lower in
the tree. They are often more expensive than bottom-up ag-
glomerative approaches, making them less suitable for appli-
cations such as hierarchical radiosity that rely on a complete
hierarchy.

Levy et al. [LPRM02], Cohen-Steineret al. [CSAD04],
Schlafmanet al. [STK02], and Sanderet al. [SWG∗03] pro-
posed greedy region growing algorithms for forming clus-
ters. Seed faces are selected on the mesh, and greedy regions
growing is performed in parallel outward from the seed faces
to form the resulting clusters. The algorithms differ by their
selection of seed faces as well as chosen metrics for guiding
patch growth. Levyet al. chooses seeds only once by per-
forming feature detection on the mesh. The algorithms pro-
vided by Schlafmanet al. , Cohen-Steineret al. , and Sander
et al. are nearly identical, relying on ak-means style op-
timization strategy based off of Lloyd’s algorithm [Llo82].
New seed faces are computed using the cluster information
from the greedy region growing process, leading to an it-
erative scheme that is repeated until the face seeds do not
change and convergence is reached.

Although the rate of convergence for clustering usingk-
means style optimization is reasonably fast, the method may
still take on the order of minutes to compute for reasonably
sized meshes. Even when close to the solution the cost of a
singlek-means iteration for a large mesh may be high, pre-
venting the algorithm from being useful in adaptive mesh
environments.

Katz and Taln present a method for forming a hierarchi-
cal decomposition of a mesh into sets of meaningful com-
ponents [KT03]. Their underlying algorithm is similar to
that proposed by Schlafmanet al. and Sanderet al. , how-
ever, they further improve segmentation quality by resolving
boundaries between clusters with a min-cut algorithm. The
metrics guiding the method do not optimize for develop-
ability or compactness, so it is not ideally suited for mesh
parametrization. Further, the algorithm relies on computing
all-pairs shortest paths on the dual graph of the mesh which
is too costly for real-time application.

3. Dynamic Hierarchical Clustering

Some clustering methods are hierarchical, collecting clusters
into larger amalgams to provide multiresolution access to the
faces of a mesh, such as for hierarchical radiosity [GWH01].

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

These offline techniques generate a tree of well-shaped clus-
ters balanced according to a target metric. This section de-
scribes a fast rebalancing algorithm for rearranging the clus-
ter hierarchy under a dynamic metric. We use Bloom filters
in Section3.1as a fast method for estimating cluster perime-
ter length, and incorporate this goal as a second metric such
that the rebalancing method described in Sec.3.2maintains
round and contractible clusters.

We start by defining theimbalanceof a noden in a hier-
archical face clustering as

βn =


0 if n is a leaf,
δl /δr −1 if δl > δr ,
δr/δl −1 otherwise.

(1)

where as beforeδl and δr are the importance distribution
metric of the left and right children ofn respectively. The
imbalance indicates how much heavier one child is as a per-
centage of the weight of the other.

When the imbalance of a node reaches some acceptability
threshold, the hierarchy needs to be rebalanced. We rebal-
ance the hierarchy with a greedy search over local pertur-
bations of the tree described later in Section3.2. However,
tree perturbation can result in bad clustering, where sibling
clusters sharing few edges are merged into long skinny par-
ent clusters. Section3.1describes a fast method for estimat-
ing the number of shared edges between two clusters, and
this estimate can help determine which tree perturbations to
avoid.

3.1. Cluster Perimeter Estimation

Given two nodes in the treeni and n j , we desire to know
the total length of the shared border between their corre-
sponding clusters. This length can be found as the length
of the intersection of the set of perimeter edges of clusterni
with the set of perimeter edges of clustern j . But maintain-
ing complete perimeter edge sets at every node in the tree
is prohibitively expensive. To reduce memory and especially
computation requirements, we instead use a randomized data
structures that approximates these perimeters and measures
shared boundary length more efficiently.

Bloom Filters. Bloom filters are space and time efficient
data structures for answering fast set queries with controlled
error [Blo70]. A Bloom filterB(X) = (v,{hi}ki=1) operates
on a subsetX of some domain spaceX, and is comprised of
a bit-vectorv of mbits, and a set{hi}ki=1 of k hash functions
hi : X→{1,2, . . . ,m}. To insert an elementx∈X intoB(X)
we set the bits inv indexed byhi(x) for all i ∈ 1. . .k. An
elementx is predicted byB(X) to be inX if the bits inv in-
dexed by thek hash functions onx are all set. This approach
prevents false negatives; if the bit inv indexed by anyhi(x)
is not set, thenx 6∈ X. But there may be false positives; there
may existy ∈ X \X such that every bit inv indexed by an
hi(y) is set. The error rate (probability of a false positive) can

be controlled by increasing the number hash functionsk and
the bit-vector lengthm.

We Bloom filter the perimeter edge sets of every cluster
in the hierarchy. First a unique id is assigned to every edge
in the mesh. Then we construct a perimeter bit vectorv of
a cluster by hashing the ids of the edges in its perimeter.
The Manhattan metric (L1 norm) on this bit vector, denoted
||vn||, is the edge length of this perimeter predicted by the
Bloom filter. The shared boundary between two clusters cor-
responding to two nodesi and j is predicted as the number of
set bits the two vectorsvi andv j have in common, or more
concisely||vi&v j ||.

We store a perimeter bit vectorvn at every noden in
the binary tree. The perimeter bit vector of a leaf node is
constructed by hashing the ids of the edges in its cluster’s
perimeter. The perimeter bit vector of a parent is computed
by the element wise exclusive-or of the bit vectors of its two
children, which resets the bits corresponding to the shared
edges of its children’s perimeters.

The hashing functions, on which Bloom filters depend,
can and do collide, introducing false positive errors. Sec-
tion 3.3shows this error is strictly a function of the height of
the tree and the number of bits hashed at the leaves. Hence
local tree perturbations do not accumulate additional error in
the approximation.

Perimeter Metric. We define a perimeter metricγn for every
tree noden as

γn =
{

0 if n is a leaf,
||vl ||+ ||vr ||+α| ||vl ||− ||vr || | otherwise,

(2)
wherevl and vr are the perimeter edge set bit vectors for
the left and right child of noden respectively. The node’s
perimeter metric is a function of the children’s perimeters
(instead of its own perimeter) because the tree perturbation
methods described next alter the child perimeters, but leave
the node’s perimeter unchanged. The valueα is a freely
chosen parameter that gives some preference to balanced
perimeter lengths. Ifα = 0, then the metric may be small
even though one sibling’s perimeter is nicely rounded while
the other’s is long and thin. We have found settingα = 1/4
suffices.

3.2. Cluster Tree Rebalancing

Finding a good hierarchical face clustering becomes the task
of finding a binary tree with every noden suitably bal-
anced (according to the imbalanceβn) and corresponding to
a well-shaped cluster (according to the perimeter metricγn).
We search the space of all such hierarchies with a greedy
minimization that explores perturbations of the children and
grandchildren of each node. We explore two kinds of pertur-
bations: rotations and grandchild swapping.

Figure2 demonstrates half of the tree rotations available

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

A B C D

A B

C A

B C A

B

C
(a) (b) (c)

A B C D A BC D A B CD
(d) (e) (f)

Figure 2: The tree (a) can be rotated into both configura-
tions (b) and (c) because the order of children within a node
is irrelevant. The grandchildren (d) can likewise be swapped
into configurations (e) and (f).

to a node. The relevant children and grandchildren of a node
are shown in (a). A standard rotation leads to configuration
(b). However, since the order of the children within a node is
irrelevant, switching grandchildA with B before the rotation
leads to (c). We also investigate the two opposite rotations
where the right child is promoted. Figure2 also demon-
strates the

(4
2

)
= 6 possible pairings of four grandchildren

into two child nodes, organized into three different configu-
rations (d),(e) and (f).

To maintain triangle cluster coherence, every tree node
must correspond to a simply-connected cluster of triangles.
Both the rotation and grandchild swap may violate this prop-
erty.

We prune the available perturbations to better maintain
connected partitions. Of the four rotations, we select only the
one whose new grandchild pairing has the largest estimated
shared edge length. Of the grandchild swaps, we reject the
ones that do not meet or exceed the estimated shared edge
lengths between the existing grandchild pairings.

The perimeter metric and imbalance are then evaluated on
the remaining perturbations. To further minimize perimeter
length, we fix an imbalance thresholdτ. If a node’s imbal-
ance exceedsτ, we choose the perturbation with the smallest
perimeter metric that brings the node closer to balance. If the
node’s imbalance is already withinτ, we choose the pertur-
bation with the smallest perimeter metric whose imbalance
remains belowτ.

If a rotation or grandchild swap is found and imple-
mented, newly grouped descendants might, though rarely,
violate the imbalance thresholdτ. After a rotation we re-
balance the parent of the newly paired grandchildren. After
a grandchild swap, we rebalance both children of the base
node.

Construction. Construction of the initial face cluster hierar-
chy is performed bottom-up. The lossy nature of the Bloom
filtering of perimeter length prevents triangle insertion into
the tree in a top down manner. A single triangle is selected

from the mesh to form the first node of the tree. Triangles
are added to the hierarchy from a breadth first traversal ex-
panding from this initial triangle. Each triangle is inserted at
the bottom of the tree by forming a new two-triangle clus-
ter with an adjacent triangle that has already been inserted
in the tree. The insertion of each new triangle into the tree
requires rebalancing to minimize the prescribed metrics. For
each new triangle, we rebalance all of the nodes in its ances-
try, from the new two-triangle cluster all the way to the tree’s
root. Hence, for reasonable meshes, a balanced hierarchy is
constructed in approximatelyO(nlogn) time, wheren is the
number of triangles.

Algorithm Rebalance(Noden)

Evaluate metricsβ(n) andγ(n)
Initialize the best choicen∗= n
If (β(n) > τ) Then Forn′ ∈ Perturbations(n)

If (γ(n′) < γ(n∗) andβ(n′) < β(n))
n∗= n′

Else Forn′ ∈ Perturbations(n)
If (γ(n′) < γ(n∗) andβ(n′) < τ)

n∗= n′

Replacen with n∗
If n∗ was a rotation right Then Rebalance(RChild(n))
Else Ifn∗ was a rotation left Then Rebalance(LChild(n))
Else Ifn∗ was a granchild swap

Rebalance(LChild(n)) Rebalance(RChild(n))
If (p = Parent(n)) Rebalance(p)

Figure 3: Algorithm to rebalance the tree after the metric of
a single node has changed.

Maintenance.When the signal or shape of a set of triangles
changes, the meshed atlas needs to be rebalanced. This re-
balancing occurs by calling Rebalance(n) on each leaf node
n whose cluster contains at least one of the changed trian-
gles. Note that this results in a walk up the ancestry of each
of these leaf nodes, even though they may share common
ancestors. Simultaneously updating the metrics of all of the
leaf nodes sends the tree too far out of balance to be easily
recovered by the greedy local perturbation search. Assum-
ing a constant number of changed leaf nodes, maintenance
is thus, on average, anO(logn) time process.

3.3. Analysis

This section derives the error rate of the Bloom filter as a
function of its level in the hierarchy, which leads to a heuris-
tic for choosing an appropriate bit-vector sizem. An addi-
tional outcome of this analysis is the discovery that hash-
ing two bits per edge instead of one provided better cluster
shapes.

We first consider the error imposed by hashing. Suppose
a node corresponds to a cluster with a perimeter ofe edges.

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

The node contains a bit vectorv of m elements thatunder-
estimatesthe perimeter edge length, because collisions may
occur in the hashing of perimeter edges. If we assume a uni-
form hashing distribution, the probability that a particular bit
of v will be zero is((m− 1)/m)e. The expected perimeter
length is the expected number of bits set inv,

E[||v||] = m

(
1−

(
m−1

m

)e)
(3)

It follows that the expected number of collisions that occur
when constructingv from thee perimeter edges is the dif-
ference between the actual perimeter edge lengthe and the
expected perimeter length underestimate

E[coll] = e−E[||v||]. (4)

We now definePloss to be percentage of bits (perimeter
edges) lost due to collisions

Ploss=
E[coll]

e
(5)

This allows us to compute Table1, which shows the
chances that an edge is lost due to a hashing collision at
the single-triangle leaf nodes, by computingPloss for hash
functions that set one bit per edgee = 3 and various bit-
vector lengthsm. For later reference, we also compute the
leaf-nodePloss for hash functions that set two bits per edge
by settinge= 6.

bit vector sizem Ploss, e= 3 Ploss, e= 6

2 KBytes 0.0488% 0.122%
4 KBytes 0.0244% 0.061%
8 KBytes 0.0122% 0.031%

Table 1: Bit loss rate at leaf nodes.

We now develop a model to extendPloss to reveal the per-
centage of bits lost at every level higher in the tree. Suppose
a parent nodeP has two childrenC1 andC2 each havingn
bits set. Let

E1 = Event that a particular bit inv(C1) is 1,

E2 = Event that another particular bit inv(C2) is 1,

E3 = Event that yet another particular bit inv(P) is 1.

Note that the probabilities of the first two eventsPr[E1] =
Pr[E2] = n/m. Since the bit vector inP is the exclusive-or of
the bit vectors of its two children, we can express the proba-
bility that a given bit is set inv(P) as

Pr[E3] = Pr[E1∪E2]−Pr[E1E2]

= Pr[E1]+Pr[E2]−2Pr[E1E2]

= 2n/m−2Pr[E1E2]

We do not knowa priori the number of edges shared

between the clusters ofC1 and C2. In other wordsE1
andE2 are not mutually independent, thereforePr[E1E2] 6=
Pr[E1]Pr[E2]. Thus, we predict the percentage of a cluster’s
edges that are shared with a single neighboring cluster. If
clusters form equilateral triangles, then neighboring clusters
each share 1/3 of their edges. Quadrilateral clusters share 1/4
of their edges, and hexagonal clusters share 1/6. We mea-
sured the mean fraction of shared edges resulting from our
clustering method on several meshes, and found it surpris-
ingly to uniformly approximate 1/5.

We now examine the growth rates of cluster perimeters
under various neighboring predictions. Letc denote the as-
sumed percentage of edges a cluster shares with a single
neighboring cluster, e.g. 1/3, 1/4 or 1/6. Letei be the perime-
ter edge length of a cluster at leveli, wherei = 0 corresponds
to a leaf node. Thuse0 = 3 and

ei = 2ei−1−2cei−1,

= 2(1−c)ei−1,

= 3(2(1−c))i . (6)

Table2 illustrates the perimeter growth rate under various
edges-shared percentagesc.

triangles edges c = 1/3 c = 1/4 c = 1/6

1K 1,623 53 173 496
8K 12,580 126 584 2,296

256K 395,433 532 4,437 29,539
1M 1,577,852 946 9,976 82,053

Table 2: Cluster perimeter edge lengths ei as a function of
cluster size and shared edge percentage c.

As expected, the growth of the perimeter edge set grows
much slower than the number of triangles in the cluster,
which suggests the efficiency of Bloom filters when work-
ing with large meshes. It is interesting to note that decreasing
c from triangular (c = 1/3) to hexagonal (c = 1/6) does not
imply rounder clusters. In fact the perimeter lengths increase
which implies skinnier clusters that reach more neighboring
clusters.

An expression can now be formulated forPr[E1E2] using
our cluster connectedness assumptionc. We define the two
events

E2b = a particular shared border bit inC2 is 1,

E2p = a particular non-shared perimeter bit inC2 is 1.

The probability ofPr[E1E2] may now be expressed

Pr[E1E2] = Pr[E1]Pr[E2|E1],

= Pr[E1](Pr[E2b|E1]+Pr[E2p|E1]),

=
n
m

(
c+(1−c)

n
m

)
,

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

and

Pr[E3] = 2n(1−c)(1−n/m).

Using this model, the expected number of bits set in node
P will be

E[||w(P)||] = m×Pr [E3]

=
3
2

n(1−n/m)

We now have an expression that predicts the number of bits
set in a node given the number of bits set in its two children.
The expected number of collisions that have occurred higher
up in the tree is

E[coll(P)] = e(P)−E[||w(P)||] (7)

wheree(P) is the actual number of edges in the perime-
ter of the cluster corresponding toP. As before,Ploss(P) =
E[coll(P)]/e(P).

Error increases in our model due to collisions. As our bit
vector is required to hold more and more edges, it becomes
saturated.The effect of saturation is that more collisions oc-
cur and thus information is lost during the exclusive-or oper-
ation. Table3 uses the above formulated model to show the
percent loss occurring at various subtree levels.

tree size Ploss

leaves (tris) m=2K m=4K m=8K m=16K

1K 14.67% 7.80% 4.03% 2.05%
8K 38.41% 23.01% 12.73% 6.71%
256K 85.30% 73.04% 55.71% 37.17%
1M 93.24% 86.83% 75.53% 58.89%

Table 3: Perimeter Loss Rates, c= 1/4, 1 bit per edge.

A loss rate of 50% at a given level of the tree implies
that half of the perimeter bits have been lost or more con-
cretely that our estimate of the edge length of the perimeter
of our root cluster is half of its actual edge length. Although
this may seem sloppy, we only need enough bits to make
good judgements on which local tree perturbations to per-
form. At higher levels in our tree, the loss rate increases, but
so too does the number of bits that are set, allowing us to
still make good choices about what tree operations should
be performed.

In practice we found the loss at higher levels in the tree to
be satisfactory. We did find that random collisions occurring
very low in the tree proved fatal, leading the algorithm to
make poor tree operation choices. To prevent this we chose
to hash two bits per edge. Although our overall perimeter
loss rate increased, we found that our clusters became better
shaped (rounder) due to the increased information lower in
the tree. Table4 shows the expected perimeter loss using 2
bits per edge.

tree size Ploss

leaves (tris) m=2K m=4K m=8K m=16K

1K 26.15% 14.68% 7.81% 4.03%
8K 57.06% 38.41% 23.02% 12.73%
256K 92.41% 85.30% 73.04% 55.71%
1M 96.59% 93.24% 86.83% 75.53%

Table 4: Perimeter Loss Rates, c= 1/4, 2 bits per edge.

3.4. Results

We tested the rebalancing algorithm by randomly perturbing
every leaf node’sδ by a factorε ∈ [0.5,2.0]. Table5 com-
pares the mean imbalance in the tree using a surface area
metric to the mean imbalance after the application of the
perturbation. In both cases the average imbalance remains
below our threshold toleranceτ = 1.

model Averageβn

model area weighted area weighted +noise

cow 0.44 0.47

head 0.33 0.42

bunny 0.31 0.61

Table 5: Imbalance metric results showing good tree bal-
ance even under large importance perturbations withτ = 1.

Table6 details the memory and performance results for
our reparametrization method. All tests were run on a 700
MHz Athlon processor. Our scheme achieves interactive to
real-time rates depending on the size of the input mesh.

model triangles size build reparam

bunny 69,451K 156MB 60.22s 0.85-1.3s

head 7,232K 16MB 4.42s 0.09-0.14s

cow 5,804K 13MB 3.66s 0.07-0.1s

Table 6: Reparameterization performance using uncom-
pressed 8M bits per tree node.

The memory requirements of an 8M bit/node hierarchy
are substantial. The bottom of our face cluster tree has only
sparsely set bit vectors, but these nodes account for most of
the tree. Compression of Bloom filters is an area of recent in-
terest [Mit01]. A simple run-length encoding of the bit vec-
tors reduced memory requirements by more than 85%, as
shown in Table7.

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

model triangles size build rebalance

bunny 69,451K 22MB 183.69s 0.7-0.8s

head 7,232K 2.6MB 10.08s 0.08-0.1s

cow 5,804K 1.8MB 8.41s 0.06-0.08s

Table 7: Reparameterization performance using com-
pressed 8M bit fields per tree node.

Our initial tree build times tripled when using compressed
bit vectors, though we attribute much of this increase mem-
ory allocation overhead from bit vector resizing. Tree re-
balancing ran 20-50% faster with compressed bit vectors,
which we attribute to reduced memory bandwidth, and the
efficiency of computing||w|| on a compressed bit vector.

Figure4 shows the results of the Bloom filter clustering
process on the cow model, showing levels 2,4, and 6 of face
cluster tree (where level 0 is the root). At each level, clus-
ter perimeter is minimized, and the cluster surface areas are
balanced.

4. Adaptive k-means Style Clustering on a Surface

As discussed in Section2, Levyet al.[LPRM02], Schlafmen
et al. [STK02], Cohen-Steineret al. [CSAD04], and Sander
et al. [SWG∗03] proposed greedy regions growing methods
for chart construction. We chose to adapt the methods taken
by latter three references for the following two reasons. First,
these methods allow the mesh to be decomposed into any
number of clusters. Secondly, they are all based on an it-
erativek-means type approach allowing the solution to be
updated rather than re-computed during mesh changes. The
approach by Cohen-Steineret al. , does not attempt to favor
compactness, and as a result is more efficient, but less suited
to applications such as surface parametrization. For this rea-
son we focus primary on the essentially identical methods
proposed by Sanderet al. (and Schlafmenet al.) in describ-
ing our technique.

4.1. Background

The algorithm presented by Sanderet al. in [SWG∗03],
can be broken down into two separate phases that are iter-
atively applied until convergence is reached: an outward re-
gion growing phase, and an inward growing phase. The out-
ward region growing phase, grows clusters outward from a
set of seed faces also referred to as cluster centers. Faces in
the mesh are assigned to the cluster represented by their clos-
est cluster center where distance is defined to be the shortest
path in the dual graph. The inward growing phase performs a
shortest path search inward on each cluster to determine the
face that is mostcentral to the cluster. These faces become
the cluster centers for the next iteration of the algorithm. The

level 2

level 4

level 6

Figure 4: Cow model clustered using Bloom filters. Levels
2, 4, and 6 of the face cluster hierarchy.

two phases are applied until convergence is reached and the
cluster centers do not change(or a cycle is reached).

Both the outward region growing phase and inward grow-
ing phase use Dijkstra’s search algorithm, touching every
face in the mesh. Dijkstra’s algorithm has the well known
running time ofO((V +E) lgV), or O(V lgV +E) when im-
plemented with a Fibonacci heap[CLR90]. The latter ap-
proach, however, has a high cost hidden in constant fac-
tors. The overall running time for the algorithm is given

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

by O(I(V +E) lgV), whereI is the number of iterations re-
quired for convergence.

4.1.1. Initialization

For every dual vertexu, a scalar distance DIST(u), and its
closest cluster CLUSTER(u) is maintained. The distance is
defined to be the minimum distance (along the dual graph)
from u to its closest cluster center vertex whose cluster is
given by CLUSTER(u). Sanderet al.proposed the following
edge distance metric between adjacent facesF andF ′ in the
dual graph

DIST(F,F ′) = (λ− (Nc−NF′))||PF −PF′ ||2 (8)

wherePF andPF′ are the location of the faces centers,Nc

is the average normal of the region, andNF′ is the normal
for faceF ′. Sander chose the parameterλ = 1.0 giving no
distance penalty to faces co-planar with the global region
normal. Schlafmanet al.proposed a similar metric

DIST(F,F ′) = (1−λ)(1−cos2(α))+(λ)||PF −PF′ ||2.
(9)

Hereα is the dihedral angle between the faces, andλ∈ [0,1]
is freely chosen between the first term (angular distance) and
the second term which approximates geodesic distance. For
the purpose of forming planar compact patches, we prefer
the metric in (8) over that provide in (9) since the latter relies
on edge lengths to be on a similar scale to that of the angular
distance term.

At the start of the processk seed faces (dual vertices)
are selected to act as centers for the mesh clustering pro-
cess. These may be selected randomly, or via any number
of heuristic approaches. Thek-means strategy converges to
a local minima, so the starting choice of seed faces impacts
not only the number of iterations required for convergence,
but also the quality of the resulting clusters.

For achieving our starting seed configuration we usere-
cursive coordinate bisection[Sim91], which forms initial
clusters based on Euclidean (rather than geodesic) distances.
Faces are treated as a 3D point-set using their centroid lo-
cations. We compute the center of mass for the point set,
and its 3x3 inertial tensor matrix. The center of mass and
the eigenvector corresponding to the minimum eigenvalue of
the matrix defines a plane that minimizes the sum of squared
distances between all points in the set and the plane. The
cutting plane partitions the points into two spatially coher-
ent groups. We recursively apply the process to divide the
points into smaller sets until the number of sets equals the
number of starting seeds. For each set we find the most cen-
tral face (in the Euclidean sense) and use it as a starting seed
face.

4.1.2. Phase 1: Outward Region Growing

The cluster center vertices are assigned a distance of zero
(since they are are zero distance from a cluster center), and

assigned to a unique cluster. All other dual vertices are as-
signed an infinite distance since their shortest paths to a clus-
ter center are currently unknown. Cluster center vertices are
then placed into a priority queue. At each step of the re-
gion growing process, a dual vertexu is removed from the
top of the priority queue, and assigned to its closest cluster,
CLUSTER(u).

Relaxation is performed on the neighbor setv∈ Ad j[u] of
u, whereAd j[u] is the set of neighboring vertices attached
by an edge tou in the dual graph. This is done by com-
puting a distanced for each adjacent face that has not been
assigned to a cluster. This distance is computed as follows:
d = DIST(u)+DIST(u,v). If d is less than the currently
known distance forv: DIST(v), then u is relaxed by set-
ting DIST(v) = d and CLUSTER(v) =CLUSTER(u), and
updating the location ofv in the priority queue accordingly.
Pseudocode for phase 1 of Sander’s algorithm is given in
Algorithm 5.

Algorithm Phase1(faceHeap H)

while H 6= Ø
u← EXTRACT-MIN(H)
C← CLUSTER(u)
C← C∪ u
for each v∈ Adj[u]

d← DIST(u,v)
if DIST(u) + d < DIST(v)

DIST(v)← DIST(u) + d
CLUSTER(v)← CLUSTER(u)
if v ∈ H

DECREASE-KEY(H,v,DIST(v))

Figure 5: Outward region growing algorithm implemented
using a single heap.

4.1.3. Phase 2: Inward Region Growing

Following phase 1, every face has been assigned to a cluster.
The quality of each cluster is dependant on both the number
of seed faces, and the choice of seed face locations. Phase 2
computes a new seed face for each cluster.

The new seed face for each cluster is chosen to be the face
whose distance (along the dual graph) to the cluster border
is maximal. These new seed faces are found by placing the
faces along the borders of each cluster onto a heap, and as-
signing them a zero distance. Regions are grown inward us-
ing the same Dijkstra search algorithm detailed in phase 1.
The last face reached within each cluster during this inward
growing process becomes the new seed face for the cluster.
Using the updated seed faces, phase 1 may be applied to
compute the new clusters. The two phases are iterated until
convergence or a cycle is detected.

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

4.2. Multiple Heaps

To improve the running time of the algorithm we start by
decomposing the problem into a collection of heaps, one
per cluster. The algorithm proceeds in a manner similar to
that presented in Figure5. Rather than adding faces to a
global heap during the relaxation process, faces are added
to the heap whose cluster center is currently closest. The or-
der in which faces are processed is handled by selecting the
cluster heap whose top element has the minimum distance.
This search may be accelerated by placing all clusters into a
global priority queue (heap) represented byHG in algorithm
6.

Algorithm Phase1_Optimized(globalHeapHG)

while HG 6= Ø
C← EXTRACT-MIN(HG)
u← EXTRACT-MIN(HC)
C← C∪ u
for each v∈ Adj[u]

d← DIST(u,v)
if DIST(u) + d < DIST(v)

DIST(v)← DIST(u) + d
CLUSTER(v)← CLUSTER(u)
if v ∈ Hi , Hi 6= HC

DELETE(Hi ,v)
else if v∈ HC

DECREASE-KEY(HC,v,DIST(v))
else

INSERT(HC,v,DIST(v))
if HC 6= Ø

u← TOP(HC)
INSERT(HG,C,DIST(u))

Figure 6: Optimization for the outward region growing pro-
cess. Nested heap structure used to reduce search times.

By decomposing the problem into a collection of heaps,
the inward region growing process (phase 2) may be handled
separately for each cluster. This is done by iterating over the
clusters, and performing the Dijkstra shortest path search in-
ward from the cluster’s border to find the face that is most
distant from the edge.

Assuming every cluster grows to contain the same num-
ber of triangles, the running time of phase 1 is reduced to
O((V lg(k) + (V + E) lg(V/k)), and phase 2 is reduced to
O((V +E) lg(V/k)).

4.3. Border Sets

The optimization presented above reduces the cost of exe-
cuting a single iteration of thek-means process. The cost of
each successive iteration, however, remains constant. Ideally

we wish the iteration cost to decrease as it converges towards
the solution.

The key observation is that interactions on successive it-
erations occur on the borders between cluster regions. We
store with each clusterC the setBC of triangles on its bor-
der. A trianglet is in BC if it belongs to the clusterC, but
shares at least one edge with another cluster.

If a cluster’s border set has not changed following an it-
eration of phase 1, then clearly the seed face for that clus-
ter does not change either. In this case, phase 2 (the inward
growing process) need not be performed for that cluster.

The known border is also used to improve the perfor-
mance of phase 1. The idea is that the current clusters pro-
vides a good starting guess for an iteration of phase 1. Rather
than initializing each cluster’s heapHC with the cluster’s
single seed face, we insert the cluster’s border setBC into
its heap. Successive iterations of phase 1 are therefore per-
formed starting with each cluster already grown out to its
border. The cost of phase 1 is reduced to the movement of a
few triangles between clusters on the frontiers between clus-
ter regions.

In the event that a cluster’s border set changes following
phase 1, a new seed face must be computed for that cluster.
We apply a phase 2 operation to that cluster to find the new
cluster center. For phase 1, however, every face must the dis-
tance to its closest cluster center. This requires the distances
within a cluster to be recomputed by growing the patch out-
ward from its new cluster center to its border. In some cases,
however, this situation may be avoided. If the result of per-
forming a phase 2 operation on the cluster finds the cluster
seed face unchanged, then the distances to the center may
not need to be computed. In the case of theDIST() met-
ric provided by Sanderet al. , distances are impacted by the
global chart normal so this optimization cannot be used.

The last improvement is to note that that if a clusterC and
all of its adjacent clustersCad j remain unchanged after an
iteration of phase 1 and phase 2, thenC cannot grow outward
during the next iteration of phase 1. Therefore, we do not
place clusterC on the global headHG, or initializeC’s cluster
heapHC with its border set.

4.4. Results

These enhancements play a significant role in the perfor-
mance of the clustering process and can be used to achieve
the exact same solution as that proposed in [SWG∗03] and
[STK02]. As the algorithm converges, the number of chang-
ing clusters decreases along with the processing time. Fig-
ure7 shows the running time used on the horse model. The
clustering process was seeded withk = 256 randomly cho-
sen seeds, and took 80 iterations to converge. By using a sep-
arate heaps per clusters we achieved a 2.5× speedup. Keep-
ing track of the changing clusters further reduces the running

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

time which decreases as the algorithm converges, providing
over a magnitude speed-up over the original method.

Figure 7: Clustering performance on the horse model con-
taining 96,966 faces, using k= 312 and randomly chosen
seed faces.

The reduction in processing time when near the solution
makes this algorithm practical for dynamic meshes. For any
given deformation, the running times for our method greatly
varied depending on the magnitude of deformation (from
the last computed clustering) and the number of clusters im-
pacted by the deformation. We tested models of varying size
up to 100K faces, and found our re-clustering to run in under
1.0 second even for reasonably large deformations impacting
the entire model.

Figure1 shows screen shots from an interactive modeling
session with a 100K face Buddha model. The re-clustering
times during the shown deformation took between 0.08−0.1
seconds on a 2.1GHz Athlon processor. Figure8 shows the
69,451 face bunny model interactively deformed and re-
clustered withk = 256. Note how the clusters resist cross-
ing high curvature regions of the model, as governed by the
metric given in equation8.

Figure 8: Re-clustering of bunny model containing 69,451
faces, using k= 256 and randomly chosen seed faces at
20Hz. Note the clusters maintain compact shape and avoid
crossing high curvature regions of the mesh.

Figure9 shows how the performance of the reclustering
method is impacted by the number of clusters under extreme

deformations impacting all clusters. Deformation 1 on the
graph shows the time required to cluster the model from
scratch. Note that under some extreme deformations with
k = 128 the running time equalled that of initially cluster-
ing the model from scratch. By increasing the number of
clusters, the algorithm is able to find a local minimum with
fewer iterations resulting in faster running times.

Figure 9: Reclustering times for the Buddha model (100K
faces) undergoing 45 large deformations, with k=[128, 256,
512, 1024].

Lloyd’s algorithm fork-means clustering is only known
to converge to some local minimum. For any given choice of
starting seeds the potential arises for the clustering algorithm
to get trapped in some poor local minimum. Furthermore,
if may be desirable to minimize the number of clusters or
let the clustering processes determine the number of clusters
needed to meet some threshold error criteria. Both of these
goals may be met by applying merging and splitting of clus-
ters during thek-means process. Merging is be performed
when two connected clusters are detected that may be com-
bined to form a single cluster without introducing much er-
ror. Splitting is accomplished by adding an additional seed
face to a cluster containing high error. Splitting may be used
to introduce new clusters until the error falls below some
threshold[SWG∗03]. A merge followed by a split (referred
to asregion teleportation), allows the algorithm to escape
potentially poor local minima [CSAD04]. We have not yet
implemented merging and splitting into our dynamic clus-
tering system, but do not foresee any obstacles for this using
our method.

5. Conclusions

We have thus demonstrated two methods (one hierarchical,
the other iterative) for reorganizing face clusters on a meshed
surfaces. These methods run at interactive speeds (less than
a second) for large models of 100K polygons and in real-
time (less than 100ms) for smaller models of 10K polygons.

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

It is interesting to note, in conclusion, that both algorithms
rely heavily on sophisticated data structures to maintain the
shared boundaries between clusters.

The hierarchical reclustering method seems particularly
well suited for collision detection of articulated deforming
figures in games and virtual environments where face counts
are held to a minimum. Examples of dynamic meshes in such
applications could include the ability to dig holes and caves
in terrain, or in general the manipulation of one’s environ-
ment to solve a problem.

The main impediment preventing the widespread appli-
cation of the hierarchical reclustering method is the size of
Bloom filters. Simple RLE compression resulted in an 85%
reduction in their storage. Other more sophisticated com-
pression techniques could produce 100:1 and perhaps 1000:1
compression rates. Bloom filters produce a probabalistic re-
sult, so their compression need not even be lossless. Other
compression methods in graphics have sacrificed quality for
speed (e.g. the reduction of overdraw in compressed precom-
puted radiance transfer [SHHS03]). In the case of Bloom fil-
ters one could similarly sacrifice prediction quality for an
additional boost in compression rate.

The iterative reclustering method appears to be a good
choice for interactive modeling systems, where one may
want to maintain (and dynamically resample) a texture at-
las during the modeling process. When clusters are formed
on the basis of signal bandwidth, reclustering becomes a
method for dynamically tuning a texture atlas to best repro-
duce the signal. For example, a painting system based on this
concept allows the system to reproduce fine strokes [CH04],
but was implemented using a multiresolution meshed atlas
whose charts are not very “intuitively” organized. Recluster-
ing into more round, flat charts as described here could lead
to an atlas that, while perhaps not covering the texture do-
main as efficiently, would nevertheless contain fewer, larger
charts that would be easier to navigate mentally by texture
artists.

References

[Blo70] BLOOM B.: Space/time tradeoffs in hash coding
with allowable errors.Communications of the
ACM 13, 2 (July 1970), 159–188.3

[CH04] CARR N. A., HART J. C.: Painting detail.Proc.
SIGGRAPH 2004, ACM Trans. on Graphics 23,
3 (Aug. 2004).11

[CLR90] CORMEN T., LEISERSONC., RIVEST R.: In-
troduction to Algorithms. McGraw-Hill, 1990.
7

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN

M.: Variational shape approximation.Proc.
SIGGRAPH 2004, ACM Trans. on Graphics 23,
3 (Aug. 2004).2, 7, 10

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.:
OBBTree: A hierarchical structure for rapid in-
terference detection. InProc. SIGGRAPH 96
(1996), pp. 171–180.1

[GWH01] GARLAND M., WILLMOTT A., HECKBERT

P. S.: Hierarchical face clustering on polygo-
nal surfaces. InProc. Interactive 3D Graphics
(2001), ACM, pp. 49–58.1, 2

[HSA91] HANRAHAN P., SALZMAN D., AUPPERLEL.:
A rapid hierarchical radiosity algorithm. In
Proc. SIGGRAPH 91(July 1991), pp. 197–206.
1

[KG00] KARNI Z., GOTSMAN C.: Spectral compres-
sion of mesh geometry. InProc. SIGGRAPH
2000(July 2000), pp. 279–286.1

[KK98] KARYPIS G., KUMAR V.: Multilevel algo-
rithms for multi-constraint graph partitioning.
In Proc. Supercomputing 98(Nov. 1998).2

[KT03] KATZ S., TALN A.: Hierarchical mesh decom-
position using fuzzy clustering and cuts.ACM
Trans. on Graphics 22(July 2003), 954–961.2

[Llo82] LLOYD S. P.: Least squares quantization in
pcm. IEEE Trans. Inform. Theory 28(1982),
129–137.2

[LPRM02] LEVY B., PETITJEAN S., RAY N., MAILLOT

J.: Least squares conformal maps for automatic
texture atlas generation. InProc. SIGGRAPH
2002(2002), ACM, pp. 362–371.1, 2, 7

[Mit01] M ITZENMACHER M.: Compressed Bloom fil-
ters. Proc. ACM Symp. on Principles of Dis-
tributed Computing(2001), 144–150. To ap-
pear: IEEE/ACM Trans. on Networking.6

[SHHS03] SLOAN P.-P., HALL J., HART J., SNYDER

J.: Clustered principal components for precom-
puted radiance transfer.Proc. SIGGRAPH 2003,
ACM Trans. on Graphics 22, 3 (2003), 382–391.
11

[Sim91] SIMON H. D.: Partitioning of unstructured
problems for parallel processing.Computing
Systems in Engineering 2(1991), 135–148.8

[SM00] SHI J., MALIK J.: Normalized cuts and image
segmentation.IEEE Trans. on Pattern Analy-
sis and Machine Intelligence 22, 8 (2000), 888–
906. 2

[STK02] SHLAFMAN S., TAL A., KATZ S.: Metamor-
phosis of polyhedral surfaces using decompo-
sition. Computer Graphics Forum 21, 3 (Sept.
2002).2, 7, 9

[SWG∗03] SANDER P. V., WOOD Z. J., GORTLER S. J.,

c© The Eurographics Association 2004.

Nathan A. Carr and John C. Hart / Fast Reclustering

SNYDER J., HOPPEH.: Multi-chart geometry
images. InProc. Sym. on Geom. Proc.(2003),
pp. 146–155.1, 2, 7, 9, 10

c© The Eurographics Association 2004.

	Introduction
	Previous Work
	Dynamic Hierarchical Clustering
	Cluster Perimeter Estimation
	Cluster Tree Rebalancing
	Analysis
	Results

	Adaptive k-means Style Clustering on a Surface
	Background
	Multiple Heaps
	Border Sets
	Results

	Conclusions
	References

