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Figure 1: A selection of grasps and motions synthesized by our method.

Abstract
We present a method for automatic synthesis of dexterous hand movements, given only high-level goals specifying
what should happen to the object being manipulated. Results are presented on a wide range of tasks including
grasping and picking up objects, twirling them between the fingers, tossing and catching, drawing. This work
is an extension of the recent contact-invariant optimization (CIO) method, which introduced auxiliary decision
variables directly specifying when and where contacts should occur, and optimized these variables together with
the movement trajectory. Our contribution here is extending the unique contact model used in CIO which was
specific to locomotion tasks, as well as applying the extended method systematically to hand manipulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Hand manipulation involves some of the most complex
and fascinating biological movements, and is of interest
in graphics and animation as well as robotics, biomechan-
ics and neuroscience. Despite its importance in multiple
fields, current understanding of hand manipulation lags be-
hind other behaviors such as locomotion. This likely reflects
the intrinsic difficulty of the problem. Indeed it is notable
that most animal species are capable of impressive locomo-
tion, while only humans can perform full-blown manipula-
tion, and appear to do so using specialized neural pathways
that partially bypass the spinal circuits [RS09]. From a com-
putational perspective hand manipulation is a difficult prob-
lem not only because of the large number of degrees of free-
dom (DOFs) of the hand and under-actuation of the object
being manipulated, but perhaps more importantly, because

of the contact interactions involved. Planning and control
in the presence of contact discontinuities are of course al-
ways challenging. Nevertheless hand manipulation is unique
in that a large number of contacts can appear and disappear
in rapid succession, and dynamic phenomena such as rolling
and sliding can be actively used. This makes it virtually im-
possible to synthesize realistic hand manipulation by pre-
specifying contact events – as is often done in locomotion
for example.

We aim to automate the synthesis of hand manipulation.
While approaches based on motion capture or scripting have
played an important role and will continue to do so, it is
obviously beneficial to have methods that are more auto-
mated in the sense that they require less detailed input. Such
automation is particularly important in hand manipulation
where motion capture is technically challenging: optical sys-
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tems suffer from occlusions and marker mis-identifications
when tracking a large number of markers in a small volume,
while data gloves impede natural movements and also limit
tactile sensation – which in turn is essential for dexterous
manipulation in humans [JF09].

Here we develop a synthesis method whose input is at the
highest level of specification possible. In the task of picking
up an object for example, we merely specify the desired final
position of the object. The hand and finger movements and
finger-object interactions are then computed automatically.
Similarly, twirling a pen between the fingers is specified as
a desired angular velocity for the pen; drawing is specified
as a desired trajectory for the tip of the pen, etc. This high-
level specification is not treated as a hard constraint (since it
may be infeasible) but as a cost which is mixed with other
costs enforcing physical realism and shaping the optimiza-
tion landscape.

The present work is an extension of the recent contact-
invariant optimization (CIO) method which was able to syn-
thesize full-body motions including getting up, walking,
climbing, kicking, carrying objects, hand stands and coop-
erative actions [MTP12]. Our original contribution in this
paper is twofold. First, we modify and at the same time sim-
plify the unique contact model used in CIO – which turned
out to be inadequate for hand manipulation because it as-
sumed contacts between parallel surface patches and dis-
couraged rolling and sliding. Second, we apply the modi-
fied CIO method to a wide range of hand manipulation tasks
as well as different hand morphologies, and obtain motions
whose complexity exceeds prior results obtained automati-
cally. Key to the success of our method is the special han-
dling of contact dynamics.

2. Related Work

2.1. Planning through contacts

The power of the CIO method (both original and modified)
lies in its ability to optimize movement trajectories through
multiple contact events, and do so fully automatically, with-
out using motion capture data. This type of optimization
is desirable, but apparently is so hard to achieve in prac-
tice that results along these lines have appeared only re-
cently. Note that the present discussion is specific to tra-
jectory optimization – as opposed to optimization of feed-
back controllers which have dealt with contacts automat-
ically [Sim94, Ijs01] but have other limitations including
computationally-intensive optimization, poor local minima,
and the need to guess a suitable controller parameteriza-
tion. Focusing on trajectory optimization, [TT10] handled
contacts automatically by introducing a stochastic comple-
mentarity formulation that yields smooth yet phenomeno-
logically hard contacts. These authors then optimized the
sequence of controls in forward dynamics for an object spin-
ning task. An alternative method for contact smoothing ap-

plicable to inverse dynamics (and thus space-time optimiza-
tion) was developed in [Tod11]. It is also possible (and actu-
ally easier) to define inverse contact dynamics with respect
to spring-damper models [BSF09], but so far this has been
applied to motion capture data and not to planning through
contacts.

The original CIO method also used an inverse dynam-
ics approach: it optimized the trajectory (represented with
splines), while the contact forces along with the controls
were defined implicitly via inverse dynamics. The modified
CIO method developed here takes a different approach. In-
stead of obtaining the contact forces from either forward
or inverse dynamics, these forces are now treated as inde-
pendent variables and are optimized jointly with the tra-
jectory. Their physical realism (i.e. complementarity and
friction-cone constraints) is enforced using soft costs. The
idea of treating contact forces as independent optimization
variables seems to have originated in the context of track-
ing recorded movements [MLPP09] and single timestep op-
timization [SJL09]. It was later extended to automatic syn-
thesis of entire trajectories [PT12].

Another approach that synthesized finger-object contacts
automatically, given only the desired motion of the object
and an initial grasping pose, is [Liu08, Liu09]. This is a hi-
erarchical scheme where contact forces are computed on the
high level while corresponding joint torques are computed
on the low level. The high level did not anticipate the mak-
ing and breaking of contacts, but instead planned forces at
existing contacts so as to achieve the desired object accel-
erations. Rich yet unanticipated contact dynamics were then
obtained in forward simulation. The same group later de-
veloped a more systematic method for generating contact
events, based on careful sampling [YL12]. The object and
wrist trajectories were measured using motion capture, and
finger trajectories compatible with the measurements were
then computed automatically. The results were quite remark-
able. However this method is sensitive to the specifics of
the motion capture data, e.g. having irregular object velocity
consistent with the underlying finger gait. Unlike methods
using soft costs (which can smooth out measurement imper-
fections), the sampling method uses a hard criterion for com-
patibility with the recorded motion and makes binary deci-
sions based on this criterion, thus it is not clear how its sen-
sitivity can be reduced. Work in robotics [BELK09, JXL10]
has also used sampling-based methods to plan trajectories in
the presence of contacts, albeit in a quasi-static setting which
does not give rise to the rich dynamic interactions observed
in [YL12].

2.2. Motion capture

In graphics and animation, the most common approach to
hand manipulation has been to rely on motion capture data
to various degrees. Collecting such data is not easy as we
already mentioned, but the lack of automated methods has
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left animators with no other choice. Among the more popu-
lar methods in this class are [YKH04, PZ05, SH07]. We will
not discuss the details here (except for the issue of dimen-
sionality reduction – see below) since our work is quite dif-
ferent. An up-to-date discussion of hand manipulation based
on motion capture can be found in [YL12].

While the key advantage of our method is that it does not
need motion capture data, it can nevertheless be adapted to
take advantage of available data. All we have to do is aug-
ment or replace the abstract task specification with one that
encourages staying close to the data.

2.3. Dimensionality reduction

While biological systems have many DOFs, the movement
behaviors observed in daily life span a small fraction of the
space that is potentially accessible. This is due to a combi-
nation of biomechanical and neural factors which have been
debated for decades [TJ09, KVC12]. Every researcher who
has looked for dimensionality reduction in movement data
appears to have found it - at the level of kinematics [SFS98],
instantaneous muscle activity [TSB99], spatio-temporal pat-
terns of muscle activity [dSB03], organization of feedback
control laws [LT07]. This may be why it is possible to in-
terpolate in motion capture databases and obtain plausible
movements. Without reduced dimensionality, the volume of
space that needs to be filled with data would be so large that
interpolation would be unlikely to work.

With regard to hand manipulation, it was shown [SFS98]
that the hand poses used to grasp arbitrary objects lie in a sur-
prisingly low-dimensional space: the first 4 principal compo-
nents accounted for over 95% of the variance in the data. In
more complex manipulation tasks the effective dimensional-
ity can increase from 4 to 10, but is still half the number of
recorded DOFs [TG04]. This low-dimensional structure has
been exploited in robotics to speed up the search for viable
grasping poses [CA09]. In its present form our method does
not exploit low-dimensional structure, and we believe this is
one of its limitations – see Future Work.

2.4. Automated grasping

Grasping has received more attention than any other type of
hand movement, and has been automated through a variety
of methods (mostly in robotics) that do not rely on motion
capture. These methods are not applicable to dexterous ob-
ject manipulation, but nevertheless are based on important
ideas. One such idea is force closure – which is in some
sense the equivalent of locomotion stability criteria such as
ZMP. More generally, researchers have considered a vari-
ety of grasp quality metrics, and optimized the grasp pose
with respect to them [MA99, MM04]. See also the review
papers [OSC00, BK00].

A more intuitive yet robust approach to grasp synthesis

is to position and pre-shape the hand near the object, and
then simply close the fingers, relying on their compliance
to curl around the object [CH90]. In this approach one does
not need to model the hand-object interactions in detail. The
quality of an initial pose can be defined as the grasp quality
of the final pose resulting from this procedure. Even if such
heuristics can work, it is not clear how often humans actu-
ally use them. Indeed it was recently shown that the nervous
system predicts finger-object contacts around 100 msec be-
fore they occur, and begins to adjust muscle activity so as to
transition from motion to force [MF08].

In terms of numerical optimization, it is notable that most
methods for automated grasp synthesis have relied on exten-
sive sampling or restarts – presumably because the search
space has many poor local minima. There are exceptions
such as [CG96] where grasps were planned using residual
minimization. One surprising feature of our method is that
local minima are not a problem (see below), most likely be-
cause we have formulated cost functions that result in easier-
to-navigate landscapes.

3. Review of Contact-Invariant Optimization (CIO)

CIO is a trajectory optimization method used for character
animation that jointly synthesizes motion as well as contact
events from only few high-level goals. The motion is bro-
ken up into a sequence of motion phases with each phase
having a constant contact state. The key idea of CIO is to in-
troduce real-valued auxiliary variables c j in the optimization
that control whether or not a body region j is making con-
tact with the environment. In the case of humanoid character
models, a contact variable was associated with a surface re-
gion of each hand and foot. These variables enforce a trade-
off as follows. When c j for limb j has high value (active),
the limb can generate a contact force anywhere in the pre-
defined contact region, but that limb must be touching the
ground for the duration of the motion phase. When a contact
variable has low value (inactive), the limb is free to move
in space, but it cannot generate any contact forces. An in-
verse dynamics quadratic program (QP) was used to recover
forces at various points along the trajectory, and the trajec-
tory was optimized such that positions, forces, controls, and
contact variables were all consistent with each other.

3.1. CIO for Hand Manipulation

The original CIO method assumes that contact forces orig-
inate in rectangular patches on the body (such as soles of
feet and palms of hand). This is necessary in order for con-
tact force regions to be expressed as linear constraints in an
inverse dynamics QP, but also means that curved contact re-
gion geometry cannot be supported. While not too restrictive
for humanoid motion, this assumption is problematic when
applying CIO to hand manipulation, because the surfaces of
the fingers and palm are curved and hand motion often takes
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advantage of this (e.g. when rolling objects on the side of the
finger).

To remove this limitation, in this work we include contact
forces and their origin points as extra variables in the trajec-
tory optimization problem. We can then impose force origins
to lie on arbitrarily-shaped contact regions through soft con-
straints. Friction cone force constraints can also be enforced
on exact cone geometry, rather than pyramidal approxima-
tions of the cone that are typically used. This reformulation
removes the need to set up and use a quadratic programming
solver to calculate the forces, which makes individual objec-
tive function evaluations much faster and makes the method
easier to implement. The downside is that the size of the opti-
mization problem becomes significantly larger. Nonetheless,
we have found this approach to have optimization times sim-
ilar to those reported in the original CIO work. Additionally,
the gradient of the objective function (described in section
5) wrt the contact forces and their origins can be calculated
analytically and does not require expensive finite difference
calculation (although we do not take advantage of this in our
present implementation). Note that our modified approach is
still different from previous work that optimizes only contact
forces, because we also optimize auxiliary contact variables.
We believe these scalar contact variables provide compact
coordination between higher-dimensional position and force
variables.

We now describe our CIO-based method specific to hand
manipulation.

4. State and Trajectory

Given an initial state s0 of the entire system and a high-level
goal (such as terminal object location), our method computes
a state trajectory s(t) for a fixed period of time [0,T ]. For
simplicity, consider a system with one hand H and one object
O to be manipulated. The state of the hand at any point in
time is described as:

sH =
[

xH ẋH pi ṗi
]

(1)

Where xH ∈ R6 are the position and orientation of the
palm, and pi is Cartesian fingertip location of finger i ∈{

1...Nfingers
}

. Orientation is expressed with the exponential
map [Gra98] because of its suitability in trajectory optimiza-
tion. From fingertip and palm locations, we can recover fin-
ger and arm joint angles and transforms using inverse kine-
matics (which in our case can be solved analytically). We
assume the shoulder is fixed. The state of the object O at any
point in time is described as:

sO =
[

xO ẋO f j rO
j c j

]
(2)

Where xO are the position and orientation of the object. f j

and rO
j and the force direction and origin point for contact

j ∈ {1, ...,Ncontacts}. rO
j is expressed in the object’s local co-

ordinate system because simple trajectories in object space

Figure 2: Scene Model. The quantities used in hand and
object state. The left state is infeasible because contact c j is
active, but force origin r j do not coincide with the hand and
object. The state on the right is feasible.

might trace complex trajectories in world space. Let r j be the
corresponding derived world space origin point. c j ∈ [0,1]
is an auxiliary variable that specifies if contact j is active.
In contrast with the original CIO formulation where c j were
unbounded, here we treat c j informally as the probability of
being in contact.

Ncontacts is a fixed number of possible contacting surfaces
that can affect the object. The surfaces we consider are:

• Nfingers contacts with the fingers, anywhere on the surface
of the distal segments;

• one contact anywhere on the palm surface for each hand;
• two contacts anywhere on the ground surface.

Thus, Ncontacts = Nhands(Nfingers + 1)+ 2. See figure 2 for a
visual description of the relevant quantities.

The entire system state is s =
[

sH sO
]

and the opti-
mization problem variables are:

S =
[

sk
]

(3)

Where k ∈
{

1, ...,Nkeyframes
}

are the discrete indices for the
sequence of key states being optimized. The initial state s0
is specified by the user and is not part of the optimization
variables. A motion phase is a segment between any two key
states sk and sk+1. Motion trajectory s(t) is formed by in-
terpolating quantities of these key states, spaced apart every
0.5sec in time. We use cubic spline interpolation for quan-
tities x, p (using ẋ and ṗ as spline tangents), linear inter-
polation for f, rO, and constant interpolation for c. These
choices of interpolation are motivated by how much com-
plexity we expect in the trajectories for these quantities.
Kinematic positions and orientations need complex spline
trajectories (and thus need to include their velocities as opti-
mization variables). Forces are interpolated linearly, while
the auxiliary contact variables c are constant within each
phase, by their original definition.
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5. Objective Cost Terms

5.1. Contact-Invariant Cost

When contact j is active, the object and contact surface j
must be coincident with each other, and the contact force
origin r j must lie on this coincident surface. In the pesent ve-
rion of the method we also restrict ourselves to motions with
no slipping, so relative velocity at r j must be zero. These
constraints are satisfied when the following residual is min-
imized:

LCI(s) = ∑
j

c j(|eO
j |2 + |ėO

j |2 + |eH
j |2 + |ėH

j |2) (4)

eO
j = πO(r j)− r j (5)

eH
j = π j(r j)− r j (6)

Where πO(r) and π j(r) are projections of r on the surface of
the object and of contact body j, respectively. We use cap-
sules for all our contact bodies, and as a result the projections
are continuous functions of r and are fast to compute.

Note that this formulation is able to support arbitrary con-
tact region geometry. For any point on the contact region, the
above constraint will hold. For example, in the case of rect-
angular foot contacting the ground, any r j inside the contact
rectangle will set (4) to zero. However the present approach
is not limited to rectangular patches.

5.2. Physics Violation Cost

The hand H is connected to a fixed shoulder base, which
makes the hand system fully actuated. Thus we assume that
all kinematically feasible poses are also dynamically feasi-
ble, and place no dynamics constraints on the motion of the
hand.

Since the object O is unactuated, the only way it can move
is through application of contact forces. At any point in time,
we place traditional Newton-Euler constraints on the motion
of the object with the following residual:

Lphysics(s) = ||ftot− Ṗ||2 + ||mtot− L̇||2 +λ∑
j
||f j||2 (7)

ftot = ∑
j

c jf j + fext (8)

mtot = ∑
j

c jf j× (r j−xO)+mext (9)

Where Ṗ(xO, ẍO) and L̇(xO, ẍO) are change in linear and an-
gular momentum of the object. fext and mext are any external
forces and moments applied to the object including gravity.
λ is a force regularization constant that discourages the use
of very large individual forces and in turn encourages dis-
tributing the total force across multiple contacts.

Note that while f j follows a continuous trajectory, we are
able to model contact force discontinuities using the product
c jf j because c j is piecewise constant.

Additionally, we must constrain f j to lie in the friction
cone of the contact surface j. We use the body’s contact sur-
face normal at π j(r j) to define the cone normal n j. Then the
angle between f j and n j must be less than the coefficient of
friction µ. This is imposed as a half-quadratic soft cost.

Lcone(s) = ∑
j

max(acos(f j ·n j)− tan−1µ,0)2 (10)

5.3. Kinematic Violation and Task Cost

We place several kinematic constraints on our hand configu-
ration. First, realistic limits on the finger and arm joint angles
are imposed (recall that joint angles are available from ana-
lytical inverse kinematics). Second, because fingertip loca-
tions are independent optimization variables, their distance
from the finger base must be restricted not to exceed the
maximum length of the finger. Lastly, all collisions are pe-
nalized. Because all geometry consists of capsules, we can
efficiently calculate and enforce a minimum distance be-
tween capsules. The three above constraints are imposed as
soft half-quadratic costs and added up to form the cost term
Lkinematic.

Humans prefer to use the bottom pads of their fingers for
grasping objects. This can be due to the higher friction on the
skin of that area, as well as softer tissue which can squash
to create larger contact regions. Since we currently do not
model these factors, we simply add an additional cost term
Lpad which encourages r j for a finger contact to be close to
the distal bottom pad of the finger j (with derived transform
matrix x j).

Lpad(s) = ∑
j∈{1,...,Nfingers}

||(x−1
j (s)r j)

(y)||2 (11)

The task cost is a set of simple high-level goals `b that
are behavior-specific and are provided by the user of our
method. Each task b is constructed by selecting features of
interest hb and providing their target values h?

b,t at certain
times t ∈ Tb. The task cost then penalizes the difference be-
tween the actual and target feature values. Additionally, we
place a small preference on smooth motion by penalizing
hand and object accelerations.

Ltask(s, t) = ∑
b

`b(s, t)+λ(||ẍO||2 + ||ẍH ||2) (12)

`b(s, t) = I [t ∈ Tb]
∥∥hb(s)−h?

b,t
∥∥2 (13)

Where I[·] is an indicator function for t matching one of the
times when the goal is specified. For example, to create a
task `location that commands the object location at the end
of the movement, set Tb = {T}, hb(s) = xO and h?

b,T to the
desired object position and orientation.

The typical weights on the costs we used are summarized
in table 1. We have not found the algorithm to be particularly
sensitive to the choice of these weights.
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Table 1: Cost Term Weights

Cost Term Weight Cost Term Weight

CI 101 task 10−1 to +1

physics/cone 100 pad 10−3

kinematic 100
λ 10−3

6. Numerical Optimization

We solve a box-constrained optimization problem to obtain
S? described in (3), from which we can then obtain a con-
tinuous motion trajectory as described in section 4. The op-
timization problem is:

S? = argminS ∑t ∑i Li(s(t))
c j ∈ [0,1] (14)

Where i refers to the cost terms described in the previous
section and t is a time index that subsamples the entire trajec-
tory (in our case, we place t every 0.05sec of the trajectory).
Thus, even though we optimize the motion at a very coarse
time scale (key states every 0.5sec), we check for dynamic
and kinematic validity at a fine scale.

We use a standard off-the-shelf box-constrained LBFGS
algorithm [BLNZ95] to solve (14). We use between 10 and
20 motion phases, depending on complexity of the task.
The dimensionality of the problem is Nkeyframes(Nhands(12+
6Nfingers)+ Nobjects(12 + 7Ncontacts)) which is from 1030 to
2060 in typical scenarios. Gradients of the objective function
are computed with finite differencing (we use ε = 10−3).
Our implementation of finite differences takes advantage of
the fact that variables affect the cost terms only at a few
points in time and the costs for other times do not need to
be recomputed.

The optimization is initialized with a static trajectory ob-
tained by repeating the initial state for all times. This re-
moves the need for hand-crafted initialization guesses spe-
cific to each motion. This initial trajectory is then perturbed
with zero-mean Gaussian noise (with variance 10−2) to
break any potential symmetries. All contact variables c j are
initialized to 0.5 (which is the middle of their allowed range).
For each example shown we run the optimization only once,
i.e. there is no need to use a large number of restarts and
eliminate all but a few of the solutions. The fact that we ob-
tain good results in all cases suggests that even if there are
local minima in this problem (which is very likely), most
local minima correspond to successful motions.

We perform numerical optimization using continuation,
in two stages. In the first stage, Lphysics and LCI are down-
weighted to 0.1 of their typical values, which allows the op-
timization to explore potentially unphysical trajectories. In
the second stage, all weights are at their weights specified in
table 1. The solution at the end of the first stage is used to
initialize the second stage. Despite the large problem size,
we obtain optimization times of 2 to 6 minutes depending

on the problem complexity on a quad-core 2.4Ghz machine.
The optimizer executed between 500 and 1500 iterations in
each stage before reaching a local minimum.

7. Results

By using simple task specifications `b or changing the envi-
ronment, we can generate a wide range of hand/object inter-
actions.

Grasping By using only `location (described in section
5.3) which specifies the terminal location of the object, our
method automatically synthesizes entire hand and object tra-
jectories. The synthesized grasps vary depending on object
shape, e.g. a pen-like object leads to a different grasp com-
pared to a ball-like object.

The type of grasp also varies depending on the specified
final orientation. For horizontal orientation, the hand sim-
ply grips the object. For vertical orientation, a more complex
grasp between fingers occurs in order not to twist the hand
too much (and thus violate the joint limits). The final ori-
entation can also be left unspecified. When the environment
has obstacles, the hand will manipulate the orientation of the
object to avoid the obstacles.

The resulting grasps are robust to external force pertur-
bations. We show this by applying random forces of 0.25
Newtons at the object’s tip in the second half of the trajec-
tory.

Cyclic In-Hand Manipulation By connecting the last
motion phase to the first phase, we can generate cyclic mo-
tions without any pre-specified initial state. By removing the
ground environment (and its contacts), the object must be
dexterously manipulated using only the hand. To synthesize
cyclic object twirling motions, we use a task that commands
a target orientation trajectory for the object and constant po-
sition for the hand. The target orientation trajectory is sim-
ply a full constant-velocity rotation about one of the standard
axes. The weight on Ltask cost is low (10−1) so the hand and
object can deviate from this trajectory and form a natural
gait.

Common Manipulation Tasks We generated a small
sample of common hand manipulation tasks, such as draw-
ing and dialing a cellphone. For the task of drawing a square,
we specified that the tip of the pen object must reach each of
the four corners of the square at every other motion phase.
The need for the hand to pick up the pen was not specified
and emerged automatically. Due to interaction of the pen
with the the arm, the drawing task formed interesting tra-
jectories that were not simple straight lines.

For the dialing task, constant object position and orienta-
tion were specified for the second half of the trajectory, and
at every other motion phase the thumb fingertip location was
specified to coincide with one of the buttons on the phone
object.
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Non-Humanoid Hand Morphologies The method is able
to generalize to different hand morphologies, such as a three-
finger hand similar to the Barrett Hand robot. We demon-
strate a range of grasps and cyclic manipulation on this mod-
ified model. While the movement strategies are now quite
different from a human hand, the high-level tasks are still
accomplished.

Two-Handed Interaction The method is also able to gen-
eralize to a varying number of hands, with the hands co-
operating to achieve the tasks and to evenly distribute the
load (which is because of the force penalty term in (9)). We
demonstrate grasping motions as well as a two-handed cyclic
juggling motion. For juggling, a new `contact task was intro-
duced that allowed only the contact variables c for the first
hand to be active in the first half of the trajectory, and only
the c for the second hand to be active in the second half of
the trajectory. For one motion phase in the middle, the c’s
for both hands were penalized, restricting the object to be in
the air for that phase.

8. Conclusions and Future Work

In this paper, we presented a method that can synthesize a
wide variety of dexterous hand manipulation motions from
only a few high-level goals on the object or hand, without
any motion capture or detailed reference trajectory data. Our
method is not specific to human hands and can generalize
to other morphologies. This was achieved by adapting the
Contact-Invariant Optimization (CIO) method to hand ma-
nipulation, and exploiting its ability to perform continuous
optimization through contact events – which are numerous
and exhibit complex structure in hand manipulation.

We were able to lift the previous restriction in the CIO
method of contact regions being rectangular patches, and in-
stead allowed contacts on curved surfaces. Another modifi-
cation we made was to explicitly include contact forces and
their origins as optimization variables. Note that these two
changes are actually orthogonal. The first one is needed to
apply CIO to hand manipulation. The second one was im-
plemented because our brief preliminary testing indicated
that it speeds up convergence, however we have not yet pe-
formed a systematic comparison. In other words, we do not
yet know if it is better to optimize contact forces and their
origins directly (while imposing physical realism with soft
costs) or define them implicitly via inverse dynamics. In the
latter case physical realism is automatically imposed and the
number of variables being optimized is smaller, however the
amount of computation per iteration increases (because we
need an inverse contact solver) and furthermore an opportu-
nity for continuation is lost. This comparison is a topic for
future work.

Instead of using inverse contact dynamics, the new for-
mulation only requires a projection function on the con-
tact body. Although we only used single-capsule bodies, one

could project onto more complex surfaces, or multi-capsule
geometry. This would no longer tie contact to a single body,
but instead could provide a floating "pool" of contacts to ap-
ply.

However, some restrictions present in the original CIO
method still remain. By penalizing any relative velocity be-
tween hand and object (which prevents slipping contact), we
cannot synthesize motions that purposefully slide the fingers
along the object, or exploit slippage. Also, by using a coarse
and smooth spline trajectory representation, we sometimes
have difficulty with sharply-changing motions such as hard
collisions or separation from the ground. We believe this is
a large factor of why our object motion may sometimes look
"floaty" or exhibit minor penetration. Either allowing dis-
continuities at spline knots, or having a second optimization
at a finer timestep (initialized from the coarse result) may fix
these issues. We also use a fixed number of phases and fixed
phase durations as in the original CIO method and have not
addressed adaptively changing these parameters.

Additionally, the dynamics and inertial effects of the hand
are not taken into account in our method. Because the hand
was not moving fast in our examples, we have not found
this to be a problem, but modelling hand dynamics may be
necessary in other cases.

8.1. Biomechanical and neural constraints

Some of the motions we synthesizes were too rich, in the
sense that the simulated hand moved in ways that a human
hand could not. This is much less of an issue in synthesiz-
ing full-body movements, because even though most skele-
tal muscles act on multiple joints, the number of muscles
and their attachment is such that the joints can be controlled
largely independently. In contrast, hand muscles act through
a complex network of tendons and the muscle-to-DOF ratio
is smaller, introducing substantial coupling.

We should be able to increase the realism of our results by
incorporating such constraints. This could be achieved using
very detailed hand models [SKP08] however it remains to be
seen if such models are amenable to trajectory optimization.
A different approach is to apply random forces to the ten-
dons of simulated or physical hands – such as the Anatom-
ically Correct Testbed robot hand [WRWM04] or cadaver
hands [KVC12] – and measure the correlations in the re-
sulting movements. This statistical information can then be
taken into account via additional cost terms. Similar infor-
mation can of course be obtained from motion capture data,
however it is likely to reflect not only biomechanical but also
neural constraints – which may or may not be desirable de-
pending on what we aim to accomplish. To avoid going back
to motion capture databases that specify the movement de-
tails, one could extract the correlations common to a wide
range of movement tasks, including basic tasks such as at-
temtping to move one joint at a time [TG04].
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[JF09] JOHANSSON R., FLANAGAN J.: Coding and use of tactile
signals from the fingertips in object manipulation tasks. Nature
Reviews Neuroscience 10 (2009), 345Ű359.
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