
Eurographics Symposium on Geometry Processing (2004)
R. Scopigno, D. Zorin, (Editors)

Fast Collision Detection between Massive Models using
Dynamic Simplification

Sung-Eui Yoon Brian Salomon Ming Lin Dinesh Manocha

University of North Carolina at Chapel Hill
{sungeui,salomon,lin,dm}@cs.unc.edu

http://gamma.cs.unc.edu/MRC

Abstract
We present a novel approach for collision detection between large models composed of tens of millions of poly-
gons. Each model is represented as a clustered hierarchy of progressive meshes (CHPM). The CHPM is a dual
hierarchy of the original model; it serves both as a multiresolution representation of the original model, as well as
a bounding volume hierarchy. We use the cluster hierarchy of a CHPM to perform coarse-grained selective refine-
ment and the progressive meshes for fine-grained local refinement. We present a novel conservative error metric
to perform collision queries based on the multiresolution representation. We use this error metric to perform dy-
namic simplification for collision detection. Our approach is conservative in that it may overestimate the set of
colliding regions, but never misses any collisions. Furthermore, we are able to generate these hierarchies and
perform collision queries using out-of-core techniques on all triangulated models. We have applied our algorithm
to perform conservative collision detection between massive CAD and scanned models, consisting of millions of
triangles at interactive rates on a commodity PC.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Hierarchy and Geometric
Transformations

1. Introduction

Recent advances in CAD and scanning technologies have
resulted in geometric models of complex objects and struc-
tures consisting of millions of polygons. The availability
of these models has stimulated research in model simplifi-
cation, mesh compression, real-time rendering, and large-
scale simulation. In this paper, we present a novel, fast al-
gorithm for collision detection between complex, massive
models composed of millions of geometric primitives. Col-
lision queries frequently arise in various applications in-
cluding virtual prototyping, dynamic simulation, interaction,
navigation and motion planning.

Collision detection has been well-studied for more than
three decades and some of the commonly used algorithms
are based on spatial partitioning or bounding volume hierar-
chies (BVH). However, existing algorithms may not achieve
interactive performance on large, complex models consist-
ing of tens of millions of polygons. The memory require-
ments of these algorithms are typically very high, as precom-

puted BVHs can take many gigabytes of space. Moreover,
the number of pairwise overlap tests between the bounding
volumes can grow as a super-linear function of the model
size, thereby slowing down the query performance.

In order to deal with the model complexity, algorithms us-
ing multiresolution representations or model simplification
techniques have been proposed. These algorithms have been
used to generate tight fitting BVHs [TCL99], to create static
contact LODs [OL03], and to evaluate various factors affect-
ing collision perception [OD01]. To the best of our knowl-
edge, none of them have been applied to general, unstruc-
tured complex models composed of millions of triangles.

Main Contribution: We present a fast and conservative col-
lision detection algorithm for massive models composed of
millions of polygons. We use a novel model representation,
a clustered hierarchy of progressive mesh(CHPM), which
serves as adual hierarchyof each model. We use this repre-
sentation both as a bounding volume hierarchy to cull away
cluster pairs that are not in close proximity and as a multires-
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olution representation that adaptively computes a simplified
representation of each model on the fly. Our algorithm uti-
lizes the cluster hierarchy for coarse-grained refinement and
progressive meshes (PMs) associated with each cluster for
fine-grained local refinement. This allows us to rapidly com-
pute a dynamic simplification and reduce the “popping" or
discontinuities between successive collision queries associ-
ated with static levels-of-detail. We use GPU-based occlu-
sion queries for fast collision culling between dynamically-
generated simplifications of the original models.

We also introduce a new conservative collision error met-
ric. Based on this error metric, we compute the mesh sim-
plification and perform overlap tests between the bounding
volumes and the primitives. Our overall algorithm is conser-
vative and never misses any collisions between the original
model, though it may return "false positive" collisions within
an error bound. Moreover, we only load the cluster hierarchy
in the main memory and use out-of-core techniques to fetch
the progressive meshes at runtime. Our algorithm has been
implemented on a commodity PC with an NVIDIA GeForce
FX 5950 Ultra GPU and dual 2.5GHz Pentium IV processors
and uses a memory footprint of approximately 250MB. It
has been used for real-time dynamic simulation between two
complex scanned models consisting of 1.7M and 28M trian-
gles and interactive navigation in a CAD environment com-
posed of more than 12 million triangles. Collision queries
using our algorithm take about 15−40 milliseconds to com-
pute all the contact regions on these benchmarks. Some of
the key benefits of our approach include:

• Generality: Our algorithm makes no assumption with re-
spect to model complexity or topological structures. It can
also handle “polygon soup” models.
• Lower memory overhead: In practice, the CHPM of a

model takes 5− 8 times less memory as compared to a
BVH. Moreover, our out-of-core algorithm uses a small
runtime memory footprint.
• Fast collision queries:Our dynamic simplification algo-

rithm bounds the size of the front in each hierarchy and
computes all contacts between complex models in tens of
milliseconds.
• Error bounded and conservative:Our algorithm is con-

servative in the sense that it detects all contacts. It may
report “false positive” collisions within a user-specified
error bound.
• Integrated multiresolution representation: The dy-

namic LOD reduces popping in simulation and the CHPM
can also be used for interactive display of massive model
[YSGM04]. Therefore, this new representation can be
adopted for interactive display, real-time interaction, and
physical simulation of massive models simultaneously.

Organization: The rest of the paper is organized in the fol-
lowing manner. Section 2 briefly surveys previous work. We
present an overview of our approach and the model repre-
sentation in Section 3. Section 4 describes the algorithm to
compute the CHPM and the error metrics used for model

Figure 1: Collision Detection using Dynamic Simplification:Col-
lision detection between original objects is shown in left and colli-
sion between the corresponding simplified objects is shown on the
right. All colliding regions between the original objects are detected
by our algorithm and we compute a simplified representation of each
colliding region. Moreover, “false positive” collisions are also re-
ported within a given error threshold due to the conservativeness of
our algorithm.

simplification. We present our criteria to perform conserva-
tive and multiresolution collision queries in Section 5 and
the overall collision detection algorithm in Section 6. We de-
scribe its implementation and performance in Section 7 and
highlight some of the limitations in Section 8. Section 9 pro-
vides some concluding remarks and discusses future work.

2. Related Work

We give a brief overview on the related work in model sim-
plification and collision detection.

2.1. Model Simplification

Simplification algorithms compute a reduced-polygon count
approximation of a model, while attempting to preserve its
shape. Most of the existing work in model simplification has
been targeted towards rendering acceleration [LRC∗02]. At
a broad level, the simplification algorithms can be classified
into static simplification algorithms or dynamic simplifica-
tion algorithms.

The static approaches pre-compute a discrete series of
levels-of-detail (LODs) in a view independent manner
[CVM∗96, GH97, EMB01]. At run time, the rendering ap-
plication selects one of the static LODs based on the error
threshold. As a result, the run-time overhead is relatively
small. However, switching between different static LODs
can result in “popping" artifacts or discontinuities in the sim-
ulation.

The view-dependent or dynamic algorithms pre-compute
a hierarchical data structure that encodes a continuous range
of detail. View-dependent simplification originated as an ex-
tension of the progressive mesh (PM) [Hop96]. A PM is
a linear sequence of increasingly coarse meshes built from
an input mesh by repeatedly applying edge collapse opera-
tions. Xia and Varshney [XESV97] and Hoppe [Hop97] or-
ganized the PM as a vertex hierarchy (or view-dependent
progressive mesh (VDPM)) instead of a linear sequence.
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Luebke and Erikson [LE97] developed a similar approach
employing octree-based vertex clustering operations and
used it for dynamic simplification. El-Sana and Varshney
[ESV99] extended these ideas using a uniform error met-
ric based on cubic interpolants and reduced the cost of run-
time tests. Other view-dependent representation include the
Multi-Triangulation [LDF97]. Pajarola [Paj01] improved the
update rate of runtime mesh selection by exploiting proper-
ties of the half-edge mesh representation and applied it to
manifold objects. El-Sana and Bachmat [ESB02] presented
a mesh refinement prioritization scheme to improve the run-
time performance. Yoon et al. [YSGM04] performed out-
of-core simplification on large meshes consisting of a few
hundred million triangles and presented a two-level view-
dependent rendering algorithm.

2.2. Collision Detection

The problem of collision detection has been well-studied
in the literature. See recent surveys in [JTT01, LM03].
Most of the commonly used techniques to accelerate
collision detection between two objects utilize spatial
data structures, including bounding volume and spatial
partitioning hierarchies. Some of the commonly used
bounding volume hierarchies (BVHs) include sphere-trees
[Hub93], AABB-trees [BKSS90], OBB-trees [GLM96], k-
DOP-trees [KHM∗98], etc. These representations are used
to cull away portions of each object that are not in
close proximity. Recently, GPU-based accelerated tech-
niques have also been proposed for fast collision detec-
tion [KP03, HTG03, GRLM03, KOLM02]. Their accuracy
is governed by the frame-buffer or image-space resolution.
Recently, Govindaraju et al. [GLM04] have presented a reli-
able GPU-based collision culling algorithm that overcomes
these precision problems due to limited frame-buffer resolu-
tion.

Massive Models:There is relatively less work on collision
detection between complex models composed of millions of
polygons. The BVH based algorithms can be directly applied
to these models. However, the memory overhead for the re-
sulting algorithms can be substantial (e.g. many gigabytes).
Wilson et al. [WLML99] presented an out-of-core colli-
sion detection algorithm for large environments composed
of multiple objects. Their algorithm uses spatial proximity
relationships between different objects for out-of-core data
management. Niubo and Brunet [FNB03] have presented a
K-dimensional data structure for broad-phase collision and
proximity detection in large environments requiring external
memory storage.

Approximate Collision Detection: In order to achieve in-
teractive performance in complex algorithms, many approx-
imate algorithms have been proposed. Hubbard [Hub93] in-
troduced the concept of time-critical collision detection us-
ing sphere-trees. Collision queries can be performed as far
down the sphere-trees as time permits, without traversing
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Figure 2: CHPM Hierarchy.We represented the scene as a clus-
tered hierarchy of progressive meshes (CHPM). The CHPM serves
as a dual hierarchy: an LOD hierarchy for conservative error-
bounded collision and as a bounding volume hierarchy for collision
culling. Each cluster contains a progressive mesh and a bounding
volume that encloses all geometry in its subtree.

the entire hierarchy. This concept can be applied to any
type of bounding volume hierarchy (BVH). However, no
tight error bounds have been provided using this approach.
O’Sullivan and Dingliana [OD01] studied LOD techniques
for collision simulations and investigated different factors
affecting collision perception, including eccentricity, sepa-
ration, causality, and accuracy of simulation results. Otaduy
and Lin [OL03] proposed CLODs, which are precomputed
dual hierarchies of static LODs used for multiresolution col-
lision detection. The runtime overhead of this approach is
relatively small. However, switching LODs between succes-
sive instances may result in a large discontinuity in the sim-
ulation. Moreover, the underlying approach assumes that the
input model is a closed, manifold solid and is not directly
applicable to polygon soups.

3. Model Representation

In this section we introduce some of the terminology and
representations used by our algorithm. We also give a brief
overview of our approach for out-of-core hierarchical colli-
sion detection.

3.1. Dynamic Simplification of Massive Models

Our goal is to use dynamic or view-dependent simplification
algorithms for fast collision detection between massive mod-
els. Most of the prior work on dynamic simplification has
been motivated by view-dependent rendering and uses ver-
tex hierarchies such as VDPMs [Hop96, LE97, XESV97].
These approaches augment each edge collapse withdepen-
dencyinformation related to the local neighborhood at the
time of the edge collapse during construction. This infor-
mation is used to prevent “fold-overs" whereby a face nor-
mal is reversed at runtime. However, traversing and refining
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an active vertex frontacross a vertex hierarchy composed
of tens of millions of polygons can take hundreds of mil-
liseconds per timestep. Resolving the dependencies can lead
to non-localized memory accesses which can be problem-
atic for out-of-core collision detection and rendering. Fur-
thermore, these vertex hierarchies can be too fine-grained to
serve as effective bounding volume hierarchies for collision
detection.

3.2. CHPM Representation

We use a novel representation, a clustered hierarchy of pro-
gressive meshes (CHPMs) [YSGM04], for fast collision
computation using dynamic LODs of massive datasets. The
CHPM representation serves as a dual hierarchy for collision
detection: as an LOD hierarchy for error-bounded collision
detection and as a bounding volume hierarchy for collision
culling. The CHPM consists of two parts (as shown in Fig.
2):

Cluster Hierarchy: We represent the entire dataset as a hi-
erarchy of clusters, which are spatially localized mesh re-
gions. As an LOD hierarchy each interior cluster contains a
coarser representation of its children’s meshes. As a bound-
ing volume hierarchy (BVH) each cluster has an associated
bounding volume (BV) which contains all the mesh primi-
tives represented by its subtree. We use the oriented bound-
ing box (OBB) as the BV representation.

Progressive Mesh: Each cluster contains a progressive
mesh (PM) as an LOD representation. The PM representa-
tion is a linear sequence of LOD meshes that constructed us-
ing the edge-collapse simplification operation [Hop96]. The
sequence is stored as a base mesh (M0) and a list of vertex-
splits. Each vertex split reintroduces the vertices and faces
removed during simplification by an edge collapse. By ap-
plying the vertex splits at runtime, any mesh in the sequence
M0,M1, . . . ,Mn can be selected.

A CHPM representation is refined by first selecting a front
in the cluster hierarchy. This coarse level refinement chooses
clusters to represent the model with bounded errors in each
mesh region. The PM contained in each cluster allows fine-
grained control and local mesh refinement. The CHPM rep-
resentation is a middle ground between the flexibility of a
vertex hierarchy and the refinement speed of a static LOD
(or hierarchical LOD) representation [EMB01].

To detect collisions between a pair of CHPM objects we
perform cluster level culling between their cluster hierar-
chies. Once a set of colliding clusters is computed, PM re-
finement is performed on and exact collisions between the
PM representation are computed. The PMs are used as a con-
tinuous LOD representation to alleviate simulation popping
artifacts and satisfy the collision error bounds.

Figure 3: Cluster Decomposition.This figures highlights the clus-
ters on the Lucy model (28M triangles). The average cluster size is
1K triangles. Each cluster is represented by a progressive mesh for
dynamic simplification and contains a bounding volume for colli-
sion culling.

3.3. Dual Hierarchies

By combining an LOD hierarchy with a traditional BVH we
are able to achieve a dramatic acceleration of collision detec-
tion between massive models. The CHPM hierarchy allows
collisions to be computed using a dynamically generated ap-
proximate mesh and thereby reducing the number of overlap
tests that need to be performed. Because we use a contin-
uous LOD representation, LOD transitions are smooth and
can meet an error bound without being overly conservative.

The collision test between two BVHs can be described
by thebounding volume test tree(BVTT)[LGLM00], a tree
structure that holds in each node the result of the query be-
tween two BVs. The overall cost of a collision test is pro-
portional to the number of nodes in the front of the BVTT.
The basic BVTT algorithm traverses down to the leaves of
the BVHs, as long as each query reports a possible colli-
sion. However, when traversing the combined cluster hier-
archy within the CHPM, the traversal stops when an appro-
priate LOD is reached. Therefore, the BVTT front size can
be dramatically reduced by using LODs and thereby mak-
ing it possible to perform collision queries between complex
models at interactive rates.

4. Simplification and Error Values

An important issue in both mesh simplification for render-
ing and LOD-based collision detection is the choice of error
metrics and their computation. In this section we briefly dis-
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cuss the CHPM computation algorithm and the error metrics
used for conservative error-bounded collision detection.

4.1. CHPM Computation

CHPMs for complex models are computed using an out-
of-core clustering and simplification algorithm [YSGM04].
First, given an input mesh we compute a cluster decomposi-
tion. This is done in several passes over the faces and vertices
to avoid loading the entire mesh in main memory at once.
Then, a top down partition of the cluster decomposition cre-
ates a cluster hierarchy. Finally, a bottom up simplification
process generates PMs for each cluster. An example of the
cluster decomposition is shown in Fig.3. More details are
given in [YSGM04].

We also use the cluster hierarchy as a BVH and com-
pute an OBB that encloses all the cluster triangles. More-
over, we ensure that the OBB not only encloses the triangles
contained in that cluster, but also its descendant clusters. To
guarantee this property each BV is computed as follows: af-
ter constructing a PM for the cluster, we use the covariance
matrix algorithm [GLM96] to compute an OBB that contains
all the vertices of the PM. To ensure that all the vertices of
the descendant clusters are also contained, each dimension
of the OBB is expanded by the maximum surface deviation
between the base mesh of the PM and the original mesh.

4.2. Conservative Error Metric

Our collision detection algorithm dynamically computes a
simplification of each model and checks for collisions be-
tween the simplified models. The accuracy of the algorithm
is governed by the error function used to compute the sim-
plification. An example of collision detection between sim-
plified objects is shown in Fig.1.

Given two original models,A0 andB0, and a minimum
separation distanceδ, a collision detection algorithm eval-
uates a functionCollide(A0,B0,δ) that computes a set of
triangle pairs(tA0, tB0) such thattA0 ∈ A0, tB0 ∈ B0, and
dist(tA0, tB0) < δ. For conservative LOD-based collision de-
tection we modify this query. Instead, given the CHPM rep-
resentations,A andB, we compute:

LodCollide(A,B,δ,ε): Determines all pairs(tA, tB) such
that tA ∈ A, tB ∈ B, anddist(tA, tB) < δ with allowed error
ε, or dist(tA, tB) < (δ + ε). The dynamic simplification used
for LOD-based collision detection is determined by the user-
specified errorε.

Note that this query is defined so that we compute all the
triangle pairs within distance(δ+ ε). Thus, our algorithm is
a conservative algorithm which will not miss any collisions.
We also use another proximity query in our algorithm:

ConservBVTest(BVi ,BVj ,δ,ε): Given two bounding vol-
umes,BVi and BVj , this query conservatively determines
whether the subset of the original model contained in these
BVs are colliding (Sec.5).

Notation Meaning

aaa A cluster of objectA

PMaaa =
(M0

aaa,M1
aaa,...,Mn

aaa)
The PM of clusteraaa

h(Mi
aaa) The directed Hausdorff distance be-

tweenMi
aaa and the original mesh

ĥ(BV) The directed Hausdorff distance be-
tween a bounding volume,BV, and the
original mesh

δ The minimum separation distance for
the global collision query. Triangles sep-
arated by less than this distance are in
collision.

ε The simplification error used for colli-
sion detection, specified as a directed
Hausdorff distance

dilate(BV, r) An operation that dilates a BV by dis-
tancer

Table 1: Notation. This table highlights the notation used in the
rest of the paper.

Many error metrics have been proposed for approximate
collision detection, including object size, object velocity,
and constant frame-rate for time-critical collision detec-
tion [Hub93, OL03, OD01]. Our simplification algorithm is
based on the maximum deviation error or the Hausdorff dis-
tance between the original mesh and the simplified mesh,M ,
denotedh(M). By assuring that the total Hausdorff distance
in regions of collision is less than the error threshold,ε, we
can bound the simulation error. Other collision error met-
rics based on object size and velocity can be derived from
the maximum deviation error [OL03]. In order to perform
collision culling between cluster pairs at the cluster level
using the CHPM representation, we also store the directed
Hausdorff distance between eachBV and the original mesh,
ĥ(BV).

A feature of the Hausdorff metric is that it adapts to the
mesh in a contact-dependent manner. The contact forces
computed will be more sensitive to simplification in areas
with sharp features. However, simplification will be more
restricted in such areas because of high deviation in the
Hausdorff metric. In relatively flat regions, where the con-
tact forces will be least affected by the simplification, the
Hausdorff metric allows greater simplification [OL03].

5. Conservative Collision Formulation

In this section we present our conservative collision scheme
which is used to guarantee that a query result using the
CHPM representation does not miss any collision as com-
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pared to an exact test on the original meshes within the dis-
tance error bound,ε. In Table1, we highlight the notation
used in the rest of the paper.

In performing LOD-based collision detection we take ad-
vantage of the fact that CHPM represents a dual hierar-
chy.LodCollide() can be computed by performing a BVTT
traversal between the BVHs ofA andB, but a test is needed
to check whether the original mesh regions represented by
clustersaaa andbbb are within distanceδ+ ε.

The ConservBVTest() query relies on a dilated BV test
that is applied to cluster BVs during BVTT traversal and
performs overlap tests between the triangles of the PM.

5.1. Conservative Collision Metric

We transform the problem of checking whether the original
meshes contained inside two BVs are within distanceδ into
an intersection test between the dilated BVs. Initially, con-
sider the dilated OBB,dilate(BV,d), to be defined as the
Minkowski sum ofBV with a sphere of radiusd and rep-
resented asBV⊕d. We use the following lemmas to check
whether the original meshes contained inside two bounding
volumes,BVi andBVj , are within distanceδ+ ε.

Lemma 1: If the dilated BVs, dilate(BVi ,δ/2) and
dilate(BVj ,δ/2), do not intersect, the distance between the
original meshes contained in the two BVs is greater thanδ.

Proof: Because each BV fully contains a portion of the orig-
inal mesh, the minimum distance between the two meshes
contained in the BVs is at least the sum of dilation amounts,
δ.

Lemma 2: If there is an intersection between dilated BVs
dilate(BVi ,δ/2) and dilate(BVj ,δ/2) the distance between
the original meshes contained in the BVs has an upper
bound ofδ+ ĥ(BVi)+ ĥ(BVj ).

Proof: Due to the conservativeness of the BVs, the BVs may
intersect even though the meshes may not be colliding. By
definition of directed Hausdorff distance, every point of each
original BV is within distancêh(BV) of the original mesh.
Furthermore, the dilated BVs are within distanceδ/2 of the
original BV. Therefore, the maximum total distance between
the original meshes isδ/2+ ĥ(BVi) + δ/2+ ĥ(BVj ) = δ +
ĥ(BVi)+ ĥ(BVj ).

These Lemmas lead directly to the definition of
ConservBVTest():

ConservBVTest(BVi ,BVj ,δ,ε) =

NoCollision, ¬isect(dilate(BVi),dilate(BVj ))

Collision, isect(dilate(BVi),dilate(BVj ))
andĥ(BVi)+ ĥ(BVj )≤ ε

PotentialCollision, isect(dilate(BVi),dilate(BVj ))
andĥ(BVi)+ ĥ(BVj ) > ε

whereisect is a bounding volume intersection test and the
shorthanddilate(BV) simply indicatesdilate(BV,δ/2).

If the dilated boxes do not intersect then we know that the
original meshes are not colliding by Lemma 1. However, if
these boxes overlap we use the Hausdorff distancesĥ(BVi)
and ĥ(BVj ) to determine whether we can conclude that the
original models are colliding. When̂h(BVi) + ĥ(BVj ) ≤ ε
then by Lemma 2 we can conclude that the distance between
the original meshes must be withinδ+ ε.

Rather than computing the exact Minkowski sum, we in-
stead computedilate(BV,d) as an approximation ofBV⊕d
by extending each dimension of the OBB byd/2 from the
center of the OBB. To satisfy Lemma 2, theĥ value associ-
ated withBV is extended by the maximum deviation between
dilate(BV,d) andBV⊕d.

5.2. Cull and Refine Operations

To computeLodCollide() we first refine the mesh for each
object such that the sum of mesh deviations of each model
is less thanε in regions of collision. Next, we check whether
the selected LOD representations are within distanceδ. Both
parts of this computation use theConservBVTest() query
through two operations:

• Culling operation: BV pairs whose distance is greater
thanδ are culled. To conservatively perform this culling
step, we apply theConservBVTest() test by dilating the
BVs of the two approximate mesh portions and checking
for intersection between the dilated BVs. BVs for which
ConservBVTest() finds no collisions cannot be intersect-
ing and are culled away.
• Refining operation: ConservBVTest() can determine

when the LOD resolution must be increased. The BV
pairs, for which theConservBVTest() query reports a col-
lision, has total simplification error less thanε and the tri-
angles within the BVs are in collision. On the other hand,
whenConservBVTest() reports a potential collision the
total Hausdorff distance is too high and further refinement
needs to be performed on one of the BVs. We guarantee
that refinement always decreases theĥ values. Once the
total Hausdorff distance is belowε, ConservBVTest() be-
comes an exact collision test.

By recursively performing these two operations, we can
compute the triangle pairs from dynamic LODs whose dis-
tance is less thanδ. More importantly, their counterparts in
the original meshes are separated by less thanδ+ ε.

6. Fast Collision Detection

In this section, we present a hierarchical collision detec-
tion algorithm based on the CHPM. We also present several
culling techniques to improve its performance.
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Figure 4: BVTT. Each node of the bounding volume test tree
(BVTT) represents a test between a cluster from each of two collid-
ing objects. The test, ConservBVTest(), uses the clusters’ bounding
volumes to determine whether the cluster pair is not colliding (N),
colliding (C), potentially colliding (P). The distinction between col-
liding and potentially colliding depends upon the sum of the clus-
ters’ associated errors (indicated by error bars) being below the
error-bound,ε.

6.1. Overall Algorithm

The overall algorithm for collision detection between two
CHPM objects is shown in Alg.1. We compute the collid-
ing front of the bounding volume test tree (BVTT) using the
culling and refining operations presented in Sec.5.2. The
colliding front contains pairs of clusters from the two ob-
jects that are in collision. For each of these cluster pairs, we
perform an exact collision test after refining their PMs. This
provides the fine-grained control of the simulation error. The
cluster collision test uses a further culling algorithm that re-
lies on GPU occlusion queries. Exact collision tests are per-
formed after this additional culling step.

Algorithm 1 Compute collisions between two objects
(LodCollide())
Input: A, B: Objects’δ: min. separation distance;ε: LOD
error bound
Output: triangles ofA andB in collision

ComputeLodCollide(A,B,δ,ε)
tris←∅
Front←ComputeBVTTFront(A,B,δ,ε)
for all (aaa,bbb) ∈ Front do

tris← tris∪ClusterCollide(aaa,bbb,δ,ε)
end for
return tris

6.2. Bounding Volume Test Tree (BVTT)

We use the concept of the bounding volume test
tree (BVTT)[LGLM00] to accelerate the computation of

LodCollide(). In the CHPM representation, the cluster hi-
erarchy is also a BVH. We traverse the BVHs of both the
objects and compute the BVTT.

A node(aaa,bbb) in the BVTT represents a test between clus-
tersaaa andbbb from objectsA andB, respectively. If the test
determines that the objects are non-colliding then the node
is a leaf of the BVTT and no further tests are needed between
the subtrees ofA andB rooted ataaa andbbb. Otherwise, there is
a potential collision betweenaaa andbbb. If the total Hausdorff
error ofaaa andbbb, (ĥ(BVaaa)+ ĥ(BVbbb)), is less thanε, an exact
test is performed to determine the triangles in collision; oth-
erwise the cluster with greater error is refined (see Fig.4). As
shown in Alg.2, we use theConservBVTest() query to tra-
verse the hierarchies ofA andB, which implicitly computes
the BVTT. The BVTT traversal effectively performs coarse-
grained LOD refinement by selecting the clusters from ob-
jectsA andB used for exact collision detection.

Algorithm 2 Perform BVTT traversal and compute the col-
liding BVTT front
Input: A, B: Objects,δ: min. separation distance,ε: LOD
error bound
Output: triangles ofA andB in collision

ComputeBVTTFront(A,B,δ,ε)
return BVTest(Root(A),Root(B),δ, ε)

BVTest(aaa,bbb,δ,ε)
t←ConservBVTest(BVaaa,BVbbb,δ,ε)
if t = NoCollisionthen

{Culling: contained original meshes are further thanδ}
return ∅

else ift = Collision then
{Bounding boxes in collision, total error is less thanε}
{These nodes are part of the colliding front}
return (aaa,bbb)

else{ t = PotentialCollision}
{Refining: total error is greater thanε}
if ĥ(BVaaa) > ĥ(BVbbb) then

return BVTest(LeftChild(aaa), bbb, δ, ε)
∪ BVTest(RightChild(aaa)))), bbb, δ, ε)

else
return BVTest(aaa, LeftChild(bbb), δ, ε)
∪ BVTest(aaa, RightChild(bbb), δ, ε)

end if
end if

6.2.1. CHPM Front Computation

The BVTT front computed in the algorithm described above
may contain multiple clusters representing the same portion
of either A or B. This situation occurs when the traversal
reaches BVTT nodes such as(aaa111,bbb111) and(aaa111,bbb222). It may be
the case that̂h(BVaaa111)+ ĥ(BVbbb111

) > ε butĥ(BVaaa111)+ ĥ(BVbbb222
)≤

ε. The traversal will splitaaa111 into aaa222 andaaa333 in one branch
of the BVTT but aaa111 will fall on the BVTT front in the
other branch. We would like to have a single unique front
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across each CHPM. In order to maintain this property the
BVTT node (aaa111,bbb222) is forced to split into nodes(aaa222,bbb222)
and(aaa333,bbb222).

6.2.2. Coherence-Based BVTT Front Computation

A further modification of the algorithm described above is
made to take advantage of temporal coherence. Rather than
recursively computing the BVTT front from the root for each
timestep, we traverse the front from the previous timestep
and make incremental updates. By collapsing the BVTT
nodes into their parent node the level of refinement is re-
duced, and by splitting a BVTT node the level of refine-
ment is increased. For massive models with deep LOD hi-
erarchies, this approach leads to a substantial reduction of
the time spent on BVTT computation.

Algorithm 3 Compute collision between two clusters
Input: aaa, bbb: clusters,δ: min. separation distance,ε: LOD
error bound
Output: triangles ofA andB in collision

ClusterCollide(aaa,bbb,δ,ε)
RefinePMs(PMaaa,PMbbb,ε)
T← SubObjectCull(aaa,bbb,δ) {T is a set of triangle pairs}
return ExactTest(T,δ)

6.3. Computing Dynamic LODs

We process each pair of clusters,(aaa,bbb), on the colliding front
of the BVTT for exact collision detection. As shown in Alg.
3, the first step is to refine the PMs of the clusters. Each clus-
ter pair must have a total deviation from the original meshes
of not more thanε. In order to take advantage of temporal
coherence, we refine the PMs based on their current state.
If the sum of the errors is greater thanε, we apply vertex-
splits to the PM with greater error until the error falls below
ε. If the sum of errors is less thanε, we apply edge-collapses
to the PM with lower error until applying one more edge-
collapse would cause the total error to exceedε. Once the
PMs are refined, the total simplification error at each point
of contact between the clusters will be less thanε. Since a
single cluster may be in multiple cluster pairs of the BVTT
front we ensure that the PMs are refined to meet the error
bound in each BVTT front node.

6.4. GPU-based Culling

Performing allO(n2) pairwise tests between triangles of
two clusters can be an expensive operation as the clus-
ters may contain around 1K triangles. To further reduce
the potentially colliding set of triangles, we employ GPU-
based culling similar to [GRLM03, GLM04]. Triangles in
the mesh selected from each cluster’s PM are randomly par-
titioned into "sub-objects" of sizek triangles. For each trian-
gle of a sub-object we construct a BV dilated byδ/2. Since

these BVs must be constructed quickly at runtime, we use
axis aligned bounding boxes.

We use GPU-based occlusion queries to cull the sub-
objects between the two clusters. After rendering some geo-
metric primitives, an occlusion query returns the number of
pixels that pass the depth buffer test. We use these queries
to perform a 2.5D overlap test between bounding volumes
along the three orthogonal axes. First, the BVs for all the tri-
angles of the first cluster are rendered under an orthographic
projection. Then, the BVs for sub-objects from the second
cluster are rendered with the depth test set to GL_GEQUAL.
Sub-objects of the second cluster that have no pixels pass
this reversed depth test are classified as non-intersecting with
the BVs of all objects of the first cluster. These sub-objects
may be culled from the set of possible collisions. The test
is performed for projections along thex, y, andz axes. The
same test is performed with the order of the clusters switched
to cull sub-objects of the first cluster.

In order to ensure that errors are not introduced due to
sampling in the frame buffer, we use a conservative algo-
rithm to perform GPU-based culling [GLM04]. The BVs are
expanded by taking their Minkowski sum with a sphere to
ensure that they are rasterized into every pixel which they
may partially cover.

6.5. Triangle Collision Test

We perform exact collision detection for triangles pairs that
pass sub-object culling. Each triangle in the LOD represen-
tation of an object represents a set of triangles of the original
model. In order to conservatively meet the error bound, an
OBB is constructed for each triangle that contains the trian-
gle plus the original mesh triangles that were simplified into
it. To enclose the original geometric primitives, the OBB is
initially a flat box aligned with the plane of the triangle con-
taining its vertices. It is then dilated by thêh value of its
cluster. The OBBs are then further dilated byδ/2 before be-
ing tested for intersection. Triangles whose enclosing OBBs
are overlapping are reported as colliding.

6.6. Out-of-Core Computation

Our goal is to perform collision detection between models
that cannot be stored in main memory. The CHPM repre-
sentation also serves as a mechanism for out-of-core man-
agement. At runtime we keep the CHPM hierarchy for each
object in the main memory, while the PMs for each cluster
reside on the disk. A working set of PMs is kept in memory
for collision detection. For each pair of colliding objects, we
keep PMs for nodes on the BVTT front in main memory as
well as their parents and children to handle LOD switches.

6.7. Unified Multiresolution Representation

One advantage of our approach is that the dynamic LOD rep-
resentation used for collision detection can also be used for
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Figure 5: Collision Example.This image sequence shows discrete positions from our dynamic simulation application. The28M-triangle Lucy
model falls on and bounces off the1.7M-triangle turbine-blade model and the response is computed using impulse-based simulation. In this
simulation the collision detection took an average of18ms per timestep. The error bound,ε, was set to be 0.04% of the width of the Lucy.

interactive rendering [YSGM04]. This can be especially im-
portant for handling massive models. The memory require-
ments of storing separate representations for collision detec-
tion and rendering may be prohibitively high. LOD selection
for collision detection and graphical rendering can be unified
by appropriate error metrics. When computing the BVTT we
stop the traversal only when metrics for both collision tests
and visual rendering have been satisfied. Similarly, the PMs
are refined so that the LOD error is less than the error bounds
for both collision detection and visual rendering.

7. Implementation and Performance

In this section we describe our implementation and highlight
its performance on complex models.

7.1. Implementation

We have implemented our out-of-core simplification and
runtime system on a dual 2.4GHz Pentium-IV PC, with 1GB
of RAM and a GeForce FX 5950 Ultra GPU with 128MB
of video memory. Our system runs on Windows XP and
uses the operating system’s virtual memory through mem-
ory mapped files for out-of-core access to the data.

We achieve high throughput for rendering and sub-objects
culling from graphics cards by storing the mesh data on the
GPU, thereby reducing the data transferred to the GPU each
frame. We use the GL_ARB_vertex_buffer_object OpenGL
extension that performs GPU memory management for both
the vertex and the face arrays. Each timestep we only to need
to update the BVs and mesh data of clusters whose PMs

Model Lucy PP Turbine Dragon

Triangles (M) 28 12.8 1.7 0.8

Num Clusters (K) 14 6.4 3.4 1.7

Size of CHPM (MB) 1341 849 88 48

Table 2: Benchmark ModelsModel complexity and number of
cluster are shown.

have changed refinement level since the previous timestep.
Furthermore, we use GL_NV_occlusion_query extension to
perform collision culling.

7.2. Benchmark Models

Our algorithm has been applied to two different applications
with massive models. They are :

Dynamic simulation: A Lucy model falling onto the CAD
model of a turbine blade.

Navigation: A user navigating in a coal-fired power plant
model with a flying dragon model.

The Lucy model composed of more than 28 million poly-
gons (Fig.5), the power plant consisting of more than 12
million polygons and 1200 objects (Fig.6), the CAD turbine
model consisting of a single 1.7-million polygon object (Fig.
5), and the dragon model consisting of 800 thousand poly-
gons (Fig.6). The details of these models are shown in Table
2.
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Figure 6: Collision Example.We tested our conservative colli-
sion detection algorithm on a path for the0.8M triangle dragon
model along a path through the12M-triangle power-plant model.
The average collision query time is55ms and the total memory foot-
print is 200MB. The error bound is set to0.04% of the width of the
dragon model. In this path the models have deep penetration and
this screenshot colliding triangles are show in red and green. In the
upper right the entire power plant model is shown to illustrate its
complexity.

7.3. Performance

Dynamic simulation We have implemented an impulse
based rigid body simulation[MC95]. We are able to per-
form collision detection between the Lucy and blade model
at an interactive rate (12-30 frames per second). An image
sequence from this simulation is show in Fig.5. The average
collision query time was 18ms. Moreover, we are able to
simultaneously perform interactive rendering and collision
detection by using a 250MB memory footprint. Most of the
query time is spent on the sub-object culling (55%) and very
little is spent on PM and cluster refinement (1%).

NavigationFor our navigation benchmark we moved a 0.8M
triangle dragon model along a path in the 12M triangle
power plant model and detected collisions with the objects
in the power plant model. Fig.6 shows a screenshot from
the path. The average query time is 55ms and the memory
footprint is 200MB.

7.4. Memory requirement

Our CHPM as a dual hierarchy requires 122MB per million
vertices on average. Quantization for geometry and com-
pression on PMs can further improve the memory require-
ment This is low compared to around 560MB per million
vertices needed to represent an OBBtree [GLM96]. Further-
more, our out-of-core representation keeps only the cluster
hierarchy and the PMs of a subset of the clusters in the main
memory.

8. Analysis and Limitation

In this section, we briefly discuss factors that affect the per-
formance of our algorithm and its limitations.

8.1. Performance Analysis

The performance of our algorithm depends on many factors
including motion coherence, relative contact configuration,
model tessellation, and the error bound,ε. In general, our
algorithm achieves the highest speed-up in regions of con-
tact between highly-tessellated and almost flat surfaces. In
such regions, the algorithm computes a drastic simplification
with a low Hausdorff deviation. Furthermore, the OBBs fit
flat mesh regions more tightly than those regions with high
curvature.

Our algorithm also exploits temporal and spatial coher-
ence between successive frames. The coarse-grained cluster
level refinement performs incremental computations to re-
fine the front. The out-of-core management relies on coher-
ence between timesteps to fetch and prefetch PMs from the
disk. We also exploit coherence to reuse bounding box data
loaded into the GPU memory, which is needed to obtain high
throughput from the GPUs for occlusion queries.

8.2. Comparison with CLODs

CLODs proposed by Otaduy and Lin [OL03] are precom-
puted dual hierarchies of static LODs used for multiresolu-
tion collision detection. The precomputed LODs and their
bounding volume hierarchies are used to accelerate colli-
sion computations at runtime. As a result, the runtime over-
head of CLODs is relatively small as compared to our ap-
proach. However, switching LODs between static LODs
in the CLOD-algorithm can result in a large discontinuity
in the simulation. On the other hand, our algorithm pro-
vides smooth fine-grained local control of simplification er-
ror within each cluster. This operation is very efficient and
reduces the “popping” or discontinuities between successive
collision queries. The underlying formulation of CLODs as-
sumes that the input model is a closed, manifold solid and is
not applicable to polygon soups. On the other hand, our algo-
rithm is applicable to all models, including polygon soups.

8.3. Limitations

Our algorithms works well for our current set of applica-
tions. However, it has some limitations. It relies on temporal
coherence for out-of-core management, front computation,
and GPU memory management. In situations where many
objects come into close proximity within a single timestep,
memory stalls may occur as PMs are fetched from the disk.
Also, if there is little motion coherence between successive
instances then fetching for out-of-core may not keep up with
the simulation. Moreover, our algorithm can be very con-
servative in some cases. Our surface deviation error bounds
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may not be very tight for certain meshes. Moreover, our al-
gorithm can be overly conservative and may return too many
"false positives." An example is two objects (e.g. two con-
centric spheres) in parallel close proximity with a separation
distanceδ > d < δ+ ε.

9. Conclusions and Future Work

We have presented a new algorithm for out-of-core collision
detection using the CHPM representation. There are many
benefits to this approach:

• We are able to accelerate the computation using LODs
while ensuring all contact regions are detected.
• Our algorithm efficiently handles models with tens of mil-

lions of triangles using out-of-core computations.
• The CHPM representation and supporting algorithms can

handle models of arbitrary topology and polygon soups.
• We use a unified representation for collision detection and

interactive rendering of massive models and use a finite-
memory footprint.

There are several areas for future work. First, we would
like to develop tighter error bounds to reduce the number of
false positives, and thereby decrease the number of bound-
ing volume tests. Second, we would like to incorporate other
error metrics, such as those based on the object velocity and
size, as well as visual perception. Our current framework can
be easily extended to the other metrics by replacing the con-
stantε with a functionε(). Thirdly, we would like to apply
our LOD-based collision detection framework to several ap-
plications including: motion planning, navigation, and dy-
namic simulation. Lastly, we would like to extend our algo-
rithms to perform other proximity queries such as computing
separation distance, penetration depth, and contact normals.
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