
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Statistical Point Geometry

Aravind Kalaiah and Amitabh Varshney

Graphics and Visual Informatics Laboratory
Department of Computer Science and UMIACS

University of Maryland
College Park, MD - 20742, USA

{ark | varshney}@cs.umd.edu

Abstract
We propose a scheme for modeling point sample geometry with statistical analysis. In our scheme we depart from
the current schemes that deterministically represent the attributes of each point sample. We show how the statis-
tical analysis of a densely sampled point model can be used to improve the geometry bandwidth bottleneck and
to do randomized rendering without sacrificing visual realism. We first carry out a hierarchical principal com-
ponent analysis (PCA) of the model. This stage partitions the model into compact local geometries by exploiting
local coherence. Our scheme handles vertex coordinates, normals, and color. The input model is reconstructed
and rendered using a probability distribution derived from the PCA analysis. We demonstrate the benefits of this
approach in all stages of the graphics pipeline: (1) orders of magnitude improvement in the storage and transmis-
sion complexity of point geometry, (2) direct rendering from compressed data, and (3) view-dependent randomized
rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; G.3 [Mathematics of Computing]:
Probability and Statistics

1. Introduction

Recent advances in 3D acquisition technologies have re-
sulted in a large and growing body of 3D point datasets. Such
datasets are typically dense, unstructured, lack connectivity,
and are increasingly becoming very large with upwards of
several million to billions of points. Current techniques for
handling such large point datasets have evolved from several
decades of research in triangle meshes. The triangle meshes
with their origins in the high-precision CAD community
have strongly favored deterministic representations. This has
carried over to representation of point datasets where we
encode the attributes of every input point sample explic-
itly. This is an appropriate representation when the precision
needs are high or the geometry is small. However, the rising
usage of high detail geometry has gradually increased the
cost of a deterministic representation to a level, where we
believe it has become attractive to explore other, less deter-
ministic, representations for point datasets.

In this paper we propose a scheme for representing de-

tails of a given unstructured point sample geometry using a
hierarchical statistical analysis of the original dataset. Hier-
archical statistical analysis allows us to trade off accuracy
against determinism. Our motivation for this new represen-
tation lies in the twin observations: (1) there is a very high
coherence in local point neighborhoods, and (2) the accuracy
required to generate a visually realistic image from a point
cloud model can be achieved using statistical methods on a
sparse point representation.

We analyze the input model using Principal Component
Analysis (PCA) 10 – a tool that has been used successfully
for analysis of empirical data in a variety of fields. Our input
consists of a collection of points with attributes such as spa-
tial location, normal, and color. A PCA analysis of this input
allows us to compactly represent the model, reconstruct de-
tail where desired, as well as use randomized rendering to
efficiently display the data. The principal contributions of
our approach are:

Geometry Bandwidth Reduction: A PCA representation

c© The Eurographics Association 2003.

107

http://www.eg.org
http://diglib.eg.org

Kalaiah and Varshney / SPG

Figure 1: The rendering pipeline: The server selects the tree cut to be used for rendering in a view dependent manner. The
nodes of the cut are then transmitted to the client, which is either the graphics card or a remote machine. The client renders
each node by generating points and their attributes from the nodes statistical information. This generation can be speeded by
caching and reusing the generated data.

compactly aggregates the geometric and appearance at-
tributes of a number of points. This reduced representa-
tion is more efficient to store and transmit. The graphics
processor on receiving the PCA parameters can then use
them to regenerate points that share the statistical proper-
ties of the input data. A hierarchical PCA representation
goes a step further and supports view-dependent transmis-
sion and rendering.

Randomized Rendering: Since we are working from a sta-
tistical representation of the underlying data, it is highly
suitable for stochastic generation and rendering of de-
tail in a tightly-coupled manner. Randomized rendering of
point data has the advantage of high-quality rendering that
is output-size-sensitive. Our view-dependent randomized
rendering generates points based on the number of pixels
that are covered by the local region represented by a PCA
cluster.

Here is an overview of our approach. The PCA analysis
of a group of points results in an estimate of their local ori-
entation frame, the mean, and the variance along the differ-
ent axes of the coordinate frame. We pre-process the input
point dataset using an octree and performing a PCA analysis
for each cell of the octree. The PCA parameters (orientation
frame, mean, and variances) of the cells tend to be similar for
coherent regions. This helps us to classify the node parame-
ters with clustering and quantization. Figure 2 illustrates the
entire preprocess pipeline.

At run-time the model is visualized using the Gaus-
sian distribution derived from the PCA analysis. A view-
dependent manager determines the cut in the octree and each
node of the cut is then visualized with points generated using
a trivariate Gaussian random generator. Other attributes of
the points such as normal and color are also generated using
Gaussian random processes. Figure 1 illustrates the render-
ing pipeline.

The rest of the paper is organized as follows: we discuss
related work in §2 and then discuss how each node is mod-
eled and encoded statistically in §3. The rendering of the
encoded input is discussed in §4 and the applications and
results are discussed in §5. We conclude the paper with con-
clusion, discussion, limitations, and future work.

Figure 2: The preprocess pipeline

2. Related Work

2.1. Modeling

The traditional approaches to modeling graphics objects in-
clude triangle meshes, parametric surfaces, implicit meth-
ods, as well as representations that are based on points,
images, and volumes. Recent approaches to modeling also
include procedural modeling 11. Here we propose taking
the statistical approach to model an object given its point-
sampled representation. Our idea is to statistically classify
local geometries. The strength of our approach lies in the
ability to exploit local coherencies on a global scale. The in-
put to our algorithm could be the points obtained directly
from the scanner or after processing for surface reconstruc-
tion 3, 4, editing 34, simplification 23 and signal processing 22.

2.2. Representation

A compact representation is essential for achieving band-
width reduction in the network or bus transmission of a

c© The Eurographics Association 2003.

108

Kalaiah and Varshney / SPG

(a) (b) (c) (d)

Figure 3: Figures (a), (b) are two different levels of the PCA Hierarchy shown here by their spatial PCA ellipsoids. The
intercepts of these ellipsoids is σp. Scaling the intercepts by a factor of γ gives us a hole free representation (figure (c)). The
ellipsoids undergo further scaling by a factor of λ to account for the local surface curvature (figure (d)). See figure 12 (see
color section) for a picture illustrating the surface curvature.

given geometry. Traditional methods reconstruct the orig-
inal input as is, with the variable being a possible loss
of detail due to quantization 8, 15, 30, 31. Such methods have
been extended for progressive compression and reconstruc-
tion 2, 7, 13, 29. Point-based representations include the bound-
ing balls hierarchy 27, the octree hierarchy 24, 33, and progres-
sive implicit surface representations 12. Alternatively, higher
compression rates can be obtained by using equivalent repre-
sentations that reconstruct the given input without necessar-
ily trying to reproduce the original samples 18 or with spec-
tral compression 17. Our statistical approach belongs to this
category and achieves better geometric compression since
the number of primitives are greatly reduced.

Our representation has several benefits: (1) decoding of
each local geometry is done entirely independently, and
hence is not memory intensive, is fast, lends itself easily to
progressive transmission, and offers, direct real-time render-
ing from compressed data, (2) it offers a uniform framework
for compressing other local attributes of the model such as
color, normal, and texture coordinates, and (3) the savings in
geometry bandwidth can be used for network transmission
of 3D geometric objects as well on a stand-alone computer-
system bus connecting CPU, GPU, and memory.

2.3. Rendering

Levoy and Whitted 20 introduced points as geometric ren-
dering primitives. Points have found a variety of applica-
tions 14 including efficient rendering of large complex mod-
els 26. Points have evolved from being rendered as a pixel per
point to more interesting primitives centered at each sample
point. The primitives include sphere 26, tangential disk 24, 35,
quadratic surface 16, and higher degree (3 or 4) polynomi-
als 1. These methods are successful in covering inter-point
spaces as long as the local sampling density can provide
sufficient detail in the image space. Another useful appli-
cation of point primitives is the rendering of regions of a
triangle mesh with small screen-space projection area 6, 9.

We have developed a statistical approach to model the local
geometry in the object space. In our approach we indepen-
dently render each local geometry by random point gener-
ation. Our work has some common elements to procedural
rendering 11, 25 and the randomized z-buffer algorithm for tri-
angle meshes 32. The difference is that our approach uses sta-
tistical properties to generate geometry along with other lo-
cal attributes such as normal and color to achieve a fully ran-
domized rendering. Variance analysis has been widely used
for anti-aliasing. Schilling 28 uses it for anti-aliasing normals
in bump mapped environment mapping.

3. Statistical Neighborhood Modeling

(a) (b)

Figure 4: A PCA hierarchy illustrated in 2D: An octree sub-
division of the model is followed up by a PCA analysis of the
points in each node. The PCA analysis of the spatial posi-
tions of the points give approximating ellipsoids. A separate
PCA analysis is done for other local attributes, such as nor-
mal and color.

The PCA analysis of a collection of N points in a d-
dimensional space gives us the mean µ, an orthogonal basis
f , and the variance σ of the data 10. The terms µ and σ are d-
dimensional vectors and we refer to their i-th scalar value as
µi and σi respectively, with σi ≥ σ j if i > j. The basis f con-
sists of (atmost) d vectors with the i-th vector referred to as
f i. Our input is a set of N points with three attributes: spatial
position p, normal n, and color c. It should also be possible
to handle other local attributes such as texture coordinates

c© The Eurographics Association 2003.

109

Kalaiah and Varshney / SPG

using our approach. We do an independent PCA analysis for
each of these attributes since they each have special require-
ments. For instance, normals are unit length and colors have
to lie in the range [0,1]. We refer to the mean, variance, and
the basis of each of these attributes by their subscripts p, n,
and c corresponding to the position, normal and color re-
spectively (eg. µp, fn, and σc). We determine the values µp,
fp, and σp from the PCA analysis of the (x,y,z) values of
the points. This gives us an ellipsoid centered at µp, aligned
in the directions f 1

p , f 2
p , and f 3

p , with the intercepts of the
ellipsoid being σ1

p, σ2
p and σ3

p respectively.

The PCA computation is in general quite robust except
for the degeneracies associated with processing data with
zero variances. In practice, we set a minimum value for σi

p

(of the order 10−15) and any variance is set to the maxi-
mum of itself and this value. This allows us to deal uni-
formly with all boundary cases. Thus at render time we only
need to consider ellipsoidal (Gaussian) distributions (even
if they are vanishingly thin along some dimensions) to gen-
erate the points. When there are two zero variances, we re-
tain the principal direction derived from eigen-analysis and
modify the other two directions so that the z-direction of the
ellipsoid points along the average normal. For three zero-
variances, we set the z-axis of the ellipsoid to point along
the normal while the other two directions are any two or-
thogonal vectors in the tangent plane. The values µc, fc, and
σc are determined from the PCA analysis of the (r,g,b) val-
ues of the points. However, we do not find any necessity to
set a minimum value for σi

c.

The PCA for normals has to be done on the unit sphere.
We first orient a unit sphere such that its z-axis is along the
average of the N normals. We then transform all the normals
to this basis and determine their respective elevation (θ)
(measured from the z-axis) and azimuth (φ) angles. The nor-
mals are now points in this sphere and they are unwrapped
onto a tangent plane at the north pole using the transforma-
tion: (u,v) = (θsin(φ),θcos(φ)). This parameterization pre-
serves the arc-lengths along the longitudes. A PCA in this
parametric space gives us an ellipse. The x- and the y-axes
of the sphere are then made parallel to the axes of the el-
lipse. The PCA analysis of the normals thus gives us a 2D
variance vector σn and a 3D frame fn (basis of the sphere),
which represents both its mean and principal directions.

To represent the data at different levels of detail we spa-
tially partition the input using an octree, and do an indepen-
dent PCA analysis of the points in each node of the octree.
This is illustrated in 2D in figure 4. Figures 3(a) and 3(b)
show the PCA nodes at two different resolutions. The octree
subdivision is done top-down with the recursive subdivision
terminating at nodes which have less than a user-specified
number of points. This is done mainly to reduce the number
of nodes since there is generally tremendous coherence at the
leaf nodes. Each spatial ellipsoid represents a Gaussian dis-
tribution with variance σp. We limit the extent of the distri-

bution to γ×σp (γ is generally set to 3.5 since it corresponds
to a confidence interval (CI) greater than 99.7%). This gives
us a hole-free representation of the surface as shown in fig-
ure 3(c). We further factor in the inherent assumption that
the points are actually from a surface and note that the value

σ1
n

‖σp‖
is a measure of the maximum principal curvature of the

local surface area (figure 3(d)). We scale the variance σp by

a factor λ = c
√

σ1
n

‖σp‖
to get a curvature-sensitive analysis of

point locations (figure 3(e)).

3.1. Classification and Quantization

(a)

(b) (c)

Figure 5: (a): A node is quantized into 13 bytes for the
spatial and normal information. Four extra bytes are used
for the optional color information. The breakdown is shown
shown in bits. (b): About 600K PCA values of σp for the
David’s Head, and (c): their 512 k-means cluster centers.

The refinement of the geometry into nodes with indepen-
dent PCA analysis leads to significant savings (see §5.1).
Further, the PCA parameters are highly coherent across
nodes. This is reflected in the similarity of the variances. We
run a K-means clustering algorithm on the variances (σp,
σn, and σc) to derive a small number of representative vari-
ances (between 64 to 4K for each model). Figure 5 shows
the original variance values and the cluster centers for σp.
With each node we then store the index of the best matching
variance using 12 bits each for σp and σn and 6 bits for σc.
We use quantization to further reduce the rest of the storage.
The values of µp are encoded in 32 bits using a 10−11−11
quantization depending on the direction of minimum width.
The value of µc is encoded in 16 bits using a 5−6−5 quan-
tization of its red, green, and blue values. To encode frame
fp, we observe that it is a rotation of the unit basis. This cor-
responds to first rotating the basis in the plane of its z-axis
and f 3

p , so that the z-axis is now f 3
p . It is then rotated again

so that its x- and y-axes are equal to f 1
p and f 2

p . The encoding
of fp is done by using 8 bits for the the second rotation and
16 bits for the f 3

p axis. The encoding of fn is done similarly
with 24 bits, while fc is encoded in 10 bits with three bits
for the angle and seven bits for f 3

c . This lets us compress the
PCA representation for one cluster to 13 bytes without color
and 17 bytes with color.

c© The Eurographics Association 2003.

110

Kalaiah and Varshney / SPG

4. Randomized Rendering

The PCA subdivision of the geometry gives us local geome-
tries compactly approximated by ellipsoids. We render these
geometries by sampling them for points according to their
PCA distribution parameters.

The PCA analysis gives us a Gaussian distribution for
each of its attributes (geometry, normal, color, etc). For an
ellipsoid centered at the origin with its frame being the coor-
dinate axes, the spatial attribute of points is generated using
the following trivariate Gaussian random number generator
(a 3D version of the Box-Muller transform 5):

τp =
√

−2ln(rp0)

x
y
z

 =

σ1
p 0 0

0 σ2
p 0

0 0 σ3
p

τ
√

1− r2
p2 cos(2πrp1)

τ
√

1− r2
p2 sin(2πrp1)

τ rp2

where rp0, rp1, and rp2 are uniformly distributed random
numbers in (0,1], [0,1], and [−1,1] respectively. Here τp
ensures that the distances of the points from the mean are
spread in a Gaussian manner, while rp1 and rp2 approximate
a uniform parameterization of the sphere with a (cos(θ),φ)
parameterization. The generation of the point colors is done
similarly. The (θ,φ) values of the normals are generated us-
ing a Gaussian sampling of its ellipse using the Box-Muller
transform as follows:

τn =
√

−2ln(rn0)

α = σ1
nτn cos(2πrn1)

β = σ2
nτn sin(2πrn1)

θ =
√

α2 +β2

φ = tan−1
(

β
α

)

where rn0 and rn1 are uniform random numbers in (0,1] and
[0,1] respectively. Here τn ensures a Gaussian distribution of
the samples in the tangent plane to the sphere at (0,0,1), with
the α and β being intermediate terms in the inverse projec-
tion to the (θ,φ) space.

An important constraint on the sampling process is that
there should be sufficient number of them to fully cover the
screen space area (as) of its ellipsoid. The projection of an
ellipsoid to a plane is an ellipse which can be determined
with eigen analysis. When the ellipsoid is far away then this
can be approximated by computing the screen-space projec-
tion area of its best-enclosing sphere. If the distribution of
points within the ellipsoid is uniform then the required num-
ber of points is given by the term as ln(as)+ cas, where the
value c decreases dramatically with the value of as 32. Gen-
erating this number of points using a Gaussian distribution
does not necessarily cover all the pixels in as. However, since
the Gaussian distribution of neighboring nodes overlap, we

Render()
1. For every node, n, in the octree cut
2. Decode(n)
3. If (cull(n))
4. merge(n)
5. continue
6. p← RequiredNumberOfPoints(n)
7. If (DoSplit(n, p))
8. split(n)
9. continue
10. RenderPoints(n, p)
11. If (DoMerge(n, p))
12. merge(n)

Figure 6: The view dependent rendering algorithm.

have that all screen pixels are covered. A value of c = 0.2
was sufficient for all our test cases.

Our view-dependent rendering algorithm is similar to the
ones generally used for triangle meshes 21. We maintain an
active list of nodes representing the octree cut using a dou-
bly linked list. The overall rendering algorithm is described
in figure 6. We do the rendering by iterating over the nodes
of the octree cut. A node is rendered only if its normal-cone
based culling test is negative 19. To be on the conservative
side, the width of the cone is chosen to be the maximum of
the normal ellipse intercepts. If the node could be culled then
it can be merged to its parent only if all its siblings are will-
ing to be merged as well. To do this efficiently, at each node,
we keep a count of how many children wished to be merged
at that rendering cycle. We also maintain a time stamp at
each node identifying the last time this count was updated.
So, when a parent node gets a merge request from a child,
the count is reset to one if its time stamp is outdated, else it
is incremented. The actual merge happens when this count
is equal to its number of children. The children are then re-
placed by the parent in the octree cut. This is done by the
merge() function of the algorithm. If the node is not culled
then we compute the number of points to render. If this num-
ber is above a maximum threshold (set to 40 in all our tests)
then the node is split. The children of the split node are in-
serted into the octree cut in the position of the parent (done
by the function, split(), in the algorithm) and the iteration
continues with the first of the inserted children. The node is
rendered by generating the points with their attributes. The
points could be generated on the fly or they could be selected
from a cache. In a network environment, the server can send
the client just the encoded information of the node and the
number of points to render. After rendering, the node puts in
a merge request with its parent if its screen-space size is less
than a threshold (8 in all our test cases).

While an on-the-fly point generation is suitable for hard-
ware implementation and saves memory space, caching is

c© The Eurographics Association 2003.

111

Kalaiah and Varshney / SPG

Octree Level Compression (in %) Max. error (in %) Avg. error (in %)

Level 9 213.79 0.4161 0.0751

Level 8 829.23 0.546 0.1466

Level 7 3392.11 1.186 0.280

Level 6 13316.08 1.952 0.641

Level 5 45433.10 3.768 1.504

Level 4 104477.13 8.086 3.458

Table 1: The relationship between the compression and the degree of approximation for the David’s Head model. The first
column represents the hierarchy level of the octree cut. The error columns measure the Hausdorff distance between the generated
points and the original point samples.

generally faster on current systems. For caching, we main-
tain a global bank of blocks of points of constant size (16
in all our tests). A node in the octree cut can request these
blocks as necessary and will fill it up with generated points
right after assignment. When a node is split, its parents cache
is freed, while the act of merging a node with its parent frees
up its children’s cache. The overall size of the global bank
is directly related to the window resolution and a one time
allocation of 40 million points sufficed for all our tests on a
1024×1024 window.

5. Applications and Results

We did all our tests on a Pentium4 based PC with 2GB RAM
and a NVIDIA Quadro4 graphics card. We tested our work
on the Stanford’s David’s Head model, David (full) model,
Lucy model, and the St. Matthews face model. We added
colors to these models by solid texturing. These models took
no more than two hours of preprocessing with the classi-
fication and quantization phase taking up most of the time.
We used a naive partition-based clustering scheme. More ad-
vanced clustering schemes should improve this number dra-
matically 10.

5.1. Storage and Network Transmission

The hierarchical PCA subdivision of the geometry is very
effective at compactly representing the 3D point-based mod-
els. Given the original collection of points, a typical un-
compressed representation would require 8 bytes for each
point (two bytes for each of the x, y, and z components and
two bytes for the normal). On the other hand, our PCA repre-
sentation can encode a collection of points with just 12 bytes,
which means that one starts saving with a PCA representa-
tion as soon as the number of points in a cluster exceeds two.
The processing of the David’s Head data yielded us a tree
with about 1.34 million nodes of which about one million
nodes are at the leaf level. We used 1500 spatial ellipsoids,

800 normal ellipses, and 128 color ellipsoids to classify the
respective intercepts of the PCA nodes. The original 2 mil-
lion points of the David’s Head model requires about 46MB
of data while our total representation with the hierarchy and
the classification requires about 21MB. Figures 9(a), 9(b),
and 9(c) (see color section) show the PCA hierarchy for the
Lucy model. Figure 10 (see color section) shows that the
approximation with classification and quantization does not
add any noticeable distortion to the model.

The compression however comes at the cost of an approx-
imation error. Table 1 summarizes this relationship for the
David’s head model. The approximation error is measured
using the Hausdorff error metric. We first compute the Haus-
dorff distance between the points generated at a given node
and the original points present at the node (the number of
generated points is equal to the number of original points
at that node). We then convert this number to percentage by
comparing it with the bounds of the best fitting axis-aligned
cube. The third column in table 1 represents the maximum
of all such (per-node) distances at any given level. For exam-
ple, the maximum distance between any generated point at
level 9 and its nearest point on the surface is about 0.4%. We
average the Hausdorff distances over all the nodes at a level
and these values are shown in column four of table 1. These
results show that the error can be very small at higher resolu-
tions while still giving significant compression. Pauly et. al.
discuss a more sophisticated measure of geometry error 23.

The nodes of the PCA hierarchy represent their local re-
gion of interest independent of each other (no connectivity).
Hence, they are suitable for order-independent network ren-
dering in a client-server model, and also potentially in a sin-
gle system rendering with GPU-level support for vertex gen-
eration and random number computation. The key issue in
such an environment is network/bus bandwidth reduction. To
illustrate the reduction in the network bandwidth we setup
an experiment where the camera eye is placed at various dis-
tances relative to the object center. The object is then rotated

c© The Eurographics Association 2003.

112

Kalaiah and Varshney / SPG

(a) (b) (c)

Figure 7: (a): Comparison of the network bandwidth for view dependent transmission. The x-axis measures the distance of the
eye w.r.t. the center of the (normalized) bounding box of the model. (b): Screen space error (measured w.r.t. a plain triangle
mesh based rendering) is inversely proportional to the level of the hierarchy cut used for rendering. (c): Chart illustrating the
(screen space) error during view dependent rendering. The error is measured w.r.t. a plain triangle mesh based rendering. The
x-axis refers to the distance of the eye from the center on the object (same distance as in case (a)).

around an axis aligned with the y-axis of the camera and the
network bandwidth required to transmit the PCA informa-
tion in the octree cut is averaged over a 360 degree rotation.
The results are shown in figure 7(a). We compare the results
of our approach of Statistical Point Geometry (SPG) with
QSplat. QSplat is actually designed for network streaming.
However, by the strength of its broad approach, it doubles
up as the state-of-the-art in point-based network graphics.
We did all our tests on a 1024×1024 test window. The re-
sults show that we obtained an orders-of-magnitude reduc-
tion in network bandwidth. We note that this improvement
is at the cost of approximately regenerating the original data
(not rendering the actual input points like QSplat does).

5.2. Randomized Rendering

The hierarchical nature of the PCA analysis means that the
error of approximation decreases dramatically with the level
of subdivision. Apart from the object space error analysis
shown in table 1, we also compare the rendering quality with
a plain triangle mesh rendering (figure 7(b)). Results show
that the approximation can get very close to a triangle mesh
representation when higher levels of the hierarchy are ren-
dered. Figure 7(c) compares the screen space image qual-
ity of our view-dependent rendering, with a plain triangle-
mesh-based rendering. Figure 11 (see color section) illus-
trates view dependent rendering of the David’s Head model.
The rendering speed was roughly half the speed of QSplat,
with about 3-4 frames per second for a 2× relative distance
from the camera eye. At resolutions where the number of
points sent over the bus are similar, the rendering speeds are
similar as well. However, at closer views, since the size of
our points is always a single pixel, we render more points
leading to a slower rendering speed.

6. Discussion and Conclusions

We have presented a novel way to represent geometry using
statistical analysis. The method works by exploiting local
coherence with a PCA analysis and is fairly general in that
it can handle other local attributes such as normal and color
within this framework. The representation is quite compact
and efficiently approximates the original geometry with hier-
archy. The application of this work can be realized in reduc-
ing network bandwidth and in high-quality interactive ren-
dering. This representation also holds promise for a reducing
the bus bandwidth in future graphics card architectures.

There is, however, scope for much improvement. The ren-
dering of the PCA nodes with randomly sampled points fits
well with the current generation of graphics hardware. We
believe that an EWA-style 35 anti-aliased rendering of the
PCA nodes would give us high quality rendering and also
get rid of the temporal aliasing. The treatment of the PCA
subdivision is done with no connectivity information and
this can sometimes cause two non-adjacent surface areas to
be merged into one PCA node. Assuming a “good” sam-
pling rate, this can be solved with a local clustering analysis
which separates the data into spatial- and normal-coherent
parts. We have not investigated the relationship between the
point size, rendering quality and number of points required
for rendering a PCA node. A bigger point size reduces the
bandwidth but can cause significant aliasing artifacts. We
leave this for future work.

Acknowledgements

We thank the Stanford Graphics Laboratory for providing
us with the David’s Head model, David (full) model, Lucy
model, and the St. Matthews face model. We would also like
to thank Thomas Baby for his help with coding. This work
was supported by the NSF funding grants IIS00-81847 and
ACR-98-12572.

c© The Eurographics Association 2003.

113

Kalaiah and Varshney / SPG

(a) (b) (c) (d)

Figure 8: (a), (c): Lower resolutions of the Lucy model. (b), (d): (Zoomed-in) Randomized renderings at these resolutions. In
practise, we adjust the resolution of rendering in a view dependent fashion. See figure 13 (see color section) for an example of
view dependent rendering.

References

1. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, C. Silva,
and D. Levin. Point set surfaces. In IEEE Visualization
2001, pages 21–28, October 2001.

2. P. Alliez and M. Desbrun. Progressive compression
for lossless transmission of triangle meshes. In Pro-
ceedings of SIGGRAPH 2001, pages 195–202, August
2001.

3. N. Amenta, M. Bern, and M. Kamvysselis. A new
voronoi-based surface reconstruction algorithm. In
Proceedings of SIGGRAPH 98, pages 415–422, 1998.

4. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface re-
construction. IEEE Transactions on Visualization and
Computer Graphics, 5(4):349–359, October 1999.

5. G. E. P. Box and M. E. Muller. A note on the generation
of random normal deviates. Ann. Math. Stat., 28:610–
611, 1958.

6. B. Chen and M. X. Nguyen. POP: A polygon hybrid
point and polygon rendering system for large data. In
IEEE Visualization’01, pages 45–52, October 2001.

7. Daniel Cohen-Or, David Levin, and Offir Remez. Pro-
gressive compression of arbitrary triangular meshes. In
IEEE Visualization ’99, pages 67–72, 1999.

8. Michael F. Deering. Geometry compression. In Pro-
ceedings of SIGGRAPH’95, pages 13–20, August 1995.

9. T. K. Dey and J. Hudson. Pmr: Point to mesh rendering,

a feature-based approach. In IEEE Visualization’02,
pages 155–162, October 2002.

10. R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi-
fication. John Wiley & Sons, Inc., New York, 2 edition,
2001.

11. D. Ebert, F. Musgrave, P. Peachey, K. Perlin, and
S. Worley. Texturing & Modeling: A Procedural Ap-
proach. AP Professional, San Diego, 3rd edition, 2002.

12. S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva.
Progressive point set surfaces. ACM Transactions on
Graphics, (to appear) 2003.

13. P.-M. Gandoin and O. Devillers. Progressive lossless
compression of arbitrary simplicial complexes. ACM
Transactions on Graphics, 21:372–379, 2002. Proceed-
ings of SIGGRAPH’02.

14. J. P. Grossman and William J. Dally. Point sample
rendering. In Rendering Techniques ’98, Eurograph-
ics, pages 181–192. Springer-Verlag Wien New York,
1998.

15. M. Isenburg and J. Snoeylink. Face fixer: Compressing
polygon meshes with properties. In Proceedings Sig-
graph’00, pages 263–270, 2000.

16. A. Kalaiah and A. Varshney. Modeling and rendering
points with local geometry. IEEE Transactions on Visu-
alization and Computer Graphics, 9(1):30–42, January
2003.

17. Z. Karni and C. Gotsman. Spectral compression of

c© The Eurographics Association 2003.

114

Kalaiah and Varshney / SPG

mesh geometry. In Proceedings of Siggraph’00, pages
279–286, 2000.

18. A. Khodakovsky, P. Schröder, and W. Sweldens. Pro-
gressive geometry compression. In Proceedings of Sig-
graph’00, pages 271–278, 2000.

19. S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hi-
erarchical back-face computation. In Rendering Tech-
niques ’96, Eurographics, pages 231–240. Springer-
Verlag Wien New York, 1996.

20. M. Levoy and T. Whitted. The use of points as a dis-
play primitive. In Technical Report 85-022, Computer
Science Department, UNC, Chapel Hill, January 1985.

21. D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Wat-
son, and R. Huebner. Level of Detail for 3D Graphics.
Morgan Kaufman, 2002.

22. M. Pauly and M. Gross. Spectral processing of point-
sampled geometry. In Proceedings of SIGGRAPH’01,
pages 379–386, August 2001.

23. M. Pauly, M. Gross, and L. P. Kobbelt. Efficient sim-
plification of point-sampled surfaces. In IEEE Visual-
ization 2002, pages 163–170, October 2002.

24. H. Pfister, M. Zwicker, J. van Baar, and M. Gross.
Surfels: Surface elements as rendering primitives. In
Proceedings of SIGGRAPH 2000, pages 335–342, July
2000.

25. W. T. Reeves. Particle systems — A technique for mod-
eling a class of fuzzy objects. Computer Graphics,
17(3):359–376, July 1983.

26. S. Rusinkiewicz and M. Levoy. QSplat: A multires-
olution point rendering system for large meshes. In
Proceedings of SIGGRAPH 2000, pages 343–352, July
2000.

27. S. Rusinkiewicz and M. Levoy. Streaming QSplat: A
viewer for networked visualization of large, dense mod-
els. In ACM Symposium on Interactive 3D Graphics,
pages 63–68, March 2001.

28. A. Schilling. Antialiasing of environment maps. Com-
puter Graphics Forum, 20(1):5–11, 2001.

29. G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Pro-
gressive forest split compression. In Proceedings of
SIGGRAPH 98, pages 123–132, July 1998.

30. Gabriel Taubin and Jarek Rossignac. Geometric com-
pression through topological surgery. ACM Transac-
tions on Graphics, 17(2):84–115, April 1998.

31. Costa Touma and Craig Gotsman. Triangle mesh com-
pression. In Graphics Interface, pages 26–34, June
1998.

32. M. Wand, M. Fischer, I. Peter, F. M. Heide, and

W. Straßer. The randomized z-buffer algorithm: Inter-
active rendering of highly complex scenes. In Proceed-
ings of SIGGRAPH’01, pages 361–370, August 2001.

33. J. C. Woolley, D. Luebke, B. Watson, and A. Dayal.
Interruptible rendering. In ACM Symposium on Inter-
active 3D Graphics, pages 143–152, 2003.

34. M. Zwicker, M. Pauly, O. Knoll, and M. Gross.
Pointshop 3d: An interactive system for point-based
surface editing. In Proceedings of SIGGRAPH’02,
pages 322–329, July 2002.

35. M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Sur-
face splatting. In Proceedings of SIGGRAPH 2001,
pages 371–378, August 2001.

c© The Eurographics Association 2003.

115

Kalaiah and Varshney / SPG

(a) (b) (c) (d)

Figure 9: (a), (b), (c): The PCA subdivision of the Lucy model. The ellipsoids correspond to the spatial subdivision. They are colored by
the mean color of the points belonging to that node. (d): Randomized rendering of the lucy model.

Figure 10: After quantization and
classification of the original input
(top) there is no significant change.

Figure 11: During view dependent ren-
dering, the generated points are colored
according to the level of their node.

Figure 12: Estimates of the surface
curvature varying from high (red) to
medium (green) to low (blue).

Figure 13: The view dependent renderings of the St. Matthews Head

c© The Eurographics Association 2003.

270

