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Abstract
Non-invasively determining the three-dimensional structure of real flames is a challenging task. We present a
tomographic method for reconstructing a volumetric model from multiple images of fire. The method is similar to
sparse-view computerized tomography and is applicable to static camera setups observing dynamic flames. Using
an algebraic reconstruction method, we can restrict the solution space such that a high quality model is obtained
from only a small number of camera images. An additional advantage is fast processing of multi-video sequences
to generate time-varying models for animation purposes. The resulting three-dimensional fire model is useful for
realistic rendering of fire animations, as well as for analyzing gasdynamics of fires.

1. Introduction

Generating computer animated fire is a difficult and com-
putationally expensive problem. Since fire is a chaotic pro-
cess it is very difficult to generate convincing animations
by means of simulation. A number of methods have been
proposed using different kinds of primitives. The main
techniques are particle systems [Ree83, TTC97] and sim-
ulation of fire propagation [BPP01, NFJ02, ZWF∗03]. The
most convincing animations have been obtained by physics-
based simulation of the combustion process, i.e by solving
the Navier-Stokes equations of fluid dynamics [NFJ02]. A
good overview of fire modeling techniques can be found
in [Has02].

In combustion science, methods for non-intrusive mea-
surements of physical properties of flames have been devel-
oped. The main approaches are tomographic methods such
as Schlieren tomography and electrical capacitance tomog-
raphy [Sch96, WHWG99]. These methods, however, require
several measurement passes or special equipment and are
therefore not suitable to model general flames for computer
graphics purposes.

In the presented work, we are not concerned with measur-
ing or simulating physical properties of fire, but with gener-
ating visually accurate animations that can be rendered from
arbitrary positions. Our work is motivated by the observa-
tion that the fire’s chaotic behaviour is not well captured
by current methods. We therefore use an image based ap-
proach to model the three-dimensional emission distribution
within real flames. To this end we apply a three-dimensional

sparse view tomographic method. Although the method is
intended for computer graphics applications it might be pos-
sible to use it for analytical purposes as well, e.g. to verify
fire simulations and to perform temperature measurements
using color pyrometry.

In the following section we give some background infor-
mation and discuss previous work. Sect. 3 introduces the im-
age formation model and the basic equations and concepts
of our method. In Sect. 4 we discuss the details of the re-
construction process followed by Sect. 5 which deals with
the rendering of the resulting model. Sect. 6 describes the
experiments that were performed to validate our method. Fi-
nally, in Sect. 7, we discuss advantages and limitions of our
method and give directions for future work.

2. Background and Overview

Image-based modeling of transparent phenomena has not re-
ceived wide attention in computer graphics. There have been
some approaches trying to extend surface reconstruction by
taking transparency into account [BV99]. Computerized to-
mographic methods have been applied to rigid body recon-
structions [GW99]. Transparent, volumetric phenomena are
treated by Hasinoff et. al. [HK03, Has02]. The authors in-
vestigate the ill-posedness of the reconstruction problem.
While the similarity of the reconstruction problem to com-
puterized tomography (CT) is pointed out, the CT method
is deemed not applicable in the sparse view case. Instead, a
small set of irregularly distributed basis functions is fit to the
image data. The reconstruction is performed in 2D by us-
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ing epipolar slices to make the problem tractable. However,
the results suffer from overfitting. In Ref. [HK03] the flame
sheet decomposition algorithm is developed, which recon-
structs a surface (the flame sheet) with varying transparency
and color. The results are reported to be applicable to non-
complex flames when only a few images are available. Nev-
ertheless the approach treats the volumetric flame as a 2D
phenomenon. It therefore doesn’t generalize well and fails
to capture more complex flame structures.

Our work, in contrast, is a real three-dimensional
approach, being essentially a computerized tomography
method. We take perspective projection into account. Our
approach differs from existing computerized tomography al-
gorithms in that we restrict the solution by using additional
information about the visual hull to discard variables (voxel
emissivities) that need not be computed. This is not possible
with the Radon transform method [Rad17], which is usually
used to solve the problem efficiently. Therefore, we choose
to employ an algebraic representation of the inversion for-
mula, solving it via an iterative method.

3. Image formation model and basic equations

Hasinoff et. al [HK03] present a simplified image formation
model for fire. The fire is modeled as a 3D density field φ
of fire reaction products i.e. soot particles. Image intensity
is related to the density of luminous particles in the fire. The
model has the form

Ip =
∫

c
φ ds. (1)

Here Ip is pixel p’s intensity, c a curve through 3D space
and φ is the density field of the soot particles. Curve c is the
backprojected ray of pixel p in our case. This model assumes
infinitely many pixels. We approximate every pixel by one
ray through the density field. Additional assumptions of the
model are

• Negligible absorption/scattering - this assumption is valid
for fire not substantially obscured by smoke, and

• Proportional self-emission - the brightness depends on the
density of the soot particles only

In order to invert (1) we have to make an assumption on
the structure of φ. We do this by assuming that φ can be
represented as a linear combination of basis functions φi:

Ip =
∫

c

(

∑
i

aiφi

)

ds (2)

The sum and the coefficients ai can be moved out of the
integral and we get

Ip = ∑
i

ai

(

∫

c
φi ds

)

. (3)

Eq. (3) describes a linear system of equations,

p = Sa (4)

The rows represent the equations for one pixel and the
columns contain the integrals of the pixel’s backprojected
rays over the basis function φi. The choice of the basis func-
tions φi is essential for the tractability of the problem. Eq. (4)
has to be solved for the coefficients ai contained in vec-
tor a to reconstruct the density field of the flame. Unfortu-
nately, matrix S is not well behaved. It has, in general, a large
condition number (the quotient between the largest and the
smallest singular value), making the inversion of (4) an ill-
conditioned problem. This inversion is exactly the comput-
erized tomography (CT) problem. The CT problem is usu-
ally solved using the Radon transform [Rad17]. The Radon
transform uses the Fourier slice theorem to obtain the re-
construction by applying an inverse Fourier transform. This
method has the drawbacks that a camera setup is required
where all cameras principal axes meet in one point, and the
basis functions must be of the type

φFourier
i (x,y,z) = ei(αix+βiy+γiz). (5)

These basis functions have infinite support und thus give
rise to a full matrix S (i.e. every pixel is influenced by every
basis function). To be able to solve the linear system in (4)
we would like to have a sparse matrix S. This is obtained by
choosing basis functions with local support. The simplest of
these basis functions is the box function:

φBox
i (x,y,z) =















xi
min < x ≤ xi

max
1 yi

min < y ≤ yi
max

zi
min < z ≤ zi

max
0 else

(6)

Most algebraic reconstruction techniques (ART [KS01]
chapter 7) use this basis function and approximate (3) in
some way.

The advantage of algebraic reconstruction techniques that
use basis functions with local support is the ability to con-
strain the problem and restrict the solution space by keep-
ing basis function coefficents from being estimated that are
known to be zero. We will use this fact to perform a sparse-
view tomographic reconstruction of good quality using im-
ages of fire.
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Figure 1: Relationship between basis function φi, defined on the unit cube, and curve c defined in world coordinates.

4. Implementation

The following section presents implementation details, how
to efficiently set up and solve the linear system (3). We split
the process into two steps and describe them separately. The
matrix generation process determines the entries of S, re-
gardless of additional knowledge about the solution. This
knowledge is used in the process of solving the linear sys-
tem. Regarding the reconstruction problem as two separate
parts allows for the efficient processing of whole sequences
of video data.

4.1. Setting up the linear system

As can be seen in (3), the entries of matrix S consist of in-
tegrals over the basis functions φi. Since these are chosen to
have local support, they are zero over a wide range of the
volume. Therefore the integral is zero for a large number
of entries of matrix S. Determining the entries sni amounts
to intersecting the backprojected rays of all pixels with the
support of all basis functions. This is essentially a volume
raytracing process. To simplify matters, we choose voxel-
aligned basis functions. This choice decreases the amount
of computation needed for the intersections from O(n3) (in-
tersect all basis functions) to O(3n) (intersect 3n planes and
perform a suitable lookup).

We now consider specific types of basis functions and the
resulting structure of matrix S of (4). We present a unified
approach to the integration problem for different kinds of
basis functions. It is not the most efficient implementation
for the box basis function but serves as an example for more
complicated cases. We define the basis function on the unit
cube, transform the curve c of (3) from world coordinates to
the unit cube, perform the integration and adjust the result
so it is valid in world coordinates (see Fig. 1). We need to
compute

sni =
∫

cn

φi ◦T ds (7)

where cn is the ray backprojected from pixel n, n =
1 . . .nmax, and nmax is the number of pixels that are in-
fluenced by any of the basis functions in all camera im-
ages. A◦B(x) = A(B(x)) denotes the concatenation of func-
tions. We want to perform the integration in unit coordinates.
Therefore, the integral has to be transformed in the following
way:

∫

cn

φi ◦T ds =
||rn||

||Trn||

∫

T◦cn

φi dt (8)

The factor ||rn||
||Trn||

relates the integral in unit coordinates to
the integral in world coordinates, rn is the direction vector of
the backprojected ray cn. This factor is only valid for a linear
curve c and a linear transform T . The proof is given in the
Appendix.

4.1.1. Box basis function

In case of the box basis function φBox
i , the whole computa-

tion simplifies considerably. T ◦φBox
i is unity in exactly one

voxel i and zero elsewhere. x1 and x2 are the points of inter-
section of ray cn with voxel i. The integral on the unit cube
can then be transformed in the following way: Let us con-
sider the curve cn in world coordinates as

cn(t) = (1− t)x1 + tx2 (9)

and denote the transformed curve T ◦ cn as

F(t) = T ◦ cn(t) = T
(

(1− t)x1 + tx2
)

. (10)

Applying (18) to compute the integral in unit coordinates
yields
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sni =
||x2 − x1||

||T (x2 − x1)||

∫ 1

0
φi(F(t)) ||T (x2 − x1)|| dt =(11)

||x2 − x1||
∫ 1

0
φi(F(t)) dt. (12)

Because F(t) , t ∈ [0,1] is completely contained in the
support of φi and φi = const. = 1 we arrive at

sni = ||x2 − x1||. (13)

This is simply the distance that the backprojected ray trav-
els in the voxel corresponding to basis function φi.

4.1.2. Trilinear basis function

Figure 2: Visualization of the trilinear basis funtion. This
basis function has a support of 8 voxels (1 removed for bet-
ter visibility). The values of the function are shown as trans-
parent iso-surfaces. At the meeting point of all voxels, the
function is one, on the borders it falls off to zero.

The trilinear basis function has a support of 8 voxels that
are arranged in a cube. A visualization is shown in Fig. 2.
In the center of this cube the function is one and on its bor-
ders it falls off to zero. The values in between are trilinearly
interpolated. This results in a cubic polynomial in three di-
mensions for each voxel. The intersection of the backpro-
jected ray T ◦ cn in unit coordinates and the basis function
φi is a cubic polynomial in every voxel as well, and can thus
be integrated analytically. The coefficients of the polynomial
can be found by computing an approximation which will be
exact because polynomials approximate polynomials of the
same degree perfectly. Another option is to compute it using
a computer software like Maple. The polynomial that has to
be integrated is given in the Appendix.

The trilinear basis functions are arranged on the voxel grid
such that there is a one-voxel overlap in every dimension.
This ensures smooth blending when rendering the fire. Fur-
thermore, it is well suited for visualization using graphics
hardware (see Sect. 5).

4.2. Solution

After having set up the linear system (4) we face a number
of difficulties:

• the matrix S is large
• the linear system is ill-conditioned
• we want to obtain a physically plausible, i.e. non-negative

density field φ

We wish to compute a least squares solution to (4):

a = (ST S)−1ST p (14)

The size of the matrix ST S that is to be inverted is the over-
all number of basis functions squared. For a reasonably re-
solved voxel model i.e. more than 643 voxels, this is a large
system which can only be solved using iterative methods.

4.3. Conjugate gradients for a regularized solution

Fortunately there exist iterative solution methods for linear
systems of equations with regularizing properties which is
especially useful for our application. The conjugate gradient
method (CG, e.g. [Å96, Han98]), developed to solve large
symmetric positive definite (SPD) matrices, is suitable for
our task. The normal equations (14) are by construction sym-
metric and positive definite.

Hansen [Han98] discusses the regularizing properties of
the CG method in detail. Despite the incomplete theoretical
understanding of the convergence properties it is experimen-
tally and partially theoretically shown that the CG method
behaves quite similar to the truncated singular value decom-
position. The singular values are captured in their natural
order starting with the largest [Han98].

This leaves us with finding a non-negative solution. We
choose basis functions that are non-negative everywhere.
This ensures that non-negative coefficients a will yield a
non-negative density field. Therefore we have to find a non-
negative solution vector to (14). We do this by projecting
the current solution ak to the subspace of non-negative so-
lutions in every iteration k of the CG method. This is done
by setting the non-negative entries of ak to zero. We apply
the CGLS variant [Han98] of conjugate gradient methods to
our problem. This variant was developed for solving the nor-
mal equations without explicitly computing ST S. This saves
memory because the explicit representation of the product is
usually dense.
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Figure 3: Synthesized views from the reconstructed volume
based on the full equation system (4) (upper row) and the
visual hull restricted system (lower row). The left and right-
most images correspond to views near original input views,
whereas the middle views are in between views. Ghosting
artifacts are clearly visible in the full system case (upper
row), the density field suffers from overfitting. These prob-
lems are resolved in the visual hull-restricted solution (lower
row). The images cover approximately 90◦ and are equally
spaced.

Initialization:

a0 = 0, r0 = p−Sa0, d0 = ST r0, k = 0

Iteration:

αk = ||ST rk−1||
2
2/||Sdk−1||

2
2

ak = ak−1 +αkdk−1

rk = rk−1 −αkSdk−1

βk = ||ST rk||
2
2/||S

T rk−1||
2
2

dk = ST rk +βkdk−1

Termination: L-curve criterion

As the termination criterion we adopt a variant of the L-
curve criterion [Å96, Han98]. The quotient ||xk||2

||Sxk−p||2 of the
norm of the solution at step k over the norm of the residual is
plotted and analyzed. The point of highest curvature on this
curve is the best trade-off between a smooth solution and
accuracy in the fit [Han98]. The number of iterations of the
CG method plays the role of the regularization parameter in
our case.

The results of applying this methodology (using the box
basis function) to an input multi-video sequence of 8 cam-
era streams is shown in the upper row of Fig. 3. As can be
expected, the number of views is not sufficient to restrict the
solution to the real density field and ghosting artifacts are
clearly visible.

Figure 4: The image shows the basis functions inside the
visual hull in red, partially inside and partially outside green
and outside yellow. The box depicts the area of discretization
seen from two of the recording camera’s viewpoints.

4.4. Visual hull restricted solution

We circumvent this problem by exploiting additional infor-
mation. We know that each basis function whose support
projects outside the silhouette of the fire in any source im-
age must have a coefficient of zero because the density field
vanishes outside the visual hull. The visual hull [Lau94] is
a conservative approximation to the geometry of a rigid ob-
ject that is found by intersecting the backprojected silhou-
ettes from all source images. The actual flames are guaran-
teed to lie inside the visual hull. We can use this information
to determine the basis functions with possibly nonzero coef-
ficients. Fig. 4 shows the area of discretization and the basis
functions whose support is inside/outside the visual hull in
case of the step basis function, and a discretization of 643

basis functions. As can be seen from the figure, most of the
643 basis functions are situated in ’empty’ space. Only about
one tenth of them contribute to the density field that is to be
reconstructed.

Since the contribution of each basis function to each pixel
in the source images is stored in the columns of the linear
system (4) it is simple to adjust it such that the coefficients
of those basis functions whose support lies outside the visual
hull are not estimated: we simply have to remove the corre-
sponding columns from the linear system before solving the
normal equations.

4.5. Animated fire

The restriction of the linear system at solving time is also
an efficient way to deal with multi-video sequences, i.e.
the reconstruction of a time-varying volumetric model of
the flame. Given a static camera setup, the only things that
change from frame to frame are the affected basis functions
and the right hand side of the linear system (4). Since setting
up the linear system is much more expensive, computation-
ally, than solving it, it is advisable to compute the full linear
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system first and restrict the problem while solving for every
frame of the multi-video sequence.

Some results when using this procedure are shown in the
lower row of Fig. 3. The images are taken from the same vir-
tual viewpoints as in the row above. By constraining the re-
construction to the volume of the visual hull, photo-realistic
rendering results can be obtained.

5. Rendering

Given the coefficients ai of the basis functions φi, render-
ing corresponds to the direct application of the forward pro-
jection formula (3). Therefore, it is sufficient to create the
matrix S for the new view and perform the matrix multi-
plication (4) to obtain the pixel values. Matrix S is a pre-
computed direct volume rendering [Max95]. The similarity
between volume rendering and computerized tomography is
also pointed out in Ref. [Mal93], where the Fourier Slice
Theorem is used to speed up direct volume rendering. An
animation from a static viewpoint can be obtained very effi-
ciently since it amounts to just one matrix-vector multiplica-
tion (4) per frame.

We reproduce the color information by computing the re-
construction for each color channel separately. The render-
ing is performed using three different voxel models that are
rendered to the three color channels, respectively.

In case of the trilinear basis function it is more convenient
(and faster) to perform a volume slice rendering approach
using modern graphics hardware [CCF94]. Modern graph-
ics cards perform the trilinear interpolation automatically, so
the coefficents ai can be used as a volume texture to perform
the rendering. Hardware accelerated rendering allow for in-
teractive frame rates.

6. Experimental validation

We recorded a multi video sequence with 8 cameras at
640x480 pixels and 15 frames per second. An approximately
circular camera setup was used to acquire the images. The
recording was performed in a darkened room with the fire
being the only source of light. It was therefore possible to
circumvent the step of background subtraction which is non-
trivial for transparent phenomena. However, we had to use
very high gain settings, introducing noise in the images, no-
table in the blue channel, Fig. 6(a).

6.1. Experiments

We experimentally analyze the dependency of our method
on the discretization resolution. Since we aim at creating
photo-realistic images from arbitrary viewpoints using the
reconstructed volumetric model, we perform a reconstruc-
tion, followed by a rendering of the model. We reconstuct a
volumetric model using all views except one, which in turn
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Figure 5: Plot of the mean reconstruction error for all
frames of a sequence. The different curves show results for
a discretization of space into 323 (green), 643 (red) and
963(blue) voxels.

is used to validate the rendered image of the model. Seven
out of the eight views are used to reconstruct a sequence
of 100 frames. The reconstructed model is then projected
into the eighth view and the difference is computed for each
color channel. The average difference in intensity is shown
in Fig. 5 for all 100 frames and different levels of discretiza-
tion. The pixel values range from zero to 255.

Fig. 5 shows that approximation quality becomes better
with higher level of discretization. We also performed ex-
periments with a discretization level of 483 and 723 voxels.
The results of these are not shown for clarity, but are in-
cluded in Fig. 6(b). These experiments show the tendency
to converge towards the correct unused view, suggesting that
the 3D structure of the density field is indeed captured accu-
rately.
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Figure 6: Mean error plotted against the number of views
for reconstruction (left) and the mean error over the whole
sequence of Fig. 5 against the level of discretization. The
three curves denote the three color channels red, green and
blue.

Another experiment was performed to evaluate the depen-
dency on the number of views that are used for the recon-
struction. We reconstruct one frame of the sequence using
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3, 4, 5, 6 and 7 views of the flame. The comparison is per-
formed against the left-out views. The results are shown in
Fig. 6(a). Here as well, the convergence of the solution can
clearly be observed. Visually acceptable reconstruction re-
sults, especially when used in animated renderings, are ob-
tainable with as few as 4 to 5 views. 8 views are sufficient
for photo-realistic rendering.

6.2. Discussion

Potential sources of error of our method are

• camera calibration errors,
• color calibration errors,
• 2D image processing (rescaling), and
• discretization (number of views and spatial discretiza-

tion).

Calibration errors are inevitable and tend to create too
small visual hulls. This means that the actual silhouette is
a bit larger than the silhouette of the reconstructed model.
Since this does not happen with synthetic test images, such
errors can be attributed to camera calibration inaccuracies.
We exclude these pixels from the error measurement to pre-
vent biasing the error measure.

We recorded the sequences with the same settings for all
cameras. Since this produces visually quite similar images,
we didn’t concentrate on color calibration.

Rescaling the images is necessary to fit the matrix in
memory (2 GB RAM). It should be noted that 2D image
processing might influence the result of the reconstruction
because it can introduce effects not described by our model.
Projecting the result of the reconstruction back to the origi-
nal views and referring to (14), the reconstruction/rendering
loop p̂ = S(ST S)−1ST p can be interpreted as a filter on the
2D pixel data p where p̂ is the solution projected to the orig-
inal views. If the pixel data p is filtered in 2D prior to the re-
construction procedure, it might not correspond to a filter in
the 3D domain and therefore introduce artifacts. Finally, the
discretization of the density field and the assumption on its
special structure, i.e. its composition from basis functions,
introduce errors of their own.

While one has to be aware of these error sources, our val-
idation experiments demonstrate that it is possible to com-
pute density fields that are able to generate photo-realistic
images from arbitrary viewpoints.

7. Conclusions and future work

We have presented a method that is capable of reconstructing
dynamic, volumetric models of fire for animation purposes.
Our approach is applicable in case of

• negligible scattering (fire not obscured by smoke)
• no sensor saturation in the input images
• no opaque objects inside the flame

• no part of the flame is seen by less than 2 cameras

We obtain photo-realistic results. Validation shows that
our approach reconstructs the actual 3D distribution of flame
intensity. Our results are obtained using 8 cameras, demon-
strating that the method is applicable in a sparse view sce-
nario. The reconstruction is optimized for processing of
multi-video-sequences, making it a suitable tool to model
fire for animation purposes.

Future work includes adding an exponential decay term
for modeling absorption, incorporating occluding bodies in-
side the flame, exploiting temporal coherence, background
subtraction, color calibration and higher order basis func-
tions, e.g. for hierarchical representations.

Appendix

Transformation of curve integrals

Here we give the proof for Eq. (8).

∫

cn
φi ◦T dt (15)

=
∫ 1

0 φi ◦T ◦ cn(t) ||
dcn(t)

dt || dt (16)
(∗)
=

||rn||
||Trn||

∫ 1
0 φi ◦T ◦ cn(t)||Trn|| dt (17)

(∗∗)
=

||rn||
||Trn||

∫ 1
0 φi ◦T ◦ cn(t)||

d(T◦cn)
dt || dt (18)

=
||rn||
||Trn||

∫

T◦cn
φi dt (19)

(∗)
dcn(t)

dt
cn(t)linear

= rn,const. (20)

(∗∗)
d(T◦cn)(t)

dt = dT
dcn

dcn
dt

T linear
cnlinear

= Trn (21)

Note that this proof is only valid for a linear curve cn and
linear transformation T .

Polynomial to be integrated for the trilinear basis
function

In the following we assume the curve cn to be in the form
T ◦cn(s) = p+ sr. The direction vector r is normalized. The
cubic polynomial that is to be integrated for the trilinear ba-
sis function is given by:

s3∗ (a1rxryrz)+

s2∗ (a1(rxry pz + pxryrz + pyrxrz)+
a2rxry +a3rxrz +a4ryrz)+

s ∗ (a1(pz pxry + pz pyrx + px pyrz)+
a2(pxrz + pyrx)+a3(pxrz + pzrx)+
a4(pyrz + pzry)+a5rx +a6ry +a7rz)+

1 ∗ (a1 px py pz +a2 px py +a3 px py +a4 py pz+
a5 px +a6 py +a7 pz +a8)

(22)
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The constants a1 . . .a8 are defined as

a1 = −p000 − p001 + p010 + p011
−p100 − p101 + p110 + p111

a2 = −p000 + p001 + p010 − p011
a3 = −p000 + p001 − p100 + p101
a4 = −p000 + p010 − p100 + p110
a5 = −p000 − p001
a6 = p000 − p010
a7 = p000 + p100
a8 = −p000

(23)

p000 . . . p111 are the values at the corner points of the unit
cube in the order of pzyx, respectively. The integration has to
be performed from s1 to s2 which are the intersections of cn
with the voxel in question in unit coordinates.
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Figure 7: Difference between original, unused views and reconstruction rendered from the same viewpoint. Left: Original,
Middle: Reconstruction, Right: Difference.

Figure 8: Synthesized views of two different flames with black background, the 5 images of each row cover approx. 120◦.

Figure 9: Synthesized views of animated fire in a virtual environment.
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