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Abstract
In human motion control applications, the mapping between a control specification and an appropriate target
motion often defies an explicit encoding. We present a method that allows such a mapping to be defined by example,
given that the control specification is recorded motion. Our method begins by building a database of semantically
meaningful instances of the mapping, each of which is represented by synchronized segments of control and target
motion. A dynamic programming algorithm can then be used to interpret an input control specification in terms
of mapping instances. This interpretation induces a sequence of target segments from the database, which is
concatenated to create the appropriate target motion. We evaluate our method on two examples of indirect control.
In the first, we synthesize a walking human character that follows a sampled trajectory. In the second, we generate
a synthetic partner for a dancer whose motion is acquired through motion capture.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Authoring human motion is difficult for computer animators,
as humans are exceptionally sensitive to the slightest of er-
rors. This process involves an animator providing a control
specification which is mapped to a target motion by some
means. In traditional keyframe animation, for instance, the
keyframes are the control specification, and the target mo-
tion is achieved through spline interpolation.

Due to advances in data acquisition technology and com-
putational power, techniques have been developed that allow
desired target motion to be specified using a human perfor-
mance. This is natural for traditional keyframe animators,
who often use recorded or live human motion for reference.
Motion capture is the most direct method to map perfor-
mances to animated humans, as it is essentially an identity
mapping. However, a generalization of this approach to al-
low for more indirect mappings creates an array of fantastic
possibilities, such as mapping voice signals to facial motion
[Bra99] or gestural actions to animated reactions [JP99].

Indirect mappings, however, must still be encoded in some
way. Manually, this can be an exceptionally challenging task
requiring detailed, domain-specific knowledge. Consider a
partner dance scenario in which an animator wishes to con-

trol a follower using the captured motion of a leader. The
mapping from leader to follower motion must minimally en-
code a significant amount of knowledge about the structure
of the dance; this knowledge, unfortunately, would be out of
reach to an animator who is not a skilled dancer. Indeed, it
would still be difficult for a skilled dancer to state the pre-
cise mapping. Human dancers learn their skills by observa-
tion and practice; our objective is to emulate this process on
a computer for situations, such as partner dance, when the
control specification takes the form of one dancer’s motion.

To learn indirect mappings, we adopt a memory-based ap-
proach which implicitly encodes the desired mapping using
a database of semantically meaningful example instances.
These instances store segments of synchronized control and
target motion, which provide examples of how the mapping
should be applied to input control motions. In partner dance,
an instance might contain an example control motion of a
leader pushing his or her partner forward. The corresponding
example target motion would be that of the follower, taking
a step backward in response.

A new input control motion can be interpreted as a se-
quence of rigidly transformed and temporally stretched con-
trol segments from the mapping database. Through the map-
ping instances, a given interpretation also corresponds to a
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Hsu, Gentry, and Popović / Example-Based Control of Human Motion

sequence of target segments that can be assembled to form a
target motion. We use dynamic programming to select a se-
quence that balances the quality of interpretation with the
continuity of the induced target motion. Various postpro-
cessing techniques can be then be applied to smooth and
adjust the desired target motion.

Our approach is evaluated on two applications. In the first,
we demonstrate its ability to map low-dimensional input to
high-dimensional motion by controlling walk motion from
mouse trajectories. In the second, we highlight our method’s
capability to handle complex, stylized mappings by control-
ling a dance follower with the motion of a dance leader.

2. Background

Performance-driven animation, or computer puppetry, de-
rives its broad appeal from its ability to map human perfor-
mances automatically to animated characters [Stu98]. While
these mappings can be as simple as a direct copy of joint
angles, the ability to discover more complex mappings gives
the approach a tremendous amount of power and flexibility.
In online techniques [JP99], computational speed and instan-
taneous results are of paramount importance; offline tech-
niques [Bra99] allow quality and global optimality to take
precedence. Our method falls into the latter category.

Complex mappings often defy purely physical or mathe-
matical encodings. As a result, many methods assume that
mappings are described by parametric probabilistic models
[Bra99, DB01, DYP03, JP99]. An advantage of these tech-
niques is their ability to generalize to a variety of inputs.
However, this comes at a price: statistical learning often ne-
cessitates large volumes of training data or severe restric-
tions on model complexity. For certain applications, this is
a worthwhile tradeoff, but for others, it can result in im-
practically long training times or loss of important detail. A
memory-based approach like ours does not suffer from these
disadvantages.

An important benefit of this design choice is the ability
to use segments, rather than frames, as the primitive unit
of motion. This allows for explicit preservation of higher-
level motion semantics. Kim et al. demonstrate that a se-
mantically guided segmentation of rhythmic motion allows
for highly realistic motion synthesis, even using simple tran-
sition models [KPS03]. Although this work, like ours, uses
partner dance for evaluation, it does not address the problem
of generating a follower given the motion of a leader.

In the segment modeling domain, we consider our method
most similar to that of Pullen and Bregler [PB02]. While
Pullen and Bregler’s method was shown to be an effective
solution for the chosen application of texturing keyframed
motion, its applicability to our problem is limited by several
factors. First, their method assumes no spatial dependencies
between the control (keyframed curves) and the target (tex-
tured motion). Second, there is no enforcement of motion

continuity, other than a heuristic for consecutively observed
segments. Our approach generates target motion segments
that are amenable to simple blending. Finally, their method
assumes that the input motion can be presegmented analo-
gously to the examples, which is achieved in their work by
observing sign changes in velocity. One could extend this ap-
proach for rhythmic motions using the automated approach
of Kim et al. [KPS03]. In the general case, however, a con-
trol motion may not admit any intuitive presegmentation.
One may wish, for instance, to generate walk motion from
a constant-velocity trajectory. Our method requires no pre-
segmentation; moreover, it produces a semantically guided
segmentation as part of the optimization. In this context, our
algorithm could be viewed as an extension of speech recog-
nition methods that use connected word models [RJ93].

Arikan et al. describe an example-based approach to syn-
thesizing human motion that satisfies sparse temporal anno-
tation and pose constraints [AFO03]. Although their work
differs from ours in intent, they also employ a dynamic pro-
gramming algorithm that optimizes a weighted combina-
tion of interpretation and motion continuity. Our formula-
tion differs in two subtle but important ways. First, our no-
tion of continuity is dependent on the interpretation; that is,
the continuity between two motion segments is undefined
until a candidate interpretation specifies a coordinate frame
for comparison. Second, their objective function is defined
over frames instead of segments. As a result, they must use
coarse-to-fine iterations of their dynamic programming al-
gorithm to gain the temporal consistency that is intrinsic to
our segment-based approach.

Other related methods based on motion capture clip rear-
rangement include work by Kovar et al. [KGP02], Lee et al.
[LCR∗02], and Arikan and Forsyth [AF02]. Although these
do not aim to discover control by example, they have never-
theless provided inspiration for our work. An additional dis-
tinction is that these methods do not use continuous control
from human performance and focus on sparser specifications
such as keyframes and nontemporal paths. Our method is
not designed to handle such control specifications and there-
fore should be viewed as an alternative to these approaches,
rather than a replacement.

Many motion rearrangement techniques are derived from
previous work in texture synthesis. Here, we consider our
work most similar in intent to image analogies [HJO∗01].
This method, given an unfiltered and filtered version of the
same image, applies an analogous filter to a novel image.
Our method, given a set of synchronized control and target
motions, applies an analogous mapping to a new input con-
trol motion. Image analogies was shown to be an elegant
method with applications such as texture transfer, texture-
by-numbers, and super-resolution. It is our hope that our
method will have the same versatility for motion.

Our dance evaluation suggests an alternative view of our
method as one of interaction modeling. In this domain, tech-
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Control

Target

Figure 1: Segmentation of Lindy Hop motion into two-beat
rhythm units.

niques have been developed that specify the mappings be-
tween character motions with explicit models of character
interaction. Adaptive autonomous characters have used rules
to exhibit complex flocking, herding, and locomotory behav-
iors [Rey87, TT94]. Approaches to explicit interaction mod-
eling have included layered architectures [BG95], procedu-
ral descriptions [PG96], and even cognitive models [FTT99].
In this context, our work might be viewed as a competency
module that enhances the skills of characters to enable their
participation in complex interactive performances.

3. Database Construction

We begin by acquiring examples of synchronized control
motions A and target motions B. Each frame of motion is en-
coded by a point cloud. For human motion, we use skeletal
joint positions, since this representation provides a more in-
tuitive space than joint angle representations for comparing
poses [KGP02]. Furthermore, point cloud representations al-
low for generalization to control motions without skeletal
representations, such as mouse input.

The examples are divided into control segments a1, . . . ,aN
and target segments b1, . . . ,bN , where ai and bi are synchro-
nized motions that together represent a primitive semantic
instance of the mapping. Our dance motions are segmented
into two-beat rhythm units, since they are a basic unit of
interaction for the specific type of dance (Lindy Hop), as
shown in Figure 1. Our walk motions, on the other hand,
are segmented according to gait cycles. In both cases, we
use manual transcription, since each example motion must
only be segmented once. Methods exist to automate this
process if desired. Dance motion could be segmented using
motion beat analysis [KPS03]. More general motions could
be segmented using annotation [AFO03] or curve clustering
[CGMS03].

4. Algorithm Description

Given a control motion x with T frames, our goal is to gen-
erate an appropriate target motion. This is achieved by se-
lecting a sequence of appropriate target segments from the

Figure 2: An example instance from the database is
stretched and transformed to align the control segment with
the input motion. The same stretch and transform can then
be applied to the target segment.

database. To make the database motions more flexible, we al-
low each selected target segment to be spatially transformed
and uniformly stretched in time. The proper selection of seg-
ments can be achieved using an efficient dynamic program-
ming algorithm.

4.1. Single Segment

Before developing our general algorithm, we address the
simpler problem of interpreting the input as a single con-
trol segment from the database. We quantify the similarity
of the input motion x and a control segment as with a dis-
tance function:

D(x,aT
s ) ≡

∥

∥

∥
x−M(x,aT

s )aT
s

∥

∥

∥

2
. (1)

Here, aT
s represents the control segment as, uniformly

stretched in time to T frames, and M(x,aT
s ) is a rigid trans-

formation that optimally aligns x and aT
s :

M(x,aT
s ) ≡ argmin

M

∥

∥

∥
x−MaT

s

∥

∥

∥

2
. (2)

This optimization is the solution to the Procrustes problem,
which has several efficient numerical solutions [ELF97].
Since our example dance and walk motions only differ by
ground translation and vertical rotation, our implementation
uses a closed form solution [KGP02].

To compute the optimal interpretation, we determine the
segment as∗ that is most similar to the input motion:

s∗ = argmin
s

D(x,aT
s ). (3)

The index s∗ also identifies, by construction of the database,
an appropriate target bs∗ for both the control segment as∗ and
the input motion x. The stretch T completes the specification
of the optimal interpretation, M(x,aT

s∗)aT
s∗ , and the optimal

target, M(x,aT
s∗)bT

s∗ . This is illustrated in Figure 2.

The optimal target may not precisely satisfy desired phys-
ical or kinematic constraints. However, given a descriptive
database, it can provide a good approximation which can be
adjusted appropriately during postprocessing.

In practice, we limit the allowed amount of uniform time
stretch by a constant factor since the distance metric does
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Figure 3: A good interpretation may not account for the con-
tinuity of the target (middle). Our scoring function strikes a
balance between the two (bottom).

not distinguish between motions of varying speed. A dancer
that pushes his partner slowly, for instance, will elicit quite a
different response if he pushes quickly. Limiting the amount
of stretch also has the practical benefit of reducing the search
space of our general algorithm, which we will now describe.

4.2. Multiple Segments

In general, we must handle the case where the optimal con-
trol and target consist of a sequence of segments. We can
specify this sequence analogously to the single segment
case by the number of segments L∗, the segment indices
s∗1, . . . ,s

∗
L, and the segment durations d∗

1 , . . . ,d∗
L.

As in the single segment case, the distance metric D eval-
uates the interpretation quality of each segment in the se-
quence. However, the quality of the interpretation alone does
not account for the continuity of the target motion, as shown
in Figure 3. To offset this problem, we introduce a function
which measures the continuity between segments v and w:

C(v,w) = ‖ω(v)−α(w)‖2
. (4)

Here, α and ω represent the head and tail functions, which
respectively extract the positions of the first and last frame
of a segment. One could also use more frames to measure
higher-order continuity if desired.

Given a sequence specification L, s1, . . . ,sL, and
d1, . . . ,dL, we define a scoring function that accounts for
both the quality of interpretation and the continuity of the
target:

L

∑
i=1

D(xi,adi
si
)+ k

L−1

∑
i=1

C
(

Mibdi
si
,Mi+1bdi+1

si+1

)

. (5)

Here, xi is the subinterval of the input that is implied by the
segment durations d1, . . . ,di. These in turn induce the trans-
formations Mi ≡ M(xi,adi

si ). The user-specified constant k
defines the balance of interpretation and continuity.

The optimal substructure property of the score function,
as defined by the following recurrence, can be used to find a
globally optimal solution using dynamic programming:

Qs,d [t] = min
r,c

Qr,c[t −d]+D(xd,t ,ad
s ) (6)

+ kC(Mr,c,t−dbc
r ,Ms,d,tbd

s )

Qs,d [d] = D(xd,d ,ad
s ). (7)

Here, xd,t represents the subsequence of input frames
starting at frame t − d and ending at frame t, which in turn
induces the alignment matrix Ms,d,t ≡ M(xd,t ,ad

s ). Qs,d [t] is
defined as the score of the optimization on the subsequence
xt,t , given that the last segment is indexed by s and stretched
to duration d. By minimizing Qs,d [T ] over all s and d, we
can compute the score of the optimal sequence specification
and recover it by backtracking. In the following section, we
describe this process in more detail.

4.3. Implementation

To solve the recurrence efficiently, values of Q are stored in
a two-dimensional array. Cells in this array are indexed by
the time t on one axis and by all legal combinations of s and
d on the other (recall from Section 4.1 that the amount of
allowed stretch is limited). First, all legal values of Qs,d [d]
are initialized according to the base case given in Equation 7,
and all other array cells are set to infinity. The algorithm
proceeds by iterating forward through time. At each time t,
all non-infinite cells are located and scores are conditionally
propagated forward in time according to Equation 6.

More specifically, suppose that we are currently process-
ing the array cell Qr,c[t]. For each legal combination of s and
d, the candidate value z is computed:

z = Qr,c[t]+D(xd,t+d ,ad
s )+ kC(Mr,c,tbc

r ,Ms,d,t+dbd
s ). (8)

If the value in the array cell Qs,d [t + d] is greater than z, we
set it to z and store a backpointer to cell Qr,c[t]. By continu-
ing this process, the entire array is filled. Since the indexing
of each cell encodes a segment identifier and duration, the
optimal sequence specification can be recovered by follow-
ing backpointers from the best score at time T .

4.4. Efficiency

At each time t, O(P) noninfinite cells are processed, where
P is the number of legal combinations of s and d. Since
processing an individual cell is an O(P) operation, the total
asymptotic time complexity of the algorithm is O(P2T ). To
increase its efficiency, we apply several heuristic optimiza-
tions.
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Beam search. Rather than process all O(P) noninfinite
cells at each time t, we only process cells with scores less
than mins,d Qs,d [t]+w, where w is a user-specified constant.
This technique is known as beam search, and w is known as
the beam width. This is motivated by the fact that cells with
worse scores are unlikely to be on the optimal backtracking
path, and thus can be pruned from the search.

Clustering. In Section 3, we described the construction
of a motion database by storing all instances derived from
the examples. Since the time complexity of the algorithm
scales quadratically with the database size, this leads to in-
efficiency when the number of instances is large. To re-
solve this issue, redundant instances are eliminated using
complete-linkage clustering [DHS00]. For this, the distances
between instances is defined by Equation 1. The advantage
of complete-linkage clustering over other methods (such as
k-means) is that it explicitly limits the distance of any two in-
stances in a cluster by a user-defined threshold. After clusters
are formed, a representative instance is chosen at random
from each cluster to remain in the database, and all other in-
stances are discarded. An additional benefit of this process is
that it helps beam search; since clustering reduces ambiguity
in interpretation, a larger proportion of search paths can be
pruned.

Downsampling. High sampling rates are common for sys-
tems such as motion capture, but they are generally unnec-
essary for interpreting the input control motion. By down-
sampling motions by a user-chosen constant, we can effec-
tively reduce the length of the input sequence. However, the
resulting optimal sequence specification will also be at the
lower frame rate, and it is generally desirable to have it at the
frame rate of the original input. Simple upsampling often in-
troduces slight but undesirable temporal errors. To remedy
this, we run a highly constrained version of our dynamic
programming algorithm that only adjusts the durations ap-
propriately. Constraints can be easily encoded by making
appropriate cells in the Q array illegal. For instance, we can
force the result to contain a certain target segment bs at some
time t by disallowing any processing on cells Qr,c[u], where
r 6= s and u− c ≤ t ≤ u.

5. Postprocessing

As described in Section 4, the output of our optimization
is a specification of an appropriate target motion in terms
of target segments in a database. Specifically, it provides
a sequence of target segment indices s∗1, . . . ,sL and dura-
tions d∗

1 , . . . ,d∗
L. The corresponding target segments can be

copied from the database, stretched, transformed by the in-
duced matrices M∗

1, . . . ,M
∗
L, and concatenated. The result is

a moving point cloud that approximates the desired result.
Of course, the same selections, stretches, and transforma-
tions can just as easily be applied to the source motions that
generated the point cloud.

1 2 3

4 5 6

Figure 4: A handhold constraint, indicated by the line con-
necting the characters, is propagated from annotated exam-
ples to this generated motion. In this two-beat sequence, the
leader begins in an open crosshand stance and pulls the fol-
lower in (1,2). The follower releases handhold and performs
an inside turn toward the leader (3,4). Nearing completion
of the turn, the follower prepares to catch the leader’s hand
and enter embrace (5), and handhold is reestablished in
closed stance (6).

From the perspective of motion synthesis, the main prob-
lem with our approach is that the raw result will generally
contain some kinematic errors. In our dance example, foot-
plant and handhold constraints are never explicitly enforced.
For such constraints, existing methods can be applied to
postprocess the data [KSG02], but such methods often re-
quire some amount of manual constraint annotation. Like
similar motion clip rearrangement techniques, we can prop-
agate constraints by example. In other words, each exam-
ple instance can be annotated with constraints that can be
transferred to the target motion. This is demonstrated by our
propagation of handhold constraints, shown in Figure 4.

We do not aim to introduce novel solutions for motion
blending or constraint satisfaction. Instead, our goal is to
provide motion that is amenable to postprocessing with these
approaches. To demonstrate our method’s capabilities in this
regard, we show that it can generate realistic and compelling
motion, even with extremely simple postprocessing. Our re-
sults, shown in the following section and in our accompa-
nying video, are filtered with a basic smoothing operation
that linearly adjusts motion curves to match across segment
boundaries.

6. Results and Evaluation

We evaluate our technique with two examples. In the first,
we animate a realistic walking human from time-sampled
mouse movement. Walk motions, however, do not show the
full ability of our technique to discover complex mappings.
To better demonstrate this aspect, we apply our method to
a partner dance called Lindy Hop. Specifically, we use the
complex motion of the dance leader to drive the motion of
the follower.
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In the following sections, all human motions were ac-
quired in a motion capture studio and standard commercial
tools were used to estimate joint positions [Vic03]. For the
point cloud representation of body motion, we used only the
positions of the hands and feet, as we found that these end-
effectors were sufficient to evaluate interpretation and conti-
nuity in both evaluations. To generate the motion, we applied
the resulting sequence specification to the source motion and
used basic smoothing.

All timings were performed on a workstation with dual
2.4 Ghz Intel Xeon processors. Where applicable, we state
the clock times for the dynamic programming algorithm
(Section 4.3), upsampling (Section 4.4), and postprocessing
(Section 5). The continuity constant, defined in Section 4.2,
and the stretch limit were chosen experimentally.

6.1. Walk

We acquired 2 minutes of motion captured walk footage at
30 Hz. The subject was directed to walk within the capture
area with random changes in direction and speed. We arti-
ficially constructed a synchronized example control motion
by projecting the positions of the hip joints onto the floor
and normalizing their distance. As stated previously, the tar-
get motions were represented by end-effector positions.

The walk footage was transcribed manually according to
the gait cycle. More specifically, a segmentation point was
manually placed at each footplant. From this process, we
created 200 segments, which we reduced to 70 using clus-
tering. In our tests, we downsampled these motions to 10 Hz
and allowed each segment to be stretched ±0.2 seconds.

Our first evaluation involved creating control motions
from new walk motions that were not in the database. As
before, we projected the hip joints onto the ground and nor-
malized their distance. We ran our algorithm on these con-
trol motions and compared our results to the original source
motions. Experimentally, we found that larger values of the
continuity constant were more effective.

For short walks, the generated motion was highly realistic.
The frequency of the generated gait cycle nearly matched the
frequency of the source, but phase differed. In more concrete
terms, the generated motion might choose to start on the left
foot, whereas the original source motion might start on the
right. This was expected, as the control signals did not en-
code any phase information. For longer walks, however, we
were surprised to discover that the generated motions often
kept in nearly perfect phase with the source. The reason for
this was that the subject preferred to make sharp turns with
the same footwork pattern. These served as synchronizing
signals which were propagated throughout the generated gait
cycle due to the global optimization.

In our timing tests, we used a 57 second control motion.
We first ran the algorithm without the beam search optimiza-

Figure 5: A synthetic character walks along a trajectory
from mouse input. The spacing of the points indicates the
speed.

tion. The dynamic programming algorithm took 12.5 sec-
onds, upsampling from 10 Hz to 30 Hz took 0.4 seconds,
and postprocessing took 1.1 seconds. With the beam search
optimization on, we were able to reduce the clock time of
the algorithm to 1.2 seconds (47 seconds of input processed
per second of clock time) while retaining visually perfect
results. The upsampling and postprocessing times remained
the same. We ran the algorithm on shorter and longer in-
puts and experimentally confirmed the asymptotic linear de-
pendency of running time on input length, described in Sec-
tion 4.4.

In our second evaluation, we built an interface that al-
lowed users to draw paths using mouse input, as shown in
Figure 5. The position of the mouse pointer was sampled at
30 Hz, and Frenet frames were used to generate a control
motion. For a wide variety of user inputs, our method was
capable of generating highly realistic walking motion. Since
the timing of the path was important, we found that users re-
quired minor training to understand the concept of perform-
ing a path instead of drawing it. It was often tempting, for
instance, to rapidly move the mouse to draw a straight line.
This would correspond to a impossibly fast run, well beyond
the capabilities of a human. To resolve these issues, our in-
terface allows a user to overlay the playback of an existing
motion on the drawing canvas to get a sense of speed. Fur-
thermore, it provides options to smooth the trajectory spa-
tially and temporally. The speed of the algorithm allows for
rapid feedback.

6.2. Dance

Our choice of partner dance as a demonstration was primar-
ily motivated by the complexity of its style and mappings.
From a small segmented set of example instances, we gen-
erate a follower’s motion to accompany a leader’s motion.
Generating partner dance motion would be a difficult trial
for both physical methods, which would yield underdeter-
mined systems, and statistical methods, which would typi-
cally require a very large database in place of our small seg-
mented one. Swing dance also allows for a more principled
evaluation of our results than most types of motion, since
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Hsu, Gentry, and Popović / Example-Based Control of Human Motion                                                    75

Database Patterns Test Patterns

1 ◦→•→◦ 1 ◦→•x◦ 8 ◦x•→•
2 ◦→•y◦ 2 •→•x◦ 9 ◦x•y◦
3 ◦→•→• 3 •→•→• 10 ◦x•→◦
4 ◦→•x◦ 4 •→•y◦ 11 ◦→•y◦
5 ◦→•y◦ 5 •→•x◦ 12 ◦x•x◦
6 •→•→◦ 6 •→•→◦ 13 ◦x•x◦
7 ◦x•→◦ 7 •→•y◦ 14 ◦→•→◦

Table 1: A notational description of the dance patterns
stored in the database and the novel test patterns performed
in our three test dances. Our technique adapts by rearrang-
ing the segments in the database to recreate the patterns it
has not seen before.

the performance of the algorithm at generating valid map-
pings can be evaluated independently of style considerations
or subjective judgments of motion quality.

Lindy Hop is a subgenre of swing dance that, at a basic
level, can be described as a state machine. A dance couple
moves between four basic stances: open (◦), closed (•), open
crosshand (◦), and closed crosshand (•). Open and closed re-
fer to whether the couple is apart or in embrace, respectively.
Crosshand refers to the case when the leader and follower
hold right hands (we could also refer to it as a handshake).

Basic Lindy Hop motions switch between these four
stances by means of transitions: an inside turn (x), when
the follower spins towards the leader, an outside turn (y),
when the follower spins away from the leader, and a simple
step (→). At the end of each transition, the dancers may also
change their handhold to instantly transition between cross-
hand states (◦, •) and non-crosshand states (◦, •). Figure 4
shows a couple transitioning from open crosshand stance to
closed stance using an outside turn: ◦y•. Each of these tran-
sitions occurs over four beats of music, which are assembled
from two-beat segments; this was our motivation for per-
forming two-beat segmentation, as described in Section 3.
Figure 4 shows only the last two beats of a four-beat transi-
tion that starts with a two-beat rocking motion.

Skilled Lindy Hop dancers use a greater variety of moves,
ranging from more complex transitions such as double out-
side turns to complex aerial maneuvers. We did not in-
clude the entire range of motions. Instead, we constructed a
smaller database with seven basic 8-beat dance patterns that
every Lindy Hop dancer knows (shown in the first column
of Table 1). We constructed the motion database from a set
of 12 short dances, each containing the seven basic 8-beat
patterns, giving a total of 5 minutes of motion. These dances
were segmented into 364 two-beat mapping instances, with
lengths varying from approximately 0.6 seconds to 1 second
due to different music.

For our evaluations, we captured three longer test dances
(approximately 2-3 minutes each) in which the dancers were

instructed to improvise with the transitions and stances in-
cluded in the database. Their improvisations led to dances
which included thirteen new 8-beat patterns not found in the
database (shown in the last column of Table 1) as well as
some repeats of patterns in the database. These test dances
spanned a tempo range from about 120 beats per minute to
about 190 beats per minute. We used the motion of the leader
to control a synthetic follower, which was then compared
with the actual follower.

Visually, the results exhibited the fluidity, grace, and style
of the original dancer. Some footskate and handhold viola-
tions are visible because we wanted to show the output in its
almost raw form, with smoothing applied only for visual co-
herence. In a direct comparison with the actual follower mo-
tions, we found that the synthetic follower matched very well
in closed stances. In open stances, the follower was much
freer to include stylistic variations, so the generated motions
often differed visually from the actual motions. Addition-
ally, the synthesized dancers almost always kept in perfect
rhythm with the leader.

Our algorithm ably recreated the semantics of the leader
to follower mapping, even for novel patterns. When the algo-
rithm encountered a pattern that was not in the database (one
of 14 such patterns shown in Table 1), it was able to correctly
reconstruct the novel sequence by rearranging the two-beat
segments. Of the 91 patterns (21 unique) in our three test
dances, the synthetic dancer matched the pattern of the ac-
tual dancer in all but 5 cases, one of which is shown in Fig-
ure 6. When the algorithm did differ from the real dancer
in the composition of the pattern, the leader and follower
still executed a valid Lindy Hop pattern. In these misinter-
preted instances, the leader’s motion is quite similar across
two different follower patterns. To disambiguate these, we
might add information to the control signal, such as force-
plate readings, or we might accept these rare mismatches
because they are in fact valid mappings. Furthermore, all 5
mismatched patterns differed by a single two-beat segment,
so, of 91×4 = 364 two-beat segments in the test dances, the
algorithm misinterpreted the signal in 5 cases for an error
rate of less than 2%.

For all our evaluations and timing tests, we reduced the
size of the database from 364 to 168 with clustering, down-
sampled to 7.5 Hz, and allowed a segment stretch of ±0.15
seconds. We cite our efficiency figures for generating, from
leader motion only, a particular 150 second dance motion.
Without beam search, the dynamic programming algorithm
ran for 78 seconds, 2 seconds were spent on upsampling,
and 26 seconds were spent on postprocessing. With beam
search enabled with modest parameters, we were able to
drive the runtime of the dynamic programming to 10 seconds
while maintaining excellent visual and semantic results. As
with our walk motion evaluation, we found that clock times
scaled linearly with the length of the input.
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Figure 6: On the top, a clip of an actual dance is displayed. Here, the leader performs a regular handhold change during a step
transition. This transition never occurs in our motion database. In response to the same motion cue, our algorithm generates a
leaping outside turn, as show on the bottom. This is one of five two-beat segments (out of 380 two-beat segments in our three
test dances), where the algorithm differs in its selection of response from an experienced dance follower. In other instances of
this regular handhold change during a step transition in the test data, the algorithm correctly sequences motions to discover
this novel vocabulary element.

7. Conclusion

We have presented a method for example-based performance
control of human motion. Our dynamic programming algo-
rithm uses segments of motion along with an objective func-
tion that accounts for both the quality of control interpreta-
tion and the continuity of the target motion to generate vi-
sually and semantically correct motions. The semantic ac-
curacy of the generated motion was evaluated in the setting
of partner dance, where the follower’s motion is generated
from the leader’s motion. The algorithm generated seman-
tically correct partner motion even from test sequences of
leader motions that did not appear in the training set.

Our dynamic programming algorithm performs a global
optimization, which precludes the local decisions that are
required for online applications. However, we demonstrate
in our evaluations that it can compute results significantly
faster than input motion can be recorded, thus making it
suitable for rapid-feedback motion authoring applications.
We believe that segmental approaches like ours hold great
promise for real-time performance-driven animation, and
consider it a promising area of future research.

To preserve spatial dependencies in mappings, we apply
rigid transformations to optimally align control segments
with input control motions. Target segments inherit these
transformations. This approach is effective for our applica-
tions or whenever the control signal indicates appropriate
spatial and temporal cues. It is also possible to select other
transformations for applications outside the domain of hu-
man motion control. For instance, allowing arbitrary homo-
geneous transformations in two dimensions might form an
alternative segmental solution to the curve analogies prob-

lem [HOCS02]. Eliminating transformations entirely might
also be appropriate for applications such as synthesis of fa-
cial motion from speech signals [Bra99].

We have shown that our segment similarity metric is ef-
fective for our experiments. However, we acknowledge the
fact that other metrics may be more appropriate for different
types of motion and believe that it is a promising direction
for future research.

In the process of generating target motion, our dynamic
programming algorithm performs a semantically guided seg-
mentation of the input control motion. The entire process,
however, relies on the availability of semantically segmented
examples. For our evaluations, we were able to perform this
segmentation manually by tapping a key in response to the
rhythm of music or the gait pattern of a walk cycle. While
specific methods exist to automate this segmentation for the
cases of dance and walk, a more general method is desirable.
For this, we could begin with a few manually segmented ex-
amples and grow the set of example instances by iterative
application of our algorithm. This approach would be simi-
lar in spirit to the semiautomatic SVM-based annotation ap-
proach of Arikan et al. [AFO03].

The annotation propagation we describe above suggests
that our method could be used for interpretation rather than
control. Paralleling our automatic annotation of handholds, it
is possible to annotate any new control motion given a set of
labeled example instances. This could be used to transcribe
the motion into a symbolic representation, such as the one
used in this paper, or even Laban notation [Hut73]. Such a
representation could then be analyzed or summarized using
natural language processing techniques.
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