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Figure 1: Multiple characters are interacting with each other. A diversity of human behavior, such as jumping, crawling,
pushing, bowing and slapping, are simulated in the automatically-generated, interpenetration-free animation.

Abstract
Simulating multiple character interaction is challenging because character actions must be carefully coordinated
to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd
of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand
shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable
motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially
and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting
with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and de-
terministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made
it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved
the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the
diversity of human behaviors and the spatial/temporal density of interpersonal interactions.

Categories and Subject Descriptors (according to ACM CCS):
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation

1. Introduction

Simulating multiple characters interacting with each other
is an emerging research topic in computer graphics. Model-
ing “interaction” between characters necessitates appropri-
ate actions to occur in a carefully coordinated manner in

both space and time. Precisely coordinating the spatial lo-
cation, timing, and action choices of many interacting char-
acters is challenging and often requires prohibitive compu-
tation and/or memory resource.

We are particularly interested in creating a dense crowd of
virtual characters that interact with each other. The interac-
tions may occur between characters in close vicinity and of-
ten involve physical contacts, such as hand shaking, pushing,
and carrying a heavy object collaboratively. Each character
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may perform an arbitrary sequence of actions, which must
be spatially aligned and temporally synchronized with other
characters. Given a collection of action choices, each charac-
ter can have exponentially many action sequences and only a
small number of action sequences may satisfy stringent spa-
tiotemporal constraints posed by interpersonal interactions.
Finding such action sequences simultaneously for many in-
teracting characters is extremely demanding.

We address the problem by collecting episodes of multi-
ple characters. Each episode describes an interesting event
featuring a small number of characters for a short period
of time. Tiling episodes seamlessly across space and time
would generate a crowd of densely interacting characters
for an extended period of time. Each episode weaves a col-
lection motion fragments to form a motion patch [LCL06].
The motion patch has its entries and exits, which correspond
to the beginning and end frames, respectively, of its motion
fragments. Two motion patches can be stitched together by
carefully aligning their entries and exits in both space and
time. Our major challenge is tiling patches tightly such that
the tiling does not have any dangling entries or exits, which
cause sudden appearance and disappearance of characters in
the crowd.

The tiling is a combinatorial problem of layering a collec-
tion of motion patches. It also involves continuous optimiza-
tion of patch locations for packing patches densely while
avoiding collisions. Feasible solutions are rare and exhaus-
tive search is not feasible. Our tiling algorithm uses a com-
bination of stochastic sampling and deterministic search to
address the discrete and continuous aspects of the prob-
lem. Our motion patches are deformable to add flexibility
in stitching patches and thus alleviate the difficulty of tiling.
The deformable patch allows its motion fragments to warp
smoothly while maintaining the coherence of interpersonal
interaction captured in the patch.

Our tiling algorithm made it possible to automatically gen-
erate highly-complex animation of multiple interacting char-
acters. We achieved the level of complexity far beyond the
current state-of-the-art animation techniques could generate,
in terms of the diversity of human behaviors and the spa-
tial/temporal density of interpersonal interactions. The spa-
tiotemporal nature of our tiling algorithm allows us to deal
with both static and dynamic virtual environments. We can
also control the generation of animation by specifying when
and which actions to occur at any specific location of the
environment.

2. Related Work

There exists a vast literature on crowd simulation in com-
puter graphics. Crowd simulation refers to the process
of simulating the movement of a number of pedestrians,
which are equipped with action skills mostly for navi-
gating in virtual environments and capability of replicat-

ing human collective behavior. Interaction behaviors, such
as collision avoidance [NGCL09, GCK∗09], visual percep-
tion [OPOD10], and forming groups/formations [JCP∗10] to
name a few recent ones, have been explored. Multiple robot
coordination pursues a similar goal with much emphasis on
collision avoidance [LaV06,GMLM09]. Multiple robots are
provided with start and goal configurations and search for
collision-free paths simultaneously. It should be noted that
our problem is different from crowd simulation and multi-
agent path planning. We assume that interpersonal interac-
tions would occur frequently and thus we search for a distri-
bution of interactions rather than moving paths between start
and goal configurations. Our characters are provided with
a diversity of actions (beyond the scope of locomotion) to
choose from. Every action should be precisely coordinated
to meet alignment and synchronization posed by frequent in-
teractions.

Research on multiple character interaction has recently
emerged. Interactive manipulation techniques for editing
multiple character motions has been studied with a varying
level of control specification [KLLT08, KHKL09, HKT10].
A lot of researchers have focused on interaction between
two characters. Liu et al. [LHP06] studied an optimization
method to synthesize two character motions with physics-
based objectives and constraints. Kwon et al. [KCPS08]
simulated competitive interaction between two Taekwondo
players using dynamic Bayesian networks. Komura and
his colleagues addressed a similar problem using min-
max search and state-space exploration [SKY10]. Wampler
et al. simulated two-player adversarial games based on
game-theoretic behavior learning [WAH∗10]. The state-
exploration and learning-based approaches often suffer from
the curse of dimensionality. Adding extra participants causes
exponential increase in either computation time or memory
storage usage. Thus, the techniques that worked well with
two characters do not scale easily to deal with many charac-
ters.

In computer animation, metaphorical patches have been used
to encapsulate either pre-computed or motion capture data.
Tiling patches spatially and temporally generates anima-
tion of larger scales. Chenney [Che04] discussed the use
of square tiles embedding flow patterns. Motion patches by
Lee et al. [LCL06] refer to a collection of building blocks
of a virtual environment, which are annotated with mo-
tion data available on the blocks. Shum et al. [SKSY08]
generalized the idea further to encapsulate short-term in-
teractions between two characters into interaction patches
and combined them to synthesize larger-scale interaction
among many characters. Yersin et al. [YMPT09] tiled crowd
patches to generate an arbitrarily large crowd of pedestri-
ans in an on-the-fly manner. Our work is on the extension
of these patch-based synthesis approaches. Given a collec-
tion of irregular patches, the notorious problems of tiling are
gaps (temporal discontinuity) and overlaps (interpenetration
between characters). The temporal gaps between dangling
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entries and exits would cause characters to stay frozen over
the gap or suddenly disappear and reappear at the bound-
aries. Our goal is tiling arbitrary irregular patches densely
without gaps and overlaps.

The problem of packing irregular shaped pieces in a fixed
area has been widely studied in geometric optimization and
computational geometry [DD95] [Mil99]. The shape pack-
ing idea has been exploited in various graphics applications.
Kim and Pellacini [KP02] generated image mosaics by fill-
ing an arbitrarily-shaped container with image tiles of arbi-
trary shapes. Fu et al. [FLHCO10] generated a set of quad-
mesh to produce a tiled surface of computer-generated build-
ings. Merrell et al. [MSK10] presented a method for auto-
matic generation of residential bulilding layouts. Our ap-
proach were inspired by the research on geometric shape
packing and we address further challenges that are unique in
character animation. The challenges include the control of
complex human behavior, handling multi-character interac-
tion, identifying deformable motion patches as basic units of
tiling, and the four dimensional tiling of deformable patches.

3. Deformable Motion Patches

Multiple characters interacting with each other create inter-
esting episodes, which can serve as basic building blocks of
complex multi-character scenes. Each episode can be mod-
eled as a motion patch, which describes the actions of char-
acters for a short period of time. Specifically, each motion
patch includes a collection of motion fragments and their
associated characters. Interaction between characters poses
constraints between motion fragments. For example, hand-
shaking indicates that the relative position and direction of
two characters are constrained with each other while they
are shaking their hands together. The motion patch may also
include environment features and props that provide context
to the characters’ actions. The beginning and end frames of
a motion fragment are called entries and exits, respectively,
of the patch. We can stitch two motion patches if an exit
of one patch matches an entry of the other. The character’s
position, direction, fullbody pose and timing should match
within user-specified thresholds such that the character can
make a smooth transition from one motion fragment to the
other.

A tiling is a collection of motion patches that are stitched
with each other. The tiling is perfect within a spatiotempo-
ral region if it does not have any dangling entries or exits
that do not have matching exits or entries in the tiling. More
specifically,

Patch Deformation Our motion patches are deformable to
allow flexibility in tiling. The deformation is computed in
two steps: Path deformation and fullbody motion refine-
ment. At the first step, we consider a web of motion paths
(see Figure 2). Each motion path is the trajectory of the
skeleton root in a motion fragment and undergoes defor-

Interpersonal 

interaction
Manipulation 

handle

Figure 2: The deformation of a motion patch. The manipu-
lation handles and interpersonal interaction are formulated
as linear constraints. In this example, the interpersonal in-
teraction is the relative body location and direction of two
chararcters when their hands hold each other.

Figure 3: Stitching deformable patches at their matching en-
tries and exits. Each patch is depicted as a convex polygon
that encloses its motion paths projected on the ground.

mation as if it is an elastic string. A collection of motion
paths are constrained with each other using linear interper-
sonal constraints. The position/direction/time of entries and
exits operates as if it is a manipulation handle, which can
also be formulated as linear constraints. The manipulation
handle is spatiotemporal in the sense that it specifies both
body position/direction and the timing of the character’s ac-
tion. As a manipulation handle is dragged, a web of motion
paths undergo deformation in an as-rigid-as-possible man-
ner while maintaining a collection of linear constraints in-
cluding both internal interactions and external manipulation.
Specifically, we use multi-character motion editing by Kim
et al. [KHKL09], which solves for the spatiotemporal defor-
mation of multiple motion paths simultaneously subject to
linear constraints based on Laplacian equations. The charac-
ter’s fullbody poses along motion paths are refined later to
maintain hand-object contacts and rectify foot sliding arti-
facts.

Stitching Patches. We can stitch two deformable patches if
there exist good matches at their corresponding entries and
exits, through which characters can make smooth transition-
ing from one patch to the other. Let {(pA

i , t
A
i ) ∈R2×R | i =
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0, · · · ,N} be a motion path in patch A, where pA
i is the

two-dimensional position of the character projected onto the
ground surface and tA

i is its timing. Note that the frames of
motion data are usually sampled uniformly in time, though
it is not necessary. The timing of motion or the interval of
each individual frame may change as the motion data un-
dergo deformation. The first frame (pA

0 ,θ
A
0 ) is an entry of

patch A and the last frame (pA
N ,θ

A
N) is its exit. Assume that

the dissimilarity between the configuration (the position, di-
rection, timing, and fullbody pose) at an exit of patch A
and the configuration at an entry of patch B is below user-
provided thresholds. Concatenating the Laplacian equations
of two patches into a single larger system of linear equa-
tions and adding three boundary constraints would deform
two patches to stitch them seamlessly.

pA
N = pB

0 (1)

pA
N −pA

N−1 = pB
1 −pB

0 , (2)

tA
N = tB

0 (3)

which enforce smooth transiting in position, direction and
timing, respectively. If there are more than one matching en-
try/exit pairs, we specify three transitioning constraints for
each matching pair.

4. Patch Construction

Achieving a perfect tiling is challenging even though the
flexibility of patches alleviates its difficulty to a certain de-
gree. It is important that a collection of motion patches
should be designed carefully for better connectivity. The mo-
tion patch is supposed to encapsulate an interesting episode
that may entail complex spatiotemporal relationships among
multiple characters. On the other hand, it is expected that the
boundary (entries and exits) of the patch should be as simple
as possible. The simplicity of the patch boundary facilitates
the process of patch stitching.

Given a collection of raw multi-character motion data, we
would like to construct a collection of motion patches to be
used for tiling. It involves following steps (see Figure 4):

• Identify interesting episodes from raw motion data.

• Specify interpersonal and person-object constraints to
preserve the spatiotemporal integrity of multi-character
interaction under patch deformation.

• Determine the boundary of motion patches.

Though there is no limitation on the size of motion patches,
we usually design each patch to have less than five char-
acters. If individual patches are too large, finding a perfect
tiling could be difficult. Small patches including a single
character are useful because they fit easily into narrow space.
In practice, it is favorable to have a mixture of small, single-
character patches and large, multi-characters ones.

Raw Data Episode Identification Boundary Determination

Figure 4: The procedure of patch construction

4.1. Episode Detection

The episode refers to an event among multiple characters
that is important or unusual. We use three criteria to detect
such an event from raw motion data.

Contact. The physical contact between characters, such as
handshaking, pushing, highfive, and punching, indicates
the occurrence of interesting events.

Proximity. Even though there is no physical contact, it is
noteworthy if two characters come close to each other
and either of them reacts to the approach of the other.
The presence of reaction is detected by measuring how
much the character moves in a window of consecutive mo-
tion frames. The estimated variation of motion at frame i
within window [i−w, i+w] is:

Vi =
w

∑
j=−w

w

∑
k= j+1

‖Pi+ j	Pi+k‖2 (4)

where Pi+ j	Pi+k is the difference between two fullbody
poses ignoring their horizontal translation and rotation
about the vertical axis [LCL06]. The value of Vi above
a certain threshold implies there might be a noticeable ac-
tion at frame i. The threshold has been chosen emperically
by trial and error.

Synchronicity. Even though two characters do not come
close to each other, it is also noteworthy if two characters
perform interesting actions simultaneously and they are
aware of each other’s action. Assume that motion data in-
clude two characters A and B interacting with each other.
Character A has its motion data with index i, and character
B has its own data with index j. The i-th frame of A and
the j-th frame of B are concurrent in the global, reference
time. The synchronicity between two characters is:

Si j =V A
i ·V B

j · e−g(A,B) · e−g(B,A), (5)

where g(A,B) is the angle between the gaze direction of
character A and the vector from the face of A to the upper-
body of B. This term estimates the possibility of character
A being aware of the action of B at the moment.

The detection of a noticeable event between two characters
results in imposing interpersonal constraints between rele-
vant motion data. The constraints enforce the relative posi-
tion, direction, and their timing of actions remain unchanged
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even though their motion data undergo deformation. If we
detect multiple events occurring nearby spatially and tempo-
rally, we merge them into a single, larger event, which may
include interaction among more than two characters.

4.2. Boundary Determination

Once interesting events are detected, the next step is to deter-
mine their boundaries (entries/exits) to form a collection of
tilable motion patches. There are several requirements. First,
we would like to have the boundaries eventless. Any interac-
tion/event occurring at boundaries would make the stitching
process complicated. We want to have patches as compact
as possible. Smaller patches tend to allow more flexibility
in tiling and denser scenes to be created. Lastly, we want
to have as little diversity of fullbody poses at boundaries as
possible. Having a wide variety of fullbody poses at entries
and exits would lead to difficulty of finding good matches in
patch stitching. Note that we determine the boundaries of all
patch collection simultaneously to satisfy the requirements.

Raw motion data include a multiplicity of fullbody poses at
frames. Our algorithm for boundary determination begins by
clustering fullbody poses into groups. Specifically, we use
agglomerative hierarchical clustering such that the dissimi-
larity between any poses in a group is below a user-specified
threshold. The threshold is chosen to allow smooth, seamless
transitioning between motion fragments if the poses selected
from a single group are at the matching entry and exit.

Let G1, · · · ,Gk be k largest pose groups sorted in descend-
ing order (typically, k = 10 in our experiments). We intend
to choose a small number of groups that suggest candidate
frames to be entries and exists. Then, the boundary may be
determined to surround each event tightly at frames that be-
long to the groups. The number of groups used is directly
related to the diversity of fullbody poses, so we would like
to choose as fewer groups as possible. To do so, we con-
sider all possible subsets, {Gi|1≤ i≤ k} of cardinality one,
{(Gi,G j)|1 ≤ i < j ≤ k} of cardinality two, and so on. We
examine all possible subsets and choose the one that mini-
mize the weighted sum of the cardinality of the subset and
the total size (number of motion frames) of motion patches.
The coefficient weighs the diversity against the compactness
of motion patches.

5. Tiling Algorithm

The goal of tiling is packing patches in a user-specified
spatiotemporal region without any dangling entries or exits
while achieving the desired density of multi-character intere-
actions and avoiding interpenetration between them. Specif-
ically, our tiling algorithm is based on simulated annealing,
which is known to be an effective sampling method for com-
binatorial optimization problems [PTVF07]. Though simu-
lated annealing has the ability to find a global optimal solu-
tion, it takes a prohibitive computation time to remove dan-

gling entries and exits completely. Our algorithm is a vari-
ant of simulated annealing, consisting of two phases. The
first phase of the algorithm is intended to sample patches
rapidly in the spatiotemporal region, while the second phase
is a deterministic search and jittering procedure dedicated to
removing dangling entries/exits.

Algorithm 1: Stochastic Sampling for tiling motion patches

P : A tiling of motion patches;
R(0,1) : generate a random number between 0 and 1 ;

1 T ← Tmax ;
2 i← 0 ;
3 while i < imax do
4 Pnew← (randomly choose a patch);
5 P′← Stitch (P∪Pnew);
6 ∆E← Etiling(P′)−Etiling(P) ;
7 if e−∆E/kT > R(0,1) then
8 if IsValid (P′) then
9 P← P′ ;

10 i← 0 ;

11 T ← T −∆T ;
12 i← i+1 ;

5.1. Stochastic Sampling

Given a collection of motion patches, the first phase of our
tiling algorithm is based on stochastic sampling of patches
(see Algorithm 1). The position/direction/timing of patch in-
stances are randomly chosen in a virtual environment and
added to the tiling one by one (line 4–5). The sampling pro-
cedure minimizes an energy function

Etiling =
Nd

Nc +Nd
+α(

1
Nc +Nd

), (6)

where Nc and Nd are the number of connected and dangling
entries/exits, respectively. The first term penalizes the oc-
currence of dangling entries/exits, while the second term
encourages rapid sampling of patches. As the number of
patches in the tiling increases, it tends to have more dan-
gling entries/exits. α is a constant that balances between the
density of patches and the number of dangling entries/exits.
Each sample of a motion patch is accepted with certain prob-
ability based on simulated annealing (line 6–7). When the
simulated temperature is high, the samples are easily ac-
cepted even though they do not improve the tiling energy
much. As the temperature cools down, the system favors
steady downhill traces to reach a stable solution. The Boltz-
man parameter k and the annealing schedule (Tmax and ∆T )
controls the rate of convergence. The algorithm terminates
when the sampling procedure fails too many times (line 3).

Stitching, Deformation and Collision. As explained in the
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previous section, stitching two patches leads to a large sys-
tem of linear equations that concatenates two systems of
Laplacian equations. Adding a new patch to the tiling of
patches involves all patches in the tiling and simply con-
catenating all linear systems into a single huge one is often
infeasible (line 5). We assume that that the patches directly
adjacent to the new one is deformable and all the others are
pinned down. This assumption allows a practical trade-off
between the computation time and the quality (in terms of
flexility and deformation) of tiling. The new patch is valid
if it connects well to the tiling without incurring interpen-
etration or excessive deformation (line 8). We use a simple
bounding box test on individual frames to check if there is
interpenetration between two patches. We measure the de-
gree of deformation on a per-frame basis. In our experi-
ments, we allowed motion path deformation upto positional
stretching of 3cm, bending of 7 degrees, and time shifting of
0.018 second per frame.

Algorithm 2: Deterministic search for removing danglings

P : A tiling of motion patches;
D : A set of dangling entries and exits ;
N(P) : the number of dangling entries and exits in P ;

1 while D 6= ∅ do
2 foreach d ∈ D do
3 foreach (Pnew that has an entry/exit matching d) do
4 P′← Stitch (P∪Pnew);
5 if N(P′)≤ N(P) then
6 i← 0 ;
7 while i < imax do
8 if IsValid (P′) then
9 P← P′ ;

10 break ;

11 P′← Stitch (P ∪ Jitter (Pnew));
12 i← i+1 ;

13 if d is not dangling then
break;

14 if d is dangling then
15 P← P\P(d) ;

5.2. Deterministic Search

Even though the energy function used in the first phase tends
to minimize the number of danglings, it usually converges
very slowly (see Figure 5). The second phase of the algo-
rithm is based on combinatorial exploration and randomized
jittering in a continuous domain (see Algorithm 2). It exam-
ines every possible patch sequences from each dangling en-
try/exit until there remains no more dangling (line 2). Such
an exhaustive search is infeasible in large free space. How-
ever, the patch tiling obtained from the first phase of the al-
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Figure 5: The plots of the tiling energy and the number of
dangling entries/exits with respect to the computation time.
The red line shows the time when the second phase of the
algorithm begins.

gorithm covers the target domain uniformly because of the
nature of random sampling. The free space is fragmented
into narrow spots, in which patch connection is strictly con-
strained. In the narrow, fragmented spaces, even exhaustive
search is not computationally expensive any more.

For any dangling, the algorithm iterates over all possible
patch choices that have an entry/exit matching the dangling
(line 3). We first check if the number of danglings is in-
creased by the new patch (line 5). Otherwise, we check fur-
ther if the new patch incurs interpenetration or excessive de-
formation (line 8). If the new patch is not valid, we explore
a continuous search domain by randomly jittering its spatial
location, direction and timing (line 11). In our experiments,
the jittering range is initially set as a circle of radius 0.6m in
XZ-plane, an angle interval of -15 to 15 degree, and a time
interval of -0.3 to 0.3 seconds. As the iteration continues, the
jittering range expands gradually to explore a wider range.
The maximum range is a circle of radius 1.0m, an angle in-
terval of -25 to 25 degree, and a time interval of -0.5 to 0.5
seconds. If the dangling entry/exit has no patch to connect
with it, the patch with the dangling entry/exit is removed
from the tiling (line 14–15). The removal of the patch makes
yet another dangling entries/exits. As the algorithm iterates,
it will examine other possibilities that has not been explored
before to eventually remove danglings completely (line 3).
We keep track of sampling history so that patches removed
in line 15 is not chosen again in line 3.

5.3. User Control

Though our tiling algorithm is capable of automatically gen-
erating a crowd of interacting characters, it can also allow
the user to have direct and indirect control over the gener-
ation of animation. The user control may influence the mo-

c© The Eurographics Association 2012.

122



Manmyung Kim, Youngseok Hwang, Kyunglyul Hyun and Jehee Lee / Tiling Motion Patches

tion of each character indirectly by specifying a variety of
environment features or the ratio/preferences of actions. The
user control can be more direct and immediate to specify
which action to occur when and where in the environment.
We annotate each patch with labels, such as slow/fast and
friendly/hostile, and allows the user to decide how frequently
each class of actions to occur in the animation. More specif-
ically, we define a preference function

F = e− f1(x,y)/σ1 · e− f2(θ)/σ2 · e− f3(t)/σ3 · e− f4(l)/σ4 , (7)

where (x,y) is the position of a patch instance, θ is its ori-
entation, t is the timing in the reference time, and l is its
label. fi controls the tendancy of patch distribution and σi
weighs the significance of the terms. For example, f1(x,y) =
(xd − x)2 +(yd − y)2 if we want to control the characters to
move to their target location (xd ,yd). If we do not have any
preference over labels, then f4(l) = 0 for any l. fi can be de-
fined in various ways to provide the user with flexibility and
versatility in control specification. The preference function
applies differently to the aforementioned algorithms. In the
random sampling process (line 4, Algorithm 1), the normal-
ized preference function is used as a probability distribution
of sampling Pnew. In the deterministic search (line 3, Algo-
rithm 2), the preference function prioritizes the candidates to
determine which patches to examine first.

Interactive Control. The second phase of the algorithm can
be easily modified to deal with interactive control of a small
number (less than a dozen) of characters. Two minor modifi-
cations are required. One is the way patch instances are sam-
pled in time. While the original algorithm has a fixed time
horizon, the interactive version of the algorihm advances the
time horizon incrementally and patch in stances are sampled
continuously at runtime to fill up the horizon. The other is
the way the tiling is deformed when a new patch in stance is
added. The original algorithm allows both the new patch and
existing patches in the tiling to undergo deformation, while
the interactive version allows only the new patch to deform.
The rationale is that patch instances in the tiling is already in
the past and should not change.

6. Experimental Results

The timing data in this section was measured on a 2.93GH
Intel Core i7 computer with 8Gbyte main memory and an
ATI Radeon HD 4550 graphics accelerator. In our experi-
ments, parameter α, k, Tmax and ∆T are 0.2, 0.03, 200 and
1, respectively, for all examples. We do not need to tune pa-
rameters for each individual example.

Motion Patch Construction. We captured two subjects per-
forming a variety of interactive actions, such as dancing, tag-
ging, and bumping each other. Some actions involved a lot
of physical contacts, while our subjects sometimes exhibited
interaction without touching each other. We also designed
some patches manually using our motion editing system we

developed based on the idea of Kim et al. [KHKL09]. We
constructed multi-character patches by putting together sev-
eral pieces of single-person motion capture data and speci-
fying interpersonal constraints.

Static Environments. Our first example was constructed
in a static environment of 12m × 12m square. We gener-
ated an animation of 600 frames (20 seconds). In the first
phase of the algorithm, we assigned preferences values to
the patches such that larger (more characters, larger spatial
extent, extended period of time) patches are more likely to
be sampled. The second phase of the algorithm added mostly
small, single-character patches that can easily squeeze into
narrow spots (see Figure 6). The computation time increases
pseudo-exponentially with the density of patches. Construct-
ing dangling-free tiling with 173, 374, 490, 657, and 907
patches took 0.3, 2, 12, 17, and 103 minutes, respectively
(see top row in Figure 7).

Dynamic Environment. Our spatiotemporal tiling algo-
rithm is inherently capable of dealing with dynamically-
changing environments. Whenever a new patch instance
is sampled, the interpenetration with (either static or
dynamically-moving) obstacles and other patch instances
are detected and avoided. The environment may have
sources and sinks where characters are newly created or dis-
appear from the scene. The alignment of sources and sinks
generates the flow of character’s movements. The environ-
ment in the second example has two dynamically-moving
obstacles (see left image, middle row in Figure 7). One of
the obstacles is tall and the other is shorter. The characters
can jump over the shorter obstacle, but cannot jump over the
other. It took about 90 minutes to construct a tiling with 528
patches featuring 66 characters that playbacks for 20 sec-
onds.

Chicken Hopping. We captured two subjects chicken-
hopping, which is a play between human players. The player
must stand straight, lift up one of his/her leg, hold the an-
kle with hands, and hop on the other leg. The players bump
each other to make the opponent loose balance. We recorded
50 seconds of the play and our patch construction algo-
rithm identified 6 two-player patches from the data. Many of
the patches exhibit two players bumping and some patches
shows one player dashes and the other evades. We manually
picked 15 single-player patches that allow each individual
character to navigate and steer. We made two demos using
the data. The first demo shows two teams of players (red and
blue) aligning at opposite sides, rushing towards each other,
and bumping. Each team has 15 players. The player bumps
the opponent, but avoids the fellow. The animation is 22 sec-
onds long. The generation of the animation took 7 minutes.
The second demo shows interactive control of small groups
of characters. Each team has four players and the user selects
target locations interactively to control them. Our interactive
algorithm run on the average at the rate of 45 frames per
second.
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Figure 6: A small example for illustrating the tiling procedure. The spatiotemporal volume consists of a square spatial region
of 10 m × 10 m and a time interval of 600 seconds. The time interval is depicted as dashed lines. We cropped the animation
at dashed lines. The screenshots on the right side were taken at the frame the red lines indicate. (Up) The first phase of our
algorithm generated 67 patches featuring 29 characters. (Down) The second phase of the algorithm added new patches to fill in
gaps. The final result included 197 patches featuring 23 characters. Note that the number of characters decreased, even though
it has more patches. It is because the new patches filled in the gaps between the trajectories of characters 5 and 7, 8 and 20, 9
and 25, 16 and 29, and 21 and 23 to merge them.

Keyframing. The user can directly control the posi-
tion/direction/timing of specific patch instances in the tiling.
To do so, the user selects several patch instances and ar-
ranges them in the spatiotemporal domain as he/she wants.
We use the arrangement as the initial configuration of the
tiling in Algorithm 1, which will add new patch intances
around the user-specified instances to make them fully con-
nected. The resultant tiling thus obtained will include the
user-specified patches at desired spatiotemporal location.
Specifically, we constructed a large patch with ten characters
aligning in two rows to bow to each other. We placed three
instances of this large patch at 1.5, 11.5, and 21.5 seconds
in the initial configuration of the tiling. The result shows
the two-row formation is formed and dispersed repeatedly in
complex multi-character animation (see the second image,
middle row in Figure 7).

Spatially Repeating Tile. We can construct a seamless tile
that repeats either spatially or temporal. Given a symmetric
spatiotempral region, the construction of repeating tiles al-

lows patch instances to wrap around the symmetric region.
Spatial repetition of tiles can cover an arbitrarily large spatial
region seamlessly, while temporal repetition of tiles gener-
ates an infinitely long animation. Our 10m × 10m square
tile repeats seamlessly on regular grids (see the third im-
age, middle row in Figure 7). The repetition of square tiles is
visible at large scale. It might be possible to construct ape-
riodic tilings, such as Wang tiles [CSHD03] and Penrose
tiles [Gla98], by sampling motion patches on triangular or
rectangular regions with proper boundary conditions.

Box movers. In our box mover example, we have four
patches that involve props. The character can pick up a box
from a stack of boxes, carry it around, pass it to another char-
acter, put it down on the ground, and sit down on the box(see
right image, middle row in Figure 7). The characters are pre-
cisely aligned and synchronized with each other when they
pass a box from one character to the other.
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Example # of patches # of characters
Size Time of Scene Computation time (minutes)
(m2) (seconds) Phase1 Phase2

Static 173 16 12 × 12 20 0.1 0.2
Static 374 34 12 × 12 20 0.2 1.8
Static 490 48 12 × 12 20 1 11
Static 657 60 12 × 12 20 3 14
Static 907 70 12 × 12 20 58 45

Dynamic 528 66 12 × 12 20 53 44
Control 628 55 12 × 12 23 17 14

Repeating 813 55 10 × 10 27 83 43
Object 526 36 10 × 10 27 1.5 5

Figure 7: Examples and Statistics.

7. Discussion

We explored a patch-based approach to create a dense crowd
of characters interacting with each other. The formulation
was reduced to tiling spatiotemporal patches without tempo-
ral gaps and spatial overlaps. Our stochastic sampling algo-
rithm demonstrated the power of patch-based approaches in
creating very complex animation by tiling a small collection
of precomputed motion patches.

There is no guarantee that the stochastic sampling converges
while achieving all desired properties, such as the density
of the crowd, collision avoidance, obeying user control, and
coping with environment features. In practice, the conver-
gence of the algorithm is closely related to the diversity
and flexibility of motion patches. Including various single-
character patches facilitates the convergence because it al-
lows each individual character to be steered independently.

The collision detection and avoidance is a bottleneck of com-
putation. More than half of the computation time is spent for
bounding box tests and jittering-based collision avoidance.
Collision avoidance can be more efficient if the penetration
depth between two motion patches can be computed. Choi et
al. [CKHL11] demonstrated an interactively-controllerable

character that is equipped with path planning capability and
can navigate through highly-constrained environments in re-
altime. It was possible because all the obstacles had sim-
ple geometry and the interpenetration between the charac-
ter and obstacles could be easily resolved. Unfortunately, we
have no efficient algorithm to compute the penetration depth,
which directly indicates the resolution of interpenetration,
between four-dimensional spatiotemporal objects. Efficient
computation of penetration depth would achieve significant
performance gain for our tiling algorithm.

There have been research streams on patch-based motion
synthesis [SKSY08, YMPT09]. Specifically, we have made
two major improvements over the previous work. The first is
the perfect tiling of motion patches. Shum et al. [SKSY08]
has a lengthy discussion on why the perfect tiling is difficult
and their observation motivated our work. We have found a
solution to the problem that remain unsolved in the previ-
ous work. The two-phase algorithm and deformable patches
played a key role in constructing the perfect tiling. The sec-
ond improvement is the automatic algorithm for identifying
motion patches from a collection of raw multi-character mo-
tion data. The overall contribution is a system that generates
arbitrarily-large/long animations from a collection of raw
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motion data. The baseline algorithms are fully automatic.
The animator may intervene to change and control the result
by tuning parameters, defining control functions, and adding
special features.

Patch-based motion synthesis has demonstrated its promise
in controlling animated characters in large scale while cop-
ing with the complexity of environments, the diversity of hu-
man behavior, and the computation of long-term planning.
The data-driven animation community have considered frag-
ments of motion capture data as basic building blocks of hu-
man motion synthesis. We advocate motion patches as build-
ing blocks of large-scale motion synthesis.
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