
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Performance Timing for Keyframe Animation

S.C.L. Terra and R.A. Metoyer

Oregon State University, Corvallis, Oregon

Abstract
Keyframing is a standard technique for generating computer animation that typically requires artistic ability and a
set of skills for the software package being used. We are interested in addressing the needs of the novice animator
who is not necessarily artistically skilled or familiar with keyframing interfaces. From our experience observing
novice animators, it is clear that setting keyframe values is straightforward while specifying the keyframe timing
is difficult and often time consuming. We present a novel method for novice users to time keyframes using gestures
without changing the motion itself. The key to our approach is the separation of specification of keyframe values
from the specification of keyframe timing. Our approach allows the user to "act-out" the timing information using a
simple 2D input device such as a mouse or pen-tablet. The user’s input is analyzed and features of the user’s input
are mapped to features of the keyframed motion. The keyframes are then distributed in time according to the timing
of the user’s input path. We have implemented the approach as a plugin to the AliasWavefront Maya modeling
and animation package. We demonstrate the approach on several example scenes and discuss its strengths and
limitations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

As 3D computer animation tools become more accessible to
novice users, it becomes important that our interaction tech-
niques address the needs of these users. One of the most
fundamental motion generation techniques is keyframing.
Within the context of keyframing, the talented animators of
Walt Disney developed the 12 principles of animation for
creating compelling motion [TJ81]. John Lasseter later dis-
cussed these principles in the context of 3D computer ani-
mation [Las87]. According to Lasseter, the timing principle
is extremely important

" . . . it gives meaning to the movement–the speed
of an action defines how well the idea behind
the action will read to an audience. It reflects the
weight and size of an object, and can even carry
emotional meaning."

In our observations, timing an animation is often the most
difficult part of the process for novice users. Using an ani-
mation suite such as AliasWavefront’s Maya, we have found
that novice users do not have much difficulty in setting the
spatial values of the keyframe. For example, it’s fairly easy
for a novice user to set the keyframes for a bouncing ball

in terms of where it will move in space. However, we have
found that properly spacing the keyframes in time and setting
the velocity profiles are often only done well by someone
with an artistic sense for motion specification. We believe
that this difficulty is not caused by an inability to imagine
the timing, but by an inability to convey the timing using the
provided interfaces. On the other hand, we note that most
people find it fairly intuitive to "act out" the motion or mimic
the desired motion with their hands. For example, most of us
could probably mimic a bouncing ball motion by tracing the
path with our fingertips in mid air. We therefore decided that
the novice user needed a similar way to act out their desired
animation timing.

In this paper, we present a novel method for capturing the
user’s desired timing, correlating it to the character’s motion
path, and adjusting the timing of the animation to reflect the
user’s desires. We first capture the user’s timing by requir-
ing her to act out the motion of a single animated object that
exhibits translation. Next, we determine correspondence be-
tween the user’s acted motion and the object’s motion path.
We then distribute all keyframes in the object’s animated
channels according to the acted motion to obtain a com-
pletely new timing without modifying the spatial character-
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Figure 1: Our timing technique can be applied to any mo-
tion that exhibits translation. In this case, the user has cho-
sen the inverse kinematics handle of the arm as the target
for animating Hugo. The motion path is shown along with
the user’s sketched timing path.

istics of the motion. The goal is to create an intuitive tool for
the novice animator and a rapid prototyping tool for skilled
and non-skilled animators alike. Figure 1 shows a keyframed
character alongside the user’s timing performance path for
the small arm movement.

2. Background

The need for intuitive animation interfaces has been rec-
ognized for many years now. In 1971, Baecker created the
Genesys Computer Animation System for sketching anima-
tions. Using a tablet device, the animator sketched curves
that represented the path and dynamics (timing) of the 2D
animation [Bae71]. In 1995, Balaguer and Gobbetti intro-
duced an integrated environment for creating animations us-
ing 3D sketching [BG95, GB95]. The system was designed
to allow for the expressiveness of a real-time motion cap-
ture system in a general animation system. The environment
allows users to sketch animations using a 3D device, con-
trolling both spatial and timing aspects. A data reduction
step fits a curve to the user data, resulting in a clean ani-
mation. In this paper, we intentionally separate spatial spec-
ification from timing in order to make use of currently ef-
fective techniques for specifying 3D motion paths through
keyframe values. We then provide a method for timing the
animation within a standard 2D mouse-based interface.

In recent years, several researchers have developed
sketching interfaces for controlling animation. Dontcheva
and her colleagues present the layered acting approach for
creating character animations [DYP03]. In this system, user
actions are captured and mapped to the character to create
motion. The motion can be supplied in stages and layered

to produce the final motion. This system also requires sub-
stantial equipment for capturing user input and again con-
centrates on both spatial and timing aspects of the motion.
Our approach is very similar in that we allow users to di-
rectly control features of the "character" by capturing mo-
tion. However, we are primarily concerned with doing so
with 2D devices and without affecting the spatial aspects of
the motion.

In 2000, Laszlo et al. presented an entertaining interface
for controlling interactive physical simulations by directly
mapping mouse motion to the desired joint angles and by
providing discrete control actions via keystrokes [LvF00].
The goal was to build on the user’s intuition about how the
motion should be performed and to use this intuition to drive
the character directly. We have very similar goals but we are
concerned with traditional keyframed motion and not physi-
cal simulation.

Most recently, Thorne and his colleagues presented
a sketch-based technique for creating character mo-
tion [TBvdP04]. In this system, the user not only sketches
the character to be animated, but also sketches motion curves
that are segmented and mapped to a parameterized set of
output motion primitives that reflect the timing of the in-
put sketch. Our approach reflects the timing of the input
sketch as well, but rather than apply it to particular charac-
ters with particular primitives, we apply our motion directly
to keyframed motion values.

Popovic et al. discusses an interface for sketching the de-
sired path and timing for rigid body simulations [PSE03]. An
optimization step then produces physically plausible motion
that reflects the desired path and timing from the sketch. An
approach that is similar to ours in nature but not interface is
Sampath’s NUKE plugin for Maya. This plugin allows users
to retime keyframed animations by scrubbing the animation
time slider to reflect the desired timing [Sam99]. Real-time
motion capture is the ultimate goal in performance anima-
tion. Unfortunately, motion capture systems are expensive
and often cumbersome especially for animation of simple
characters. A thorough overview of motion capture for ani-
mation is presented by Gleicher [Gle99].

3. "Acting Out" Timing Information

Using a standard animation interface, the user must first
keyframe the motion that she wants to animate. In doing
so, the user may completely ignore how the keyframes are
spaced in time. The result is an animation where the ob-
ject moves correctly in terms of the spatial channels, but for
which the timing is arbitrary.

The key to our approach is allowing the user to "act out"
the timing information. To do so, the scene must contain a
spatial component for the user to mimic. This spatial com-
ponent must exhibit values that vary in at least one of the
translation channels (x, y, or z). This is the component that
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target object

motion path

user-sketched path

Figure 2: In this example, the user chose the bouncing ball
as the target component. Above the component’s path, we
see the timing path sketched out by the user when acting out
the timing. Note that the user-sketched timing path is similar
in shape, but not exact.

the user will mimic while acting out the motion. This re-
quirement does not mean that only objects with translations
can be used. For example, a single rotating sphere does not
exhibit translation. However, one could select a single ver-
tex on a rotating sphere and use its translation as the motion
to be "acted out". This approach could also be used to time
an object’s scale changes. The user begins by selecting an
expressive object in the scene from any one of the camera
viewpoints. For a simple scene, such as a bouncing ball, the
user would simply select the ball itself as the target compo-
nent. In a more complex scene, such as a maestro directing
an orchestra, the animator could choose the position of the
hands or the tip of the conducting wand. The user should
choose a target object and view that exhibits motion that she
understands and for which she can mimic the motion.

The user then acts out the scene by sketching the desired
timing directly in the window in which she is viewing the
spatial path of the target component. The user’s timing path
must be similar in shape to target motion path. As the user
sketches, the system samples the input sketch resulting in
time-stamped path samples. In effect, this is a simple form
of motion capture. Figure 2 shows an example target compo-
nent along with the user’s sketched path as seen in the actual
interface.

4. Mapping the Motion

Now that we have the user’s desired timing in the form of the
sketched path with time-stamped samples, the goal is to use
this data to control the timing of the target component’s mo-
tion. A naive approach would be to apply the resulting timed
samples directly to the target component’s motion. This, of
course, would modify the spatial motion of the object. In-
stead, we match features of the sketched path to the target
component motion path. We then distribute the keyframes in

motion 
correspondence 

points

sketch 
correspondence 

points

Figure 3: An example of correspondence calculation to
match features in the two paths: the target component mo-
tion path and the user’s sketched timing path.

time according to the distribution of the features in the user’s
sketched timing path.

This matching is done for the purpose of determining
which point on the motion path the user was mimicking
when she was sketching out a particular point on the screen
during the performance. Since the sketch is in no way guar-
anteed to be the same length, shape, or size as the motion
path (indeed, that would be the very rare exception), we
must correlate the two paths in a way that seems natural to
the user. We will present two methods that we have experi-
mented with for matching the paths.

4.1. Path Matching

The first method involves finding the local minimum and
maximum points in both the horizontal and vertical direc-
tions in the current view. We call these features the peaks
of the path and we use these peaks as our correspondence
points between the two paths. We examine three samples at
a time to determine whether the path has changed direction
along a particular axis. If we find a directional change, and if
the change is larger than a threshold value, we place a peak
at the location (Figure 3). The threshold value allows us to
ignore noise from the user where noise is defined as small
motion adjustments that are not intended to be peaks. This
peak finding method is simple and computationally efficient.

We have also experimented with more robust methods of
shape matching such as a discrete, dynamic programming
solution for curve matching [SB94]. This technique is typi-
cally more robust but also more computationally expensive
and therefore less responsive than the peak finding algo-
rithm. For this solution, we first align the two paths in space.
Our cost function to be minimized is defined as the distance
that a sample must be moved from the first path in order to
place it on the second path.

In cases where neither the peak method nor the dynamic
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s = x, time = t

s = 0

s = 0

keyframe k, s = x

s = 1

s = 1

Figure 4: In the example shown above, the path on the left
represents the target component path. The arclength, s, is
normalized for each segment where a segment is defined as
the portion of the path between two peaks. The path on the
right represents the user’s sketched timing path. To find the
correct time for the keyframe, k, shown on the target path,
we first determine the arclength traveled to that keyframe
(s = x) We then use this arclength value to index into the
timing path and find the time stamp value, t that corresponds
to arclength, s = x. The keyframe in the target component
motion path is then assigned this time value.

programming approach produce the desired results, the user
always has the option to manually edit and assign peaks as
we will discuss in Section 5.

4.2. Mapping the Timing

Now that we have established correspondence between the
target component motion path and the user’s sketched tim-
ing path, we must adjust the target component’s keyframes
to reflect the user’s timing while preserving the original spa-
tial motion path. We first parameterize each path according
to arclength. The paths are broken into segments, where a
path segment is defined as the portion of a path between
two peaks. For each segment of the motion path we iden-
tify the existing keyframes. For each of the keyframes, we
compute the arclength traveled on the target component mo-
tion path to that particular keyframe. This arclength value
is then used to index into the user’s sketched timing path to
find the time stamp value that corresponds to this particular
arclength. This time value is then assigned to the keyframe in
the target component motion path (Figure 4). This approach
distributes the keys across the component motion path ac-
cording to the user’s desired timing.

The underlying motion curve is represented with a spline.
In some animation systems, spline tangents can be fixed such
that moving the keyframes in time will cause the overall
motion to be changed. If this is the case, we must adjust
the tangent vectors so that the overall motion path remains
unchanged (Figure 5). The final step involves adjusting the
tangent angle of shifted keyframes to maintain the original
motion given the adjustment in time.

To synchronize the motion for all parts of an articulated
character, the user must simply apply the same mapping to

original curve

(a)

(b)

keyframe with 
fixed tangents

Figure 5: The top path represents the original animation
path for the target object. The horizontal axis is time while
the vertical axis is the value of the animation channel (ie.
translationX). In this example, imagine that the user has
specified fixed tangents for the spline that represents the
animation curve. Path a shows the results of moving the
keyframes in time without adjusting the tangents–the motion
is clearly changed. Path b shows the results after we modify
the tangents. The tangents are modified by adjusting the an-
gles to reflect the relationship between the similar triangles.

each attribute that she wishes to animate. In our system, this
is done by adding those attributes to a combined character,
performing the timing for a single target object in the com-
bined character group, and mapping the timing of that object
to the entire group.

5. Editing

Because the feature correspondences cannot always be iden-
tified, we also provide the ability to edit the peak informa-
tion. Users can remove peaks as well as add peaks.

We also give the user the ability to apply timing to var-
ious keyframed objects independently. This means that the
sketched motion can be applied to all objects simultaneously
as described above, or, the user can provide different timing
sketches for different objects. This allows the user to create
the animation in a layered fashion.

6. Results

To demonstrate the effectiveness of our approach, we created
a plugin for AliasWavefront’s Maya modeling and animation
package. Using Maya’s keyframing facilities and our plu-
gin, we created several animated sequences. We were able
to quickly and easily create timing for various scenes that
had already been keyframed.
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For the first example, the user was asked to time a bounc-
ing ball to be physically correct. In the second example, the
user was asked to time a bouncing cursor to annotate the
words of the song "Jingle Bells". In the third example, the
user modifies a keyframed articulated figure to walk with
a limp. For the fourth example, the user animates a pen-
cil character to exhibit several different timings for a scene
where the pencil is looking around the environment. Finally,
we demonstrate the use of our approach for animating a
longer animated scene with a complex character.

In all cases, we found that this system made it possible
to quickly and easily generate many timings for the charac-
ters in the scene. However, these studies were informal. We
are currently in the process of designing a more formal user
study to establish the effectiveness of the interface as com-
pared to a traditional keyframing interface.

7. Discussion and Future Work

We have presented a novel approach for generating tim-
ing information for keyframed motion. This approach is
designed to help a novice user generate animations with-
out necessarily being artistically talented and to allow
even skilled animators to prototype motion quickly. We
have demonstrated the resulting motion in several animated
scenes with varying complexity.

Finding the correspondence points between the target ob-
ject motion path and the user’s sketched timing path is the
most computationally complex part of our algorithm. The
min/max peak finding algorithm is O(n + m) where n is the
number of samples in the target component motion path and
m is the number of samples in the sketched timing path.
For the dynamic programming solution, the running time is
O(n∗m2).

Longer animations present an interesting problem. In par-
ticular, the user should not be required to animate an entire
scene in one performance. In our current implementation,
the user can time and map several portions of the animation.
In doing so, the user must be sure that she picks good ending
points so that there are no apparent discontinuities in the mo-
tion. If the user overshoots an ending point or starts before
a start point, the unwanted parts of the timing curve can be
removed with the peak editing facility. Another option is to
allow the user to specify an overlap window for two parts of
an animation and apply a simple blend. This addition is left
for future work.

The system performs well when the user’s timing sketch
is similar to the target component motion path. The sim-
ple peak finding algorithm and our dynamic programming
solution are both rotation dependent and therefore will fail
for sketches that are rotationally different from the target
component motion path. However, we find that users do not
object to using an orientation similar to that of the target
component path when sketching their timing. There are also

ocenterline

Figure 6: In this example, the character’s head is animated
by translating an inverse kinematics handle. The user has
chosen this handle as the target object for the timing perfor-
mance. One could also choose to "act out" the motion of a
single vertex on the surface of a character.

cases where the user’s input does not necessarily resemble
the shape of the target object. For example, consider a situa-
tion where the user visualizes the motion as having features
that occur at velocity peaks or locations of similar curva-
ture between the paths. We are investigating dynamic pro-
gramming solutions with cost functions that match various
properties such as acceleration or velocity to the peaks in
the target object’s motion.

We currently require an object to have some kind of spa-
tial signal to "act out". For example, in Figure 6, the user is
animating the rotation of the character’s head via the transla-
tion of a bone’s inverse kinematics handle. This makes "act-
ing out" the change in an attribute such as color currently im-
possible. One extension would be to map an attribute, such
as color, to an artificial spatial signal that exhibited peaks
at the maximum and minimum values of the attribute signal.
The user could then act out the timing for this artificial curve
and map it to the attribute. This is left as future work.

In this paper, we have presented several examples created
using 2D input devices such as a mouse or a pen tablet. Al-
though we are mostly interested in this domain, we can also
apply our algorithms to 3D timing paths. For example, one
could imagine a vision based system for tracking a single
marker to be placed at the end of a timing wand. The user
could act out the timing by manipulating the wand as an ex-
tension of her hand. This approach is similar to work in the
audio synthesis domain [SKG00]

An alternative to acting out the timing by drawing paths is
to "act out" the motion by clicking the input device, such as
a mouse, when the peaks should occur. This approach would
give us the relevant information needed to redistribute the
keyframes. However, possibly valuable information is lost
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in this approach. For example, with our current technique,
we could also analyze the users input to understand velocity
changes between the keyframes and use this information to
adjust the animation curves to create effects such as ease-in
ease-out. For example, in a scene with a single sphere and
two key frames, currently, we can only generate a constant
velocity motion between those two keys. If we were to ana-
lyze the velocity profile, we could adjust the tangents of the
motion curve to reflect the velocity profile of the user be-
tween those two keyframes. This is also left for future work.

Although we have demonstrated success with the in-
terface we are currently conducting usability studies with
novice users to identify weaknesses, refine the interface,
and observe how well the interface facilitates animation by
novice users. User studies for comparing our approach to
traditional keyframe timing techniques are also planned.
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