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Abstract
We describe a new system for the interactive enhancement of 2D art with 3D geometry. Repoussé creates a 3D
shape by inflating the surface that interpolates the input curves. By using the mean curvature stored at boundary
vertices as a degree of freedom, we are able to control the inflated surface intuitively and efficiently using a single
linear system. Repoussé handles both smooth and sharp position constraints. Position constraint vertices can also
have curvature constraints for controlling the inflation of the local surface. We show the applications of our system
in font design, stroke design, photo enhancement and freeform 3D shape design.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Sketch based interfaces are becoming popular as a method
for quick 3D shape modeling. With an ever-increasing set
of modeling features, the powerful 3D sketching inter-
face can construct shapes that range from rectilinear, in-
dustrial objects ( [ZHH96] ) to smooth, organic shapes
( [IMT99], [KH06], [NISA07] ). Usually, the application of
these shape sketching interfaces is 3D shape design, but such
interfaces can also be helpful for adding shadows to 2D im-
ages [PFWF00]. The 2D curves drawn by the user are simply
a means to get to the end result: the 3D shape. Instead of us-
ing the 2D curves to design 3D shapes, we use the resulting
interpolating 3D shapes to enhance the existing 2D curves.
That is, we apply the shape sketching interface to another,
highly interesting application: 2D art creation and design.

Contribution: By using the ‘inflate’ metaphor common in
shape sketching interfaces, we construct a 3D surface that
interpolates a closed input curve. We allow designers to
modify the inflated surface with popular 3D shape modeling
features such as sharp creases, smooth interpolation curves
and local mean curvature control. Our system demonstrates
that sophisticated geometric modeling techniques otherwise
found in 3D shape modeling tools can effectively be used via
a simple user interface to design interesting-looking images.

Figure 1: Boundary curve inflation using Repoussé.

1.1. Technical Overview

In our system, we construct the 2-manifold surface that in-
terpolates the input boundary curves. The surface is com-
puted as a solution of a variational problem. We formulate
the system so as to solve for the final surface in a single,
sparse linear equation, without requiring an additional strip
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of triangles at the boundary. In our formulation, the mean
curvature of the vertices on the boundary curve is a user-
controlled degree of freedom; the surface is inflated by in-
creasing these mean curvature values. Due to the variational
setup, the inflated surface is always smooth except near po-
sition constraints (boundary curves and internal constraints).
The designer can add and modify internal constraints at any
time of the design phase, and these constraints can be smooth
or sharp. Moreover, the internal constraints can also have
curvature control (similar to the boundary curves), thereby
allowing the designer to locally inflate or deflate the surface
near the constraint.

1.2. Related Work

Currently, there are a few 3D shape modeling tools in read-
ily available 2D artistic design software. A commonly used
modeling primitive is shape extrusion, where a closed 2D
curve is swept along a straight line (or a curve) to create pris-
matic shapes. Similar to extrusion is curve rotation, where
a curve is rotated along an axis to construct a rotationally
symmetrical surface of revolution. Another commonly used
primitive is beveling, where the input 2D curve is offset and
raised to provide an appearance of a 3D shape that has thick-
ness and sharp edges. These 3D modeling primitives are lim-
ited in the type of surface features they can support. For ex-
ample, no image design application supports adding sharp
creases in the interior of a beveled image.

However, research is underway to improve the range of
surface edits possible in a 2D design tool. Williams [Wil91]
introduced the concept of inflating the surface bounded by
2D curves for different shading effects. Similarly, Johnston’s
‘Lumo’ system [Joh02] generated normals (on a flat domain)
that gave the flat surface an inflated appearance. Sourin
demonstrated work on virtual embossing [Sou01]; Levinski
and Sourin [LS07] followed that work with a more general,
function-based surface modeling system. Both these papers
as well as the ShapeShop [SWSJ05] modeler use an implicit
surface representation to model their surfaces (the surface is
interactively polygonized for rendering purposes). Liu et al.
[LTJ05] and Prasad et al. [PZF05] solve the closely related
problem of depth reconstruction for photographs by com-
puting height values over a regular grid. In contrast, we use
a polygon (triangle) mesh to inflate the given curves.

The Repoussé approach can be considered in the same
category as Teddy [IMT99] and FiberMesh [NISA07], al-
beit with a different application. Similar to Teddy, we use
the inflation metaphor (but without using the chordal axis)
and similar to FiberMesh, we allow both smooth and sharp
constraint curves drawn directly on the inflated surface to
modify the surface. The key difference is that we use the
mean curvature constraints to control the amount of infla-
tion, which allows us to formulate the problem as a single,
convenient linear system (unlike the two linear systems re-
quired in FiberMesh).

As applications of our system, we show examples of font
design, stroke design, enhancing photographs and modeling
3D shapes from scratch. In general, Repoussé can be used to
improve the functionality of 2D art design tools.

2. Work Flow

Figure 2: Repoussé workflow: the flat domain bounded by
the input curves is triangulated and the resulting surface is
inflated.

As illustrated in Fig. 2, the Repoussé system takes closed
2D curves as input, triangulates the area bounded by the
curves to generate the initial surface, and then inflates the
surface while maintaining a fixed boundary. The 2D curves
are read in as simple poly-line approximations.

2.1. Triangulation

We restrict the surface representation to a triangle mesh that
is obtained by triangulating the surface bounded by the input
curves. We use Shewchuk’s popular triangulation software
‘Triangle’ [She96] to generate a high-quality triangulation.
We maintain a maximum area constraint (provided as a con-
figurable option in Triangle) to prevent rendering artifacts
due to very large triangles.

2.2. Surface Inflation

The unconstrained parts of the surface are obtained by solv-
ing a variational system that maintains surface smoothness.
Smoothness is necessary because it gives an organic look to
the inflated surface and removes any unnatural and unneces-
sary bumps and creases from the surface.

The variational formulation in Repoussé is based on
the principles of PDE-based boundary constraint modeling
[BW90], where the Euler-Lagrange equation of some aes-
thetic energy functional is solved to yield a smooth surface.
We picked the ‘thin-plate spline’ [Wah90] as the desired sur-
face; the corresponding Euler-Lagrange equation is the bi-
harmonic equation. That is, for all free vertices at position x,
we solve the PDE ∆

2(x) = 0. The solution of this PDE yields
a C2 continuous surface everywhere except at the position
constraints (where the surface can be either C1 or C0 con-
tinuous). We use Pinkall and Polthier’s [PP93] cotangent-
weight based discretization of the laplacian operator ∆(x)
(first used in Equation 2).

The fourth-order PDE (∆2(x) = 0) is too slow to be solved
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interactively. We convert the non-linear problem into a linear
one by assuming that the parameterization of the surface is
unchanged throughout the solution. In practice, this means
that the contangent weights used for the Laplacian formu-
lation are computed only once (using the flat, non-inflated
surface) and are subsequently unchanged as the surface is
inflated. This approximation works well enough for our pur-
poses and has been used extensively for constructing smooth
shape deformations (for example, see [BK04]).

2.2.1. Linear System

For the sake of completeness, we now describe the entire
formulation of our variational linear system. We design a
system Ax̄ = b̄ where the matrix A is a sparse n× n matrix
(n = 3× the number of free vertices) that represents the local
geometric relationships between the vertices and their neigh-
bors. The vector x̄ of length n represents the positions of free
vertices and the vector b̄ of length n represents the known
quantities. For all three coordinates of every free vertex x̄, we
formulate an equation that is linear in terms of the x̄’s neigh-
bors. The formulation that follows is based primarily on two
papers on discrete geometric modeling. Botsch and Kobbelt
[BK04] describe how to formulate a linear system that can
handle smooth or sharp internal constraints; unfortunately
the formulation from the paper requires a strip of triangles
to complete the one-ring neighborhood of the boundary ver-
tices. Generating this strip of triangles, especially when the
boundary curve has large concavities, is not trivial. Schnei-
der and Kobbelt [SK01] describe a surface modeling sys-
tem that takes G1 boundary constraints and does not need
the special triangle strip on the boundary. But this requires
two linear solutions: one for the mean curvature scalar field
and another for the positions that satisfy the computed mean
curvature field. We combine the benefits of these two ap-
proaches: our system does not need a strip of triangles on
the boundary and we solve only one linear system. We can
do so because we consider the mean curvature at the bound-
ary vertices as a degree of freedom that can be used to inflate
the surface.

Consider a mesh vertex of position x and one-ring neigh-
bors yi as shown in Fig. (3). The required C2 smooth surface
can be obtained if we solve for a surface with a vanishing
bi-Laplacian at all vertices:

∆
2(x) = ∆(∆x) = 0 (1)

The Laplacian at a mesh vertex is given by its one-ring
neighborhood ∆x = x−∑i wiyi, where wi are the contangent
weights [PP93]. Substituting in Equation (1),

∆
2x = ∆(x−∑

i
wiyi) = 0 (2)

Figure 3: Variables used in Equation (5) — x has neigh-
bors y0,y1 on the boundary (constrained mean curvature)
and neighbors y2,y3,y4 in the interior with a full one-ring
neighborhood (unconstrained mean curvature).

Since ∆ is a linear operator,

∆
2x = ∆x−∑

i
wi∆yi = 0 (3)

Now consider the situation in Fig. (3), where some one-
ring neighbors are in the mesh interior, and some are on the
boundary. We assume that the mean curvature of the bound-
ary vertices is given as a constraint. Assume y j represents
the one-ring vertices whose mean curvatures hy j are known.
For those vertices, we can compute the Laplacians simply
by using the expression ∆y j = (hy j ny j )/2 [MDSB02]. Mov-
ing such known Laplacians to the right hand side of Equa-
tion (3), we get

∆
2x = ∆x−∑

i
wi∆yi = ∑

j

w jhy j ny j

2
(4)

Note that the term (hy j ny j )/2 essentially represents a
force of magnitude 0.5hy j in the direction ny j applied by the
neighboring vertex y j on vertex x. In the default system, the
force is applied in the direction of the initial vertex normal
(the normal in the flat configuration — the Z axis). We do
not use the vertex normals from the inflated state as that pro-
duces non-linear vertex motion that is path-dependent and
unintuitive.

Therefore, by increasing the value of hy j , we increase the
magnitude of the force on the vertex x, effectively pushing it
up.

Finally, we expand the laplacians of vertices with un-
known mean curvatures in Equation (3) to get the linear
equation for the free vertex x:

x−∑
i

wiyi−∑
i

wi

[
yi−∑

k
wikzik

]
= ∑

j

w jhy j ny j

2
(5)

Constructing such equations for every free vertex gives
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us the linear system Ax̄ = b̄, whose solution provides the
inflated surface.

2.2.2. Internal Constraints

(A) (B)

(C) (D)

Figure 4: Steps for adding constraints: suppose the user
wants a sharp interior constraint. The user draws a curve
on the surface (A). The Repoussé system flattens the inflated
surface and computes the 2D position of the constraint curve
(B). Repoussé then re-triangulates the domain subject to the
constraint (C) and re-inflates the surface and moves the con-
straint to its original location (D).

The user can draw constraint curves anywhere on the in-
flated surface to immediately obtain the new inflated sur-
face with the constraint in place. Upon adding a new con-
straint, the linear system Ax̄ = b̄ needs to be re-initialized
and solved. In order for this to happen interactively, the fol-
lowing steps have to occur (illustrated in Fig. 4).

1. The existing surface (without the new constraint) is flat-
tened by changing the boundary vertex mean curvatures
to zero and moving all internal position constraints to
their 2D positions.

2. The 2D positions of the new constraint curve vertices are
computed by using the barycentric coordinates within the
flattened triangle mesh.

3. The area bounded by the boundary curves is triangu-
lated subject to the 2D positions of the internal constraint
curves.

4. The resulting surface is re-inflated by setting the bound-
ary vertex mean curvatures to the original values and
moving the position constraint curves to their old posi-
tions.

Smoothness of Position Constraints The user can specify
either smooth (C1) or sharp (C0) position constraints. We can
vary the smoothness value by assigning a weight to the con-
strained vertex in Equation (5). The details are in the paper
by Botsch and Kobbelt [BK04] and are not repeated here.
As mentioned by Botsch and Kobbelt, the weight that con-
trols the smoothness of the constraint curves can actually
take any floating point value between 0 (C0 continuous) and
1 (C1 continuous). However, for now, we found it more use-
ful to have only two options (smooth/sharp), and to draw
curves with a fixed smoothness for all vertices. Future work
will explore the use of varying smoothness within individual
curves.

2.2.3. Curvature Constraints

The user can specify mean curvature constraints along with
position constraints. The curvature constraint can be used to
locally inflate or deflate the surface around the position con-
strained vertices. As such, we get a new sketch-based mod-
eling gesture. In the current implementation, the initial value
for the curvature constraint is set to zero, but could easily be
set to any arbitrary value.

Options for Curvature Constraints — Gravity As men-
tioned above, assigning a curvature constraint to a vertex
is an indirect method of applying a force to their one-ring
neighbors along the direction perpendicular to the initial, flat
surface. However, we can easily modify the default behavior
and apply additional forces in arbitrary directions. As one
example, we add a ‘gravity’ option to the curvature con-
straints where another force is applied in a slightly down-
ward direction (to the right hand side of Equation 5), causing
the entire surface to bend downwards. The goal is to create
the illusion of a viscous material on a vertical plane, as seen
in Fig. 6 and Fig. 8

3. Applications

3.1. 3D Font Design

We envision one primary application of Repoussé in font de-
sign: the outline of the font character can be inflated to pro-
vide depth to the font. Moreover, the shape of the inflated
character can be controlled and enhanced by adding smooth
or sharp position and curvature constraints. Fig. 5 illustrates
one example of 3D font design.

3.2. Stroke Design

Instead of inflating already complete 2D curves (like a font
outline), Repoussé can also be used as a tool for inflating
2D elements as they are generated. One example is that
of strokes. Currently, 2D design tools support vector brush
strokes with a variety of brush shapes, thickness, and inci-
dent angles. We can add another option to a stroke: depth.
We can easily implement varying stroke depth by changing
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(A) (B) (C) (D) (E)

Figure 5: 3D Font design using the Repoussé system — the letter ‘A’ is read in as a pair of closed boundary curves (A). By
increasing the mean curvature at the constrained boundary vertices, the surface bounded by the input curves is inflated (B).
Next, internal offset curves are read in as curvature and sharp position constraints (C). The internal curves are raised to give a
beveled effect (D) and then made sharper by increasing the curvature at the curve vertices (E).

(A) (B)

(C) (D)

Figure 6: Stroke design: we used Repousseé to inflate the
outline of a paint brush stroke (A). We added the gravity op-
tion (Sec. 2.2.3) to produce an effect of paint drip (B). We
add the stroke axis as a sharp position constraint (C) and
produce a grooved stroke by inflating the rest of the surface
(D)

the mean curvature at the stroke boundary. Moreover, the
medial axis of the stroke could be provided as a constraint
curve, further increasing the range of stroke shapes possible.
Fig. 6 illustrates one example of stroke design.

3.3. Photograph Inflation

A user can interactively add depth to an input photograph
simply by drawing and dragging curves on the photograph.
The constraint curves can be smooth (for images containing
rounded edges) or sharp (images of rectilinear shapes). See
Fig. 7 for an example.

3.4. 3D Shape Modeling

While we have targeted Repoussé to be primarily a 2D art
enhancement tool, we can also use it to design arbitrary 3D
shapes. By adding smooth or sharp position and curvature
constraints, we can modify the default inflated shape. Please
refer to Fig. 8 for an example.

4. Discussion

In this paper, we have shown that modeling a complete 3D
interpolating surface can greatly increase the options for the
design of 2D curves. All the examples shown in this paper
were computed interactively, with the maximum initializa-
tion time less than a second and the maximum iterative up-
date time less than a tenth of a second. The number of faces
in the meshes used for surface inflation were in the 2000
to 10000 range; all processing was done on an Intel Core-2
2.66 Ghz. processor with 2GB RAM.

However, we believe we can even further improve the sys-
tem performance. Currently, we use an in-house conjugate-
gradient implementation to solve the linear system Ax̄ =
b̄. Since the matrix A is sparse, symmetric and positive-
definite, we could greatly speed up the iterative update
times by factorizing the matrix. For example, Botsch et
al. [BBK05] demonstrated real-time deformations for much
larger meshes by performing a Cholesky decomposition of
the matrix A and using a direct solver to solve the linear
system. We plan on implementing this improvement in our
current system.

We have developed a prototype user interface to test our
algorithm. Our system allows the user to interactively draw
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(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 8: Freeform 3D shape design: given the outline of a cartoon face (A), we inflate the interior and then add two smooth
position constraints near the eyebrows (B). One of the eyebrows is pulled up and the other is pulled down (C). Then we add a
sharp position and curvature constraint near the mouth (D) and inflate the nearby surface by increasing the mean curvature
(E). Finally, we add a smooth position constraint near the bridge of the nose (F) to get the final surface (G). We can also add
the gravity option (Sec. 2.2.3) for this 3D shape to create a droopy effect (H).

and modify curve constraints directly on the model using the
mouse and a collection of hotkeys. The surface is interac-
tively updated by our system proving continuous feedback.
As future work we plan on streamlining our user interface
toward specific applications making our system even more
intuitive to the novice user.

A big advantage of solving for the inflated surface using
a triangle mesh (as opposed to a regular grid) is efficiency
due to mesh adaptivity: the mesh has high detail only near
complicated constraints and is coarse where there are not
many constraints. However, currently, the mesh connectiv-
ity is not updated as the surface is inflated. Ideally, the mesh
should dynamically get denser in parts of the inflated shape
that have high curvature. Adding such adaptivity will im-
prove the system even further, making it more efficient and
smoother in terms of rendering.

4.1. Conclusions

Our system demonstrates that faster computers, better linear
system formulations and improvements in sketching inter-
faces have now made it feasible to construct a full 3D surface
in order to create an appealing 2D image. Our hope is that
3D geometric modeling tools like Repoussé can be used by
2D artists to improve and influence their existing artwork.
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