
Eurographics Symposium on Geometry Processing (2004)
R. Scopigno, D. Zorin (Editors)

Seamless Texture Atlases

Budirijanto Purnomo, Jonathan D. Cohen and Subodh Kumar

Department of Computer Science, Johns Hopkins University, USA

Figure 1: Seamless atlas pipeline

Abstract
Texture atlas parameterization provides an effective way to map a variety of color and data attributes from 2D tex-
ture domains onto polygonal surface meshes. However, the individual charts of such atlases are typically plagued
by noticeable seams. We describe a new type of atlas which is seamless by construction. Our seamless atlas
comprises all quadrilateral charts, and permits seamless texturing, as well as per-fragment down-sampling on
rendering hardware and polygon simplification. We demonstrate the use of this atlas for capturing appearance
attributes and producing seamless renderings.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, Surface, Solid and
Object Representations , I.3.7 [Computer Graphics]: Color, Shading, Shadowing and Texture

1. Introduction

The application of color image maps to 3D geometry via
texture mapping has been used to enhance the appearance of
rendered images for three decades. Over that time period, the
importance and ubiquity of texture mapping has continually
increased. Fast texture mapping has become a mainstay of
graphics hardware, and texture images now convey a variety
of data to procedural shaders executing on fragment proces-
sors.

Unfortunately, establishing a parameterization of a gen-

eral 3D surface into a 2D texture domain remains a challeng-
ing problem. An increasingly popular technique is to create
an atlas. This atlas comprises a set of charts, each of which
maps a connected part of the 3D surface (a patch) onto a
piece of the 2D texture domain. This piecewise approach al-
lows a reasonable degree of local control in constructing the
mappings. However, there are several opportunities here for
the introduction of seams (0-order discontinuities) between
the neighboring patches.

We take the position that the best way to eliminate the

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

appearance of seams on textured surfaces is to design the
atlas structure with seam avoidance in mind from the very
start. To achieve this end, we introduce the notion of a seam-
less atlas. The seamless atlas is inspired by OpenGL tex-
ture borders [WNDS99] and the seamless bricking tech-
niques used by applications performing 3D texturing of large
data [LHJ99]. The atlas comprises a number of quadrilateral
patches, mapped to square (or rectangular) charts in texture
space. These charts may be trivially packed into a single tex-
ture map in a variety of ways.

In this paper we demonstrate that this relatively simple
structure of our seamless atlas permits all of the following:

• Seamless texturing: Rendering using our new atlas pro-
duces no seam artifacts.

• Downsampling: Seamless atlas textures may be easily
downsampled, producing lower resolution texture that is
still seamless as well as stationary.

• Mip-mapping: Texture resolutions may be selected or
blended on a per-fragment basis.

• Geometry simplification: The simple structure of the
seamless atlas makes it straightforward to downsample
the geometry while still retaining the seamless property.

In this paper, we describe algorithms for creating and ren-
dering using a seamless atlas. We demonstrate the use of
seamless atlases for resampling vertex colors, vertex nor-
mals, and per-triangle textures and producing properly fil-
tered renderings. Figure 1 shows our system pipeline.

2. Related Work

One way to generate an atlas is to make a simple chart
for each triangle. Often, the mesh is first simplified,
and then these base triangles are used to construct the
charts [CMR∗99, LSS∗98, SGR96]. The simplified triangles
are then packed into texture space and sampled to generate
texture maps. When such texture maps are rendered, seams
may appear between triangles due to bilinear interpolation
between adjacently packed triangle charts and do not easily
allow per-fragment mip-mapping.

Alternatively, triangles may be clustered
into patches which are then parameterized as
charts [EDD∗95, SSGH01, SWG∗03]. By parameteriz-
ing into convex polygons with small numbers of sides, it is
possible to simplify the patches without disturbing the pa-
rameterizations along the boundaries [COM98, SSGH01].
However, if the matching boundary edges differ in length
or orientation in the texture domain, it is still difficult to
eliminate subtle seams along the boundaries (even if a one
texel padding is applied just outside the charts).

We find that eliminating seams is straightforward if the at-
las comprises quadrilateral patches mapped to square or rect-
angular charts. Such atlases have been designed using man-
ual intervention for decorating implicit surfaces [Ped95] and

for converting meshes to spline patches [KL96]. A quadrilat-
eral atlas can be created automatically by merging adjacent
triangular charts [EH96].

Recognizing that seams are an important problem with at-
lases, various approaches have been developed to minimize
their effect. For example, the seams may be forced into re-
gions of high negative curvature [LPRM02, SH02] and thus
made less apparent. As an alternative, an image fidelity met-
ric [ZMT04] can be used to minimize the visual effect of
seams, along with other error sources.

Atlases used for geometry images, either single-
chart [GGH02] or multi-chart [SWG∗03] are interesting
cases, because these geometry images are water tight (i.e.
seamless) by design. However, although it is possible to
downsample these images to lower resolutions, special bor-
der treatments at each resolution make the mappings be-
tween boundary texels at various resolutions challenging.
Hence, it is difficult to mip-map these structures. The ele-
gant boundary structure of the more specialized spherically
parameterized geometry images [PH03] may be more con-
ducive to per-fragment mip-mapping.

Recent work in the domain of procedural solid texturing
has produced a multi-resolution texture atlas [CH02], which
uses standard mip-mapping on graphics hardware. This tex-
ture atlas has several desirable properties, including excel-
lent control of the sampling rate across the surface and ef-
ficient use of the entire texture space. However, the pack-
ing and mip-mapping scheme used still generates seams be-
tween charts except at the highest-resolution mip-map level.

Thus the appearance of seams in general atlas parameter-
izations has remained a persistent, open problem that affects
both model representations and rendering. We address this
problem in the sections that follow, beginning with the de-
sign of the seamless atlas.

3. Seamless Atlas

The seamless atlas comprises a set of quadrilateral patches
that are mapped to rectangles in texture space. We want to
sample data into these texture rectangles and also downsam-
ple the data into mip-maps in such a way that each mip-map
level may be rendered seamlessly on the polygonal surface.
Texture seams have two sources:

• interpolation between boundary texels of two unrelated
patches

• discontinuity in the texel colors between two adjacent
patches on the surface

In addition to being seamless, the texture should remain
stationary on the surface across mip-map levels. This means
that we must ensure that a given texture coordinate refers
to precisely the same point on the chart at all resolutions.
As it turns out, OpenGL (and the hardware it abstracts) is
designed to accomplish just this, so we begin with a look at
the approach probably intended by the OpenGL architects.

c© The Eurographics Association 2004.

68



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Figure 2: Two charts represented as OpenGL texture maps
with borders (depicted for 1D textures).

3.1. OpenGL Seamless Texturing - Separate Style

In OpenGL, the data value stored at a texel is associated with
the center of that texel. Consider the example of a 1D texture
in Figure 2. When using linear texture filtering (bilinear for
2D), the red color at level 0 of chart A is the sample at the
texture coordinate 1/8, the center of the leftmost texel. To
eliminate a seam between chart A and chart B (which lie
next to each other on some surface), the value at texture co-
ordinate 1.0 on chart A must exactly match that at texture
coordinate 0.0 on chart B. But these values must be recon-
structed on each chart. For example, on chart B, the value is
constructed by interpolating between the first texel and some
other value deemed to be at sampled at coordinate -1/8.

This can be accomplished in OpenGL by binding a differ-
ent texture for each chart of our seamless atlas and using the
texture border mechanism to provide the correct texel value
at -1/8. The texture border provides storage for exactly one
additional texel just outside the [0,1] range of the texture do-
main at every mip-map level. The border texel controls the
interpolation at all fragments with texture coordinates con-
tained in the extremal half texel of the [0,1] range (e.g. from
0 to 1/8 and from 7/8 to 1 in our 4-texel image). In our ex-
ample, a cyan texel would be placed at the right border of
chart A and a green texel will be placed at the left border
of chart B (marked with dashed lines). Thus, the boundary
between chart A and chart B at level 0 will interpolate to
the average of green and cyan on both charts. Each mip-map
level in this example is generated from the previous using a
2-texel-wide box filter and border texels are again replicated
from the neighboring chart at each level.

A seamless atlas created using our algorithms (see Sec-
tion 4) may be stored in this form and rendered in this fash-
ion, a style we call separate (because the patch textures are

Figure 3: Separate seamless atlas. Each chart is shown with
its mip-map.

Figure 4: Two charts naively arranged into a single texture.
Wasted texels are marked with ’x’.

stored and loaded separately). In addition to being the sim-
plest seamless atlas style (see Figure 3), it also easily ac-
commodates using a different maximum resolution for each
texture and provides access to any advanced filters (e.g.
anisotropic filtering on each mip-map level, trilinear filter-
ing across mip-map levels, etc.) supported by the hardware
and driver. This can be useful if charts have very different ar-
eas on the surface or if their actual data have different spatial
frequencies.

However, separate style can have negative performance
implications. Binding a new texture generally causes a flush
of the fragment pipeline, and each patch must be issued as a
separate draw call. Managing multiple textures is also some-
times an unnecessary burden for the application programmer
and may cause fragmentation of texture memory. In addition,
some drivers may not be optimized for texture borders, and
the use of separate textures typically restricts the texture size
to a power of two.

3.2. Combining Charts - Stacked Style

Although it is often desirable to combine all levels of all
charts into a single master texture, it is non-trivial if we wish
to maintain both the seamless and stationary properties. Con-
sider arranging chart A next to some chart C in the texture
and assume that patch A does not neighbor patch C on the
surface.

As before, both charts still require padding by "border"
texels to guarantee seamless interpolation with their neigh-
boring charts on the surface. However, to leave a chart’s tex-
ture coordinates stationary across levels, we may never re-
use the texture space occupied by any border texel (i.e., at
any level). At the lowest resolution of 1x1, a texel occupies
space equal to the whole chart (shown at level 2 in Figure 4).
In 2D, this corresponds to wastage of about 75% of the tex-
els including all levels of the texture map (shown with X
through them in the figure). Here we do not have the ben-
efit of the convenient, single-texel padding provided by the
hardware around the border of entire texture map.

Instead, we suggest a different sampling and filtering
scheme, inspired by strategies used for "bricking" and fil-
tering of large 3D texture data [LHJ99, LCCK02]. Rather
than keeping perfect alignment in texture space across tex-
ture levels, we will condense the data more and more in suc-

c© The Eurographics Association 2004.

69



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Figure 5: (a) Two charts arranged in a single texture. Red
and yellow texels are replicated from appropriated chart
neighbors. A chart’s texture coordinates now depend on the
mip-map level. (b) Two charts packed with only 1/2 texel of
border.

cessive levels (see Figure 5a). In this case we will keep the
texture stationary on the surface by automatically adjusting
the texture coordinates according to the mip-map level. In
this figure, we have only one border texel (of the appropriate
resolution) next to each chart at every level. So, for example,
the texture coordinates for level 0 of chart D are scaled to
lie in [1/8, 7/8], whereas level 1 lies in [1/4, 3/4]. Just like
the separate style, this wastes half of each border texel (with
the other half used for bilinear interpolation). We can elimi-
nate even that waste by effectively using only half a texel of
border on each side as shown in Figure 5b.

This arrangement implies a somewhat simpler sampling
scheme as well, in which we generate the boundary texel by
sampling a patch exactly on its boundary. (Notice that the
modified sampling pattern has changed the outermost texel
values in chart D to the average of red and green, and the
values in chart E to the average of yellow and purple.) Chart
D’s range on level 0 using this alternative sampling scheme
is [1/16, 15/16] and on level 1 is [1/8, 7/8]. An example of
stacked seamless atlas is shown in Figure 6.

To use this style, we first parameterize a patch on the [0,1]
domain, as in the separate style, but at rasterization time
transform the texture coordinates of each fragment appro-
priately for the desired mip-map level. However, it is essen-
tial that the hardware’s texture lookup then use the mip-map
level expected after the texture coordinate adjustment. Fortu-
nately, this apparently recursive equation has a closed form
solution, which we present in Section 6.

Ideally, the graphics hardware would natively compute the
mip-map texture value based on our equation, making this

Figure 6: Stacked seamless atlas for Isis model.

Figure 7: Flat seamless atlas for Igea model.

style appropriate. Meanwhile, we can implement this in a
fragment program if we know the vendor’s mip-map level
computation formula. In order to avoid that requirement, we
propose the next style.

3.3. Combining Levels - Flat Style

The texture sampling in flat style is identical to that in
stacked style. The primary difference here is that we our-
selves arrange all the resolutions of all the charts in a single
texture image, avoiding the ambiguities inherent in guessing
the details of a particular hardware vendor’s mip-map level
computation.

We lay out all the 2D charts into the texture in a standard
mip-map pattern, with the lower-resolution images packed
in the bottom quadrant of the image. Given texture coordi-
nates for the level 0 image, it is straightforward to compute
in the fragment program the proper texture coordinates for
the higher mip-map levels. Figure 7 shows an example of a
flat seamless atlas.

3.4. Varying Chart Resolution - Packed Style

One limitation of the stacked and flat styles is that they both
make use of the fact that all charts have the same maximum
resolution to compute the texture coordinates for a particular
level given the texture coordinates at level 0. However, there
are many circumstances when we might like to keep some
charts at higher resolutions than others. For example, de-
pending on the chart creation process used, some charts may
map to a significantly larger area than other charts. It’s also
possible that certain charts map to regions with more detail
as measured by some metric. The packed style trades some
simplicity for the space savings of a more adaptive sampling
rate. It also allows rectangular charts.

To arrange the charts into a texture, we can use a sim-
ple packing algorithm [SGR96]. A texture width is chosen
to be a power of 2. We fill this texture from left to right, in-
serting the charts in order of decreasing size. When all the
charts have been placed, we choose the texture height to be
just large enough to contain these textures. Because we do
not require hardware mip-mapping for this layout, the height
does not have to be a power of 2. Figure 8 shows an exam-
ple of such a layout. In this example, we kept only one third

c© The Eurographics Association 2004.

70



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Figure 8: Packed seamless atlas for Igea model.

Separate Stacked Flat Packed
Texture binds Many Single Single Single
Draw calls Many Single Single Single
Chart locations None Implicit Implicit Lookup tbl
Advanced Built-in Built-in Fragment Fragment
texture filtering program program
Mip-map level Built-in Fragment Fragment Fragment

program program program
Texture space Optimal Possible Possible Efficient

(tex border) wastage wastage (rect tex)

Table 1: Summarizing the different layout styles of using a
seamless atlas.

of the textures at the highest resolution, reducing the tex-
ture requirements to one half that for a stacked or flat texture
with the same maximum resolution. The locations of the var-
ious resolution charts are stored in a lookup table, indexed by
chart number and mip-map level. Depending on the number
of charts, this table may be stored in either the uniform pa-
rameters to the fragment program or as another texture map.
To match the colors along boundaries between charts of dif-
ferent maximum resolutions, the higher-resolution boundary
is effectively downsampled to match the interpolated colors
of the lower-resolution boundary. Table 1 summarizes the
different trade-offs in the four layout styles of using a seam-
less atlas.

4. Creating a Seamless Atlas

We create the atlas by first clustering polygons into arbitrary-
sided patches. Next, we subdivide each such patch into a set
of quadrilateral, as illustrated in Figure 9. Such quadrilateral
patches usually have low distortion when parameterized on
a [0,1]x[0,1] domain. Once the patches are determined, we
sample its attributes into a texture, and perform filtering to
produce several mip-map levels.

4.1. Creating Polygonal Patches

Clustering triangles into patches is a well-known problem.
We use a technique which ensures that the patches do not
deviate much from a plane [GWH01]. We follow a bottom-
up construction, by starting with each triangle as a patch.
The patches are merged greedily minimizing the following
metric k1Q+k2P, where Q is the quadric error, P is the ratio
of the area and the perimeter of a patch.

Figure 9: Teeth model showing the patch creation. (a) Creat-
ing patches (Section 4.1). (b) Straightening polygonal patch
boundaries. (c) Patch quadrangulation (Section 4.2). (d) The
resulting quadrilateral patches.

Figure 10: Merging clusters. The following pair merges are
disallowed: A-B, A-D, and B-D. Any other pair could merge
without violating our topological rules.

We extend this work to follow two topological rules dur-
ing all clustering stages:

1. Every patch is homeomorphic to a disc.
2. Any pair of patches is adjacent at a single vertex, along

a single common boundary (homeomorphic to a line), or
not at all.

The effect of these rules on applicable merges is shown in
Figure 10.

At the end of patch formation process, we straighten patch
boundaries [SSGH01] by choosing locally shorter paths (of
triangle edges) between patch corners using Djikstra’s short-
est path algorithm. The edges’ weights are equal to their
geometric lengths scaled by their distance from the closest
point on the original patch boundaries. This ensures that the
boundaries do not move too far from their original positions.

4.2. Patch Quadrangulation

We employ a Catmull-Clark-inspired subdivision
scheme [CC78] to partition n-sided patches into quadri-
lateral ones (Figure 11). The algorithm consists of two
steps. First, we compute a center point, c, in the polygonal
patch. Then, this point is connected by a path to the median
of each edge of the polygonal patches. Although this
subdivision may be performed on the domain after the

Figure 11: Simple planar polygon quadrangulation.

c© The Eurographics Association 2004.

71



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Figure 12: Quadrangulating a polygonal patch. (a) Find-
ing the center point. The blue polygon lines represent the
new polygonal patch after one iteration of the algorithm. The
number of polygonal sides reduces by two. (b) The computed
center point is connected to median of each boundary curve.

polygonal patch is parameterized, we choose to directly
subdivide the patch and then parameterize each. This turns
out to be more efficient and results in somewhat smoother
parameterizations.

Center point computation: We find the center point by
successive bisection. Consider the patch in Figure 12. Let us
choose one of the patch boundaries, say E0 = p0 p1. We first
find its median m0. We locate it by summing the lengths of
triangle edges on E0 and choosing the median vertex. We
next find the shortest surface path from m0 to each corner
pi of the patch, i > 1. We again use Dijkstra’s shortest path
algorithm on the surface graph, with the restriction that a
path may not exit the patch. We start by assigning a weight
of infinity to each edge except those that are incident on the
source vertex but are not along the patch boundary. During
the path construction, each edge incident to the path found
so far is released by assigning to it a weight equal to its edge
length. Edges incident on a boundary vertex are not released,
thus the paths may not merge.

We perform the following iteration until only one or two
vertices remain and hence no more patches can be formed
(see Figure 12a):

• Find the shortest paths Pi from m0 to each pi
• Find the median vertex m1

i along each path Pi
• Connect each pair (circularly) m1

i −m1
i+1 by the shortest

path
• Generate a new patch with two fewer vertices.

If at the end of the iterations two vertices remain, we
choose their median (along the shortest path) as c′, otherwise
we choose the remaining vertex. This procedure converges
to the actual centroid for planar polygons, but is geometri-
cally near the center for non-planar patches. In practice, we
choose c from the neighborhood of c′. We choose the high-
est degree vertex in the neighborhood. High degree vertices
are usually near surface features and aid the following quad-
rangulation procedure, thus they form good patch corners.

Subdivision: Once we have found the center c, we join it
to the median of each boundary curve of the polygonal patch
in the manner shown in Figure 12b. The connecting curve is

Figure 13: Igea model partitioned into quadrilateral
patches.

again the shortest path, with a modification. We do not allow
these paths to intersect, or even be near. Close paths result
in narrow regions on the resulting quadrilaterals resulting in
parameterization artifacts. We again use Dijkstra’s shortest
path algorithm to find these paths in a greedy fashion. We
start by finding the shortest path, P0, from the median of edge
E0 to the center point c as described before. We next find the
shortest path, Pn/2, from the median of the next edge En/2
to c, with the weights of edges scaled by their distance from
path P0. This results in a path that stays far from P0. We
similarly use binary subdivision on each side to determine
the order in which to find all paths, Pi. Each path stays far
from those found before it. It is possible in some cases for no
paths to exist from the center to one of the edges as two paths
may have only one route through a vertex v and paths are not
allowed to intersect. We subdivide the triangle adjacent to v
to create new paths.

Paths Pi subdivide the original n-sided patch into n quads
as shown in Figure 12b, with the property that each quad-
patch edge has exactly two quads adjacent to it and each
quad-patch corner has a ring homeomorphic to a disk. Fig-
ure 13 shows the resulting quadrilateral patches on Igea
model.

4.3. Parameterization

Since our patches are rather simple, we use an inexpensive
parameterization scheme [SSGH01] for each quadrilateral
patch. We first distribute the vertices on the four bound-
ary curves of the patch on the u = 0, u = 1, v = 0 and
v = 1 texture boundaries. Each boundary vertex is placed
at a texture coordinate proportional to the ratio of its path
length from the corner and the total boundary curve length.
This is an arc-length parameterization of the boundary curve.
For the internal points, we perform uniform edge-spring
parameterization followed by geometric stretch minimiza-
tion [SSGH01]. Other parameterization algorithms may also
be employed here [DMA02, Flo97, ZMT04], and consider-
ing multiple patches at a time can permit parameterizations
which are smooth across patch boundaries [KLS03].

4.4. Chart Generation

Recall that we generate the "border" texture samples from
patch boundaries. We use graphics hardware to create these

c© The Eurographics Association 2004.

72



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Figure 14: Sampling by rendering: The grid shows the pixels
and the colored polygon is being sampled. (a) Triangles at
the boundary of two adjacent patches. (b) The desired sam-
ples at the centers of pixels. (c) Obtained samples due to
rasterization rules. (d) All samples generated by using lines.

samples when needed. We draw each triangle using its tex-
ture coordinate as geometry. Figure 14 shows the rasteriza-
tion of a patch. At level 0, the boundary texels are sampled
precisely from the patch boundaries. Because pixels are sam-
pled at their centers (Figure 14b), we render the triangles
with the coordinates scaled half a pixel in. This ensures that
the corner pixel sample lies precisely at the patch boundary.

Due to the rasterization rules [FvDFH90], this causes two
window boundaries to not be drawn (Figure 14c). We re-
draw these boundaries by drawing the triangle edges on the
patch boundary also as lines, again shifted half a pixel in.
This ensures that the boundary pixels on the window contain
samples precisely at the patch boundaries.

4.5. Filtering

Once the highest resolution texture is computed, we filter it
down to generate all levels of the mip-map. Since a change
of texture coordinates is required for each mip-map level, the
filtering has to be performed carefully as well.

We must ensure that the boundary texels at each level of
a patch agrees with the corresponding level of the adjacent
patch and represents the colors precisely on the boundary.
We also must ensure that the samples are taken from the cor-
rect place on the triangle with the modified location of the
patch boundary. It is possible to simply re-render the patches
in the parametric space using a smaller window. However,
any filter better than "sub-sampling" requires a careful con-

Figure 15: Texture Filtering: Grid shows the texels; color
comes from rendered samples. (a) The original 8x8 samples.
(b) From 8x8 samples to 4x4 samples. The dot represents the
old 8x8 samples. The cross represents the new 4x4 samples.

Figure 16: Convolving on the corner and the boundary of
the charts.

struction. If we wish to generate a 4x4 texture from an 8x8
texture (Figure 15), after moving the patch boundary half a
texel inside, the same boundary needs to be sampled four
times instead of eight (marked by crosses in Figure 15b).
The new locations are not a subset of the old locations. In
general the locations of the sample are at 1/(2l

−1) distance
apart for texture level l. In order to avoid seams at all levels,
the values must be the same on both patches adjacent to a
boundary. Hence, these samples must be generated by using
a filter that is symmetric about the texture boundary.

We use a two-step filter: first convolve each 3x3 set of
samples at level l with a Gaussian filter to obtain samples
at the texel centers for level l. Then linearly interpolate
these samples to obtain the samples at the texels for level
l +1. When the Gaussian kernel is applied at a boundary, we
gather the missing samples (e.g. the blue samples in Fig-
ure 16) from the adjacent patch. Special care is required
at the corners, which may connect an arbitrary number of
patches. In this case, all neighboring samples are gathered
and arranged uniformly around the corner sample for filter-
ing, as shown in Figure 16. This ensures that the correspond-
ing boundary texels contain the same values for adjacent
patches and their values are generated from values across
the boundary for a smooth filtering.

5. Geometric Simplification

Given our regular atlas structure, performing the geomet-
ric simplification is straightforward. We use a priority queue
driven, half-edge-collapse based scheme. We impose a few
restrictions to maintain the seamless parameterization. In-
terior vertices may collapse to chart boundary vertices, but
not vice versa. Similarly, boundary vertices may collapse to
corner vertices, but not vice versa. Corner vertices are never
moved. Finally, edge collapses along chart boundaries must
be applied to both sides of the boundary. These restrictions
are similar to those employed by the appearance-preserving
simplification algorithm [COM98], which operated on at-
lases having similar properties to ours.

6. Rendering With a Seamless Atlas

The rendering requirements for a seamless atlas depend on
the chosen style (Section 3). In the separate style, for ex-
ample, the patches are rendered individually, with each re-
quiring a texture bind and draw call to issue its vertices. The
texture coordinates of each patch’s vertices lie in [0,1], and

c© The Eurographics Association 2004.

73



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

no special fragment program is required (except to perform
standard normal mapping, etc.).

In contrast, the flat style requires a single texture bind and
a single draw call to issue all the vertices of all the patches.
In principle, the texture coordinates of each patch could fill
the [0,1] range, so long as a patch number is also issued with
each vertex. In practice, at the expense of a few bits of tex-
ture coordinate precision, we encode the patch number in the
texture coordinate, extracting it using div/mod operations in
the fragment program. The texture coordinates issued with
each vertex are thus the coordinates appropriate for mapping
the particular patch at mip-map level 0, so the patch bound-
ary coordinates lie in the center of its outermost texels at
that highest resolution. The fragment program then does the
following:

1. Scale and bias the texture coordinates so the particular
patch fills the entire [0,1] domain

2. Compute the appropriate mip-map level, i, for this frag-
ment

3. Scale and bias the texture coordinates to shrink the
boundaries by half a texel in each direction at this mip-
map resolution

4. Bias the texture coordinates to lie in the appropriate patch
of the appropriate resolution in the full [0,1] texture space

The scale and bias operations themselves are all straight-
forward. The challenge, then, lies in computing the appro-
priate mip-map level.

Given a patch with its texture coordinates (u, v) between 0
and 1, the formula for computing the default mip-map level
l is

l = log MAX





√

(

∂u
∂x

)2

+

(

∂v
∂x

)2

,

√

(

∂u
∂y

)2

+

(

∂v
∂y

)2


 (1)

where (x, y) is the screen coordinates.

If N is the original texture resolution, the texel size ni at
mip-map level i is 2i/N. For level i, the modified texture
coordinates (s, t) should lie in the range (ni/2, 1− ni/2) to
avoid a seam. In general s = (1− ni)u + ni/2 and t = (1−
ni)v + ni/2. This means the derivative (∂s/∂x) for the mod-
ified coordinate is (∂u/∂x) ∗ (∂s/∂u) = (∂u/∂x) ∗ (1 − ni).
All four partial derivatives are similarly scaled by (1− ni).
Hence, the new desired mip-map level i for the modified co-
ordinates is

i = log MAX





√

(

∂s
∂x

)2

+

(

∂t
∂x

)2

,

√

(

∂s
∂y

)2

+

(

∂t
∂y

)2




i.e., i = l + log(1− ni) = l + log(1− 2i/N). Solving this
equation, we get

i = l + log
(

1 +
2l

N

)

(2)

Thus, the scaled texture coordinates, based on the new
mip-map level i, can be directly computed from the default

mip-map level l (based on the vertices’ original texture coor-
dinates). Trilinear filtering is applied manually if desired by
using the integer mip-map levels surrounding i, computing
two sets of texture coordinates, doing two bilinear texture
lookups, and interpolating.

Although the stacked style may be implemented in a frag-
ment program, it is really best suited for a custom texture
lookup mode supported by the driver and texture unit. To
implement in a fragment program on current hardware, we
modify step 4 to account for the fact that we fill the entire
texture domain with only the highest resolution texture, us-
ing the hardware mip-map storage for the other levels. We
give the texture unit the modified texture coordinates as well
as a set of derivatives to attempt to force it to use the de-
sired mip-map level. As mentioned previously, this can be
difficult, because the hardware implementation may not im-
plement equation 1 exactly. For example the square root may
be missing. Equation 2 can usually be modified accordingly,
allowing us to determine appropriate derivatives to pass to
the texture lookup. Ideally, in a driver-supported setting, the
stacked style could allow a single texture lookup to perform
filters such as trilinear, anisotropic, etc.

7. Results

We have implemented the algorithms described in this pa-
per and tested them on several models. We generated sur-
face patches and parameterized them. We captured per-
vertex colors, per-vertex normals and per-triangle textures
into seamless atlases.

Table 2 provides the experimental results for separate
(Column A-D) and flat (Column E-G) atlases. These results
are performed with a Pentium4 2.8 GHz PC, 1 GB RAM
and an NVIDIA Quadro FX 3000 graphics card. It is run-
ning Windows XP with NVIDIA Cg 1.2 compiler and fp30
fragment shader profile. These results are rendered with per-
pixel lighting and normal map textures. We use the VBO
(Vertex Buffer Object) extension for fast triangle rendering.
Column A and E show results without mip-mapping. Col-
umn B shows result for both bilinear filtering and trilinear
filtering. We perform rendering with anisotropic 4x and 8x
in Column C and D. Column F shows result with bilinear
filtering for flat atlas. Result with trilinear filtering for flat
style is shown in Column G. Columns A-E use 12 fragment
instructions. Columns F and G use 57 and 67 fragment in-
structions, respectively. These results show that we can dis-
play complex models in interactive rates.

It is informative to compare Column A with Column E. It
seems that for our current set of tests, the per-chart texture
binds and draw calls do not cause much penalty for Col-
umn A as compared to Column E, which has a single bind
and draw call. In other tests, where we use coarser geomet-
ric levels of detail of these models, we have seen Column
E perform as much as 20% faster than Column A. Thus it
seems worthwhile to pack charts into a single texture on cur-

c© The Eurographics Association 2004.

74



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

Table 2: Timing results for seamless rendering

rent hardware only when the number of triangles per chart
is quite small. When this is beneficial, it is also possible in
some scenes to pack the geometry and textures of multiple
objects together, further reducing bind and draw overheads.
The texture component of this process is straightforward in
the context of our atlases.

It is also informative to compare Column A to Column B.
We find that standard trilinear mip-mapping and anisotropic
filtering achieves similar performance, and both outperform
non-mip-mapped rendering (presumably due to improved
texel caching). With hardware support for our atlas lookups,
we should expect a similar speedup from Column E to
Columns F and G. However, the number of instructions re-
quired to implement these lookups in a fragment program
apparently outweighs the gain in cache performance.

Figure 17 demonstrates the effectiveness of correct sam-
pling at the patch boundaries of all mip-map levels. Naïve
approaches may interpolate between correct texels and those
of adjacently packed charts, resulting in the visible seam ar-
tifacts shown here.

Figure 18 shows the normal-mapped tooth at varying lev-
els of geometric detail. Figure 19 shows a texture-mapped
Bunny model generated from a model which had per-triangle
textures. A close-up at a part of Bunny verifies that we do not
introduce seams on the patch boundaries.

Figure 17: Rendering normal-mapped Igea model.
(a) Seams introduced because of interpolation across
adjacently-packed chart boundaries. (b) Our correct
boundary filtering and lookup eliminates these seams.

Figure 18: Normal-mapped Teeth model with varying level
of detail. (a) Seamless rendering with LOD. (b) Rendering
the corresponding mesh without normal map.

Figure 19: Texture-mapped Bunny model and its flat seam-
less atlas. (a) A close-up on a part of Bunny with a patch
boundary (with the patches shown next to it). (b) Seamless
texture-mapped Bunny. (c) The flat atlas.

Figure 20 (see color plates in printed proceedings) shows
a Cuneiform tablet model [KSD∗03] with one million trian-
gles, rendered using individual mip-map levels of its color
texture. As we increase the texture filtering, the rendering
remains seamless.

A mip-mapped Club model is shown in Figure 21.The re-
sult of applying various texture filtering modes to the Club
model is shown in Figure 22.

8. Conclusion

We have presented an algorithm for constructing seamless
atlases, which seamlessly texture polygonal meshes and al-
low mip-mapping as well as geometric simplification. These
new texture atlases take advantage of fragment processor
programmability. Our approach adapts methods of seamless
texturing available in OpenGL to the requirements for large
batch sizes of geometry to provide maximal performance on
modern graphics hardware. While it is possible to adjust the
texture coordinates at each level of mip-mapping in a frag-
ment program, better results could be achieved with a cus-
tom texture lookup function. The seamless atlas could thus
become a new and useful custum texture format.

There remain several important avenues for future re-
search. Metrics for construction of variable precision charts

c© The Eurographics Association 2004.

75

Model Tris A B C D E F G
K fps fps fps fps fps fps fps

Knee 76 108 121 97 85 110 32 21
Bunny 76 93 113 88 74 83 30 19
Club 105 77 90 72 63 80 24 16
Teeth 234 40 44 38 34 41 12 8
Igea 269 35 39 33 30 35 10 7
Isis 377 26 29 27 23 26 8 6
Cuneiform 1079 11 11 11 10 11 3 2



B. Purnomo, J. Cohen, and S. Kumar / Seamless Texture Atlases

for the packed style bear further investigation. We also be-
lieve that combining patch quadrangulation directly with pa-
rameterization would yield better patches. In addition, out
of core parameterization and texture caching would be use-
ful for larger models.

9. Acknowledgments

We thank Jatin Chhugani, Yuan Chen, and Marc Olano
for insightful discussions. Models appear courtesy of the
Canada National Research Council, Cyberware, Stanford
Computer Graphics Lab, and Greg Turk. This research was
supported in part by NSF Medium ITR IIS-0205586 and a
DOE Early Career Award (the views expressed in this work
are not necessarily those of our sponsors).

References

[CC78] CATMULL E., CLARK J.: Recursively generated
b-spline surfaces on arbitrary topological meshes.
Computer-aided Design 10, 6 (1978), 350–355.

[CH02] CARR N., HART J.: Meshed atlases for real-time pro-
cedural solid texturing. ACM Transactions on Graph-
ics 21, 2 (2002), 106–131.

[CMR∗99] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R., TARINI M.: Preserving attribute
values on simplified meshes by resampling detail
textures. The Visual Computer 15, 10 (1999),
519–539.

[COM98] COHEN J., OLANO M., MANOCHA D.: Appearance-
preserving simplification. In Proceedings of SIG-
GRAPH (1998), pp. 115–122.

[DMA02] DESBRUN M., MEYER M., ALLIEZ P.: Intrinsic pa-
rameterizations of surface meshes. Computer Graph-
ics Forum 21 (2002), 209–218.

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE H.,
LOUNSBERY M., STUETZLE W.: Multiresolution
analysis of arbitrary meshes. In Proceedings of SIG-
GRAPH (1995), pp. 173–182.

[EH96] ECK M., HOPPE H.: Automatic reconstruction of b-
spline surfaces of arbitrary topological type. In Pro-
ceedings of SIGGRAPH (1996), pp. 325–334.

[Flo97] FLOATER M.: Parameterization and smooth approxi-
mation of surface triangulation. Computer Aided Ge-
ometric Design 14 (1997), 231–250.

[FvDFH90] FOLEY J., VAN DAM A., FEINER S., HUGHES J.:
Computer Graphics: Principles and Practice. The
Systems Programming Series. 2nd edition. Addison-
Wesley, Reading, MA, 1990.

[GGH02] GU X., GORTLER S., HOPPE H.: Geometry images.
In Proceedings of SIGGRAPH (2002), pp. 355–361.

[GWH01] GARLAND M., WILLMOTT A., HECKBERT P.: Hi-
erarchical face clustering on polygonal surfaces. In
Proceedings of Symposium on Interactive 3D Graph-
ics (2001), pp. 49–58.

[KL96] KRISHNAMURTHY V., LEVOY M.: Fitting smooth
surfaces to dense polygon meshes. In Proceedings of
SIGGRAPH (1996), pp. 313–324.

[KLS03] KHODAKOVSKY A., LITKE N., SCHRÖDER P.:
Globally smooth parameterizations with low distor-
tion. In Proceedings of ACM SIGGRAPH (2003),
vol. 22(3) of ACM Transactions on Graphics, pp. 350–
357.

[KSD∗03] KUMAR S., SNYDER D., DUNCAN D., COHEN J.,
COOPER J.: Digital preservation of ancient cunieform
tablets using 3d scanning. In Proceedings of Fourth
International Conference on 3-D Digital Imaging and
Modeling (2003), pp. 326–333.

[LCCK02] LEVEN J., CORSO J., COHEN J. D., KUMAR S.: In-
teractive visualization of unstructured grids using hi-
erarchical 3d textures. In Proceedings of IEEE Sym-
posium on Volume Visualization and Graphics (2002),
pp. 37–44.

[LHJ99] LAMAR E., HAMANN B., JOY K. I.: Multiresolu-
tion techniques for interactive texture-based volume
visualization. In Proceedings of IEEE Visualization
(1999), pp. 355–361.

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.:
Least squares conformal maps for automatic tex-
ture atlas generation. In Proceedings of SIGGRAPH
(2002), pp. 362–371.

[LSS∗98] LEE A., SWELDENS W., SCHRÖDER P., COWSAR

L., DOBKIN D.: Maps: multiresolution adaptive pa-
rameterization of surfaces. In Proceedings of SIG-
GRAPH (1998), pp. 95–104.

[Ped95] PEDERSEN H. K.: Decorating implicit surfaces. In
Proceedings of SIGGRAPH (1995), pp. 291–300.

[PH03] PRAUN E., HOPPE H.: Spherical parametrization
and remeshing. ACM Transactions on Graphics 22,
3 (2003), 340–349.

[SGR96] SOUCY M., GODIN G., RIOUX M.: A texture-
mapping approach for the compression of colored 3d
triangulations. The Visual Computer 12 (1996), 503–
514.

[SH02] SHEFFER A., HART J.: Seamster: inconspicuous low-
distortion texture seam layout. In Proceedings of
IEEE Visualization (2002), pp. 291–298.

[SSGH01] SANDER P., SNYDER J., GORTLER S., HOPPE H.:
Texture mapping progressive meshes. In Proceedings
of SIGGRAPH (2001), pp. 409–416.

[SWG∗03] SANDER P., WOOD Z., GORTLER S., SNYDER J.,
HOPPE H.: Multi-chart geometry images. In Pro-
ceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing (2003), pp. 146–155.

[WNDS99] WOO M., NEIDER J., DAVIS T., SHREINER:
OpenGL Programming Guide. Addison Wesley, 1999.

[ZMT04] ZHANG E., MISCHAIKOW K., TURK G.: Feature-
based surface parameterization and texture mapping.
ACM Transactions on Graphics (2004).

c© The Eurographics Association 2004.

76




