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Abstract

Complicated by temporal correlations among the strokes and varying distributions of the underlying classes, the

drawing/writing classification of ink strokes in a digital ink file poses interesting challenges.

In this paper, we present our efforts in addressing some of the issues. First, we describe how we adjust the outputs

of the neural network to a priori probabilities of new observations to produce more accurate estimates of the

posterior probabilities. Second, we describe how to adapt the parameters of the HMM to new data sets. Albeit the

fact that the emission probabilities of the HMM are computed indirectly from the outputs of the neural network,

our modified Baum-Welch algorithm still finds the correct estimates for the HMM’s parameters.

We also present experimental results of our new algorithms on 6 real–world data sets. The results show that our

methods increase the F–Measures of both the drawing and the writing classes on the more “drawing–intensive”

data sets which have stronger temporal correlations. But they do not perform well on the more “writing–intensive”

data sets.

1. Introduction

A digital ink file is a sequence of ink strokes. Classifying

the ink strokes into either drawing or writing class is one

of the fundamental problems of the analysis of free–form

ink files. At first look, this is a classical binary classifica-

tion problem, and should be easy to solve, but in practice,

complicated by strong temporal correlations among the ink

strokes and problems with the underlying class distriutions,

the problem poses interesting challenges.

To solve the drawing/writing classification prolem,

Bishop et al [BSH04] proposed a method that first uses

a neural network (NN) to produce posterior probabilities

p(di|xi) for each stroke xi. Then the probabilities are used

as the emission probabilities to an HMM to exploit the tem-

poral correlations among successive ink strokes. In the last

step, the method uses the Viterbi Algorithm to find the most

probable sequence of stroke labels for the current ink se-

quence.

This NN+HMM method requires that the priors of the two

classes and the transition probabilities from one stroke to the

next be fixed and known aforehand. But in practice, as shown

in this paper, the priors of the two classes often vary among

different types of ink file. Even for the same type of file, the

distribution could vary from one file to another. The same is

true for the transition probabilities.

This paper presents our efforts in addressing these issues

with the underlying class distributions. Following the exam-

ple of Saerens et al [SLD02], we describe how to adjust the

outputs of the neural network to a new file to produce more

accurate estimates of the posterior probabilities, p(di|xi).
Then we present an EM algorithm to compute the prior

and transition probabilities parameters of the HMM. For our

problem, the emission probabilities are indirectly given by

the neural network and only partially known. We prove that

we can modify the Baum-Welch algorithm to use the outputs

of a neural network, and the EM algorithm still produces the

correct estimates of the parameters for the HMM. But the

modification could introduce a numerical problem in some

extreme cases. We describe a simple “trick” that can be used

to avoid the numerical overflow problem and to make sure

the EM algorithm still converges to the same estimates of

the parameters.

In section 6, we present experimental results on 6 real–

world data sets of ink files. Each data set consists of files
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Figure 1: The outputs of the neural network used indirectly

as observation probabilities to the HMM.

from a unique file type, with its own priors and transition

probabilities as shown in Table 3. The results show that the

NN+HMM method presented by [BSH04] increases the pre-

cision at the cost of seriously reducing the recall of the mi-

nority class. In our problem, the drawing class is the minor-

ity class (see Table 3). In all except one case, the NN+HMM

decreases the F–Measures of both the majority and the mi-

nority class.

In comparison, our methods increase the F–Measures

of both the drawing and the writing classes on the more

“drawing–intensive” data sets which have stronger tempo-

ral correlations and relatively lower recall of the drawing

class. But they do not perform well on the more “writing–

intensive” data sets which have weaker temporal correla-

tions.

2. Related Work

For the drawing/writing classification of ink strokes in a dig-
ital ink file, Bishop, et al [BSH04] proposed a method that
uses the outputs of a multi-layer peceptron [Bis95] as the
observations of an HMM to find the most probable sequence
of stroke labels. First, they trained the neural network with
the cross–entropy function:

E = −
N

∑
n=1

(

dn lnyn +(1−dn) ln(1− yn)
)

(1)

as the objective function. In Eq 1, yn is the output of the

neural net for the nth training example, n = 1 . . .N. dn = 1

when the nth training example is a drawing stroke; otherwise

dn = 0.

As pointed out by Richard et al [MR91], a multi-layer pe-

ceptron produces probabilistic predictions when trained in

this manner—the outputs of the neural net, yn, is an estimate

of the posterior probability of p(dn|xn).

The advantage of training the neural network to output
probabilities is that they can later be used in a probabili-
tistic framework to make classifications that involve more
global context. For example, in the drawing/writing stroke
classification problem, there is often strong temporal corre-
lation among successive strokes. Bishop et al proposed to
exploit this sequential relationship with a Hidden Markov
Model(HMM) [Rab90]. They represent the entire sequence
of strokes with the following HMM:

p(x1,x2, . . . ,xT ,d1,d2, . . . ,dT ) = p(d1)
T−1

∏
t=1

p(dt+1|dt)
T

∏
t=1

p(xt |dt),

where T denotes the length of the ink sequence.

With the outputs of the NN, p(dt |xt), we can compute the
emission probabilities of the HMM, p(xt |dt), indirectly with
the Bayes’ theorem. The likelihood of the entire sequence
can then be computed as

p(x1,x2, . . . ,xT ,d1,d2, . . . ,dT ) = p(d1)
T−1

∏
t=1

p(dt+1|dt)
T

∏
t=1

p(dt |xt)p(xt)

p(dt)
.

(2)

If we can estimate the priors p(dt) and the transition proba-
bilities p(dt+1|dt) of the HMM from the training data, then
we can find the most probable sequence of stroke labels by
solving the following optimization problem with the Viterbi
Algorithm:

arg max
d1,...,dn

p(d1)
T−1

∏
t=1

p(dt+1|dt)
T

∏
t=1

yt

p(dt)
.

The term p(xt) introduced by the Bayes’ theorem relates

only to the observation sequence, and can be omitted.

3. Practical Issues of Varying Class Distribution

Like many real world applications [CJK04], the draw-

ing/writing classification problem is also plagued by issues

related to the underlying class distribution.

The first issue is related to the data imbalance problem

[CJK04, PF01, JS02]. In our case, for most digital ink files,

the underlying class distribution is often strongly biased

towards writing. For example, writing strokes are usually

smaller and more cursive, and drawing strokes are usually

bigger and less curvy. So, intuitively, a digital ink file can

have more writing strokes than drawing strokes even if there

appears to be an equal amount of each in the file. For some of

our data sets, the prior of the minority class can be as small

as 0.012 or 0.02 (see Table 3).

As reported by Japkowicz et al [JS02], multi-layer percep-
trons also suffer from the class imbalance problem. Bishop
et al [BSH04] proposed to address the problem by scaling
the cross–entropy objective function with the estimated pri-
ors of the two classes:

Ẽ = −
N

∑
n=1

(

1

πd

dn lnyn +
1

πw

(1−dn) ln(1− yn)

)

, (3)

where πd is the prior of the drawing class, and πw is the

prior of the writing class.

The scaling in Eq 3 is equivalent to training with a bal-
anced data set. For prediction, we can adjust the outputs of
the neural network through the Bayes’ theorem to get the
correct posterior probabilities:

ỹn =
πdyn

πdyn + πw(1− yn)

The above method to address the problem of imbalanced

underlying class distribution only works when the priors πd

and πw are the same for the training set and the files we see

at run time. Unfortunately, for the drawing/writing classifi-

cation problem, this assumption is not always true. The class
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distribution of strokes in a digital ink file could be quite dif-

ferent from that of another file or the training set. For ex-

ample, a writing–intensive file such as a formal letter could

contain only a few or probably even no drawing strokes, but

overwhelmingly more writing strokes. And similarly, a file

of a doodling drawn by a small kid could have no writing

strokes at all. It all depends on the particular type of the file

(see Section 6).

As observed by Saerens et al [SLD02], under these cir-

cumstances, the estimates of the posterior probabilities are

not valid for the new observed data, because they are gener-

ated by the neural network trained on a different distribution.

And they may lead to sub–optimal classification results. As

for the NN+HMM method, the problem might be worse, be-

cause these posteriori probabilities are also used indirectly

as observation probabilities of the HMM. It is obvious that

we need to find a way to adapt the outputs of the NN to get

more accurate estimates of the posteriors p(dn|xn).

As shown in Table 3, for the drawing/writing classifica-

tion problem, the transition probabilities among successive

strokes also change from one file set to another. Thus, the as-

sumptions of the NN+HMM algorithm—the transition prob-

abilities and priors are fixed aforehand and can be transfered

from the training set to the testing set—both fail to hold. So,

in addition to adjusting the outputs of the neural network, we

also need to find the “correct” priors and transition probabil-

ities for the HMM.

In Section 4, we describe how to adjust the outputs of the

neural network with an EM algorithm [SLD02]. In Section 5,

we show how to adapt the parameters of the HMM to newly

observed data with an EM algorithm albeit that the emission

probabilities are derived indirectly from the outputs of a de-

terministic model.

4. Adjusting Outputs of the Neural Network

Saeren et al [SLD02] proved that under certain assumptions

the outputs of a neural network could be adjusted to new

a priori probabilities with EM. The first assumption is that

the within–class conditional probabilities, p(xt |dt), do not

change in the new data set. They remain the same at the train-

ing time and at prediction. The second assumption is that the

N samples in the training data set {x1,x2, ...,xN} are drawn

independently according to p(x|d = i) given d = i, i = 1 . . .S,

S is the number of classes of the neural network and the num-

ber of hidden states for the HMM.

Let p̂trn(d = i) be the priors of the training set and
p̂trn(d = i|x) be the posterior probability predicted by the
classifier, we have

p̂trn(x|d = i) =
p̂trn(d = i|x)p̂trn(x)

p̂trn(d = i)
. (4)

Analogously, let p̂a(d = i) be the new a priori probabilities,
p̂a(d = i|x) be the adjusted a posteriori probabilities, and

Table 1: EM algorithm for computing new a priori proba-

bilities for the outputs of an NN—NN*

Initialize: i = 1 . . .S, n = 1 . . .N

p̂(0)(d = i) = p̂trn(d = i)

E–Step: p̂(k)(d = i|xn) =
p̂(k)(d=i)
p̂trn(d=i) p̂trn(d=i|xn)

∑S
j=1

p̂(k)(d= j)
p̂trn(d= j) p̂trn(d= j|xn)

,

M–Step: p̂(k+1)(d = i) = 1
N ∑

N
n=1 p̂(k)(d = i|xn)

p̂a(x) be the new prior of observations, we have

p̂a(x|d = i) =
p̂a(d = i|x)p̂a(x)

p̂a(d = i)
. (5)

According to the first assumption,

p̂trn(x|d = i) ⇐⇒ p̂a(x|d = i).

With Eq 4, and Eq 5, we have

p̂a(d = i|x) =

p̂a(d=i)
p̂trn(d=i)

p̂trn(d = i|x)

∑S
j=1

p̂a(d= j)
p̂trn(d= j)

p̂trn(d = j|x)
.

As pointed out by Saeren et al [SLD02], with the above

equation, we can estimate p̂a(d = i) iteratively with the EM

algorithm in Table 1 (we denote the algorithm as NN*). In

our case, by using HMM to model the entire ink sequence,

we have already assumed that p(xt |dt) does not change, and

that given dt , x1, x2, . . ., and xT are independent of each

other. So we can apply the technique to adjust the outputs

of the neural network to get more accurate predictions of

p(dt |xt).

5. Adjusting the Parameters of HMM

EM algorithms are not only useful for adjusting the outputs

of the NN, they can also be applied to find the “true” param-

eters of the HMM [Bil98, MK97] to new observed data.

In our case, the observation probabilities of the HMM are

obtained indirectly from a deterministic model, so we can’t

use the classical Baum–Welch algorithm to find the param-

eters of the HMM. Nevertheless, as shown below, we can

formulate the problem in such a way that we can still use the

EM algorithm to solve it. In the E–step of the EM algorithm,

we use a modified version of the Forward–Backward algo-

rithm to compute the necessary quantities, and in M–step,

we use these quantities to find a closed form solution that

maximizes Q(λ,λ′).

5.1. Formulation of the EM algorithm

Here is how we formulate the problem to solve it with the
EM algorithm. Let x1,x2, . . . ,xT be the observed sequence
of strokes (the incomplete data). Let d1,d2, . . . ,dT be the la-
bels of the strokes—the hidden states of the HMM (the un-
known data). Then the likelihood function for the complete
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data x1,x2, . . . ,xT , d1,d2, . . . ,dT can be defined as in Eq 2.
With Eq 2, the log likelihood of the complete data becomes

log p(x1,x2, . . . ,xT ,d1,d2, . . . ,dT )

= log p(d1)+
T−1

∑
t=1

log p(dt+1|dt)+
T

∑
t=1

p(dt |xt)

+
T

∑
t=1

log p(xt)−
T

∑
t=1

log p(dt)

=
T−1

∑
t=1

log p(dt+1|dt)+
T

∑
t=1

p(dt |xt)+
T

∑
t=1

log p(xt)−
T

∑
t=2

log p(dt).

(6)

Note that in Eq 6 the term ∑
T
t=1 log p(xt) relates only to

the observations, and thus is a constant term. With the term

∑
T
t=1 log p(dt |xt) computed from the outputs of the neural

network, we can compute the maximum likelihood estimates
of the transition probabilities {p(d = j|d = i)}, and priors
{p(d = i)} with EM, as stated in Theorem 1.

Theorem 1 Let {x1,x2, . . . ,xT} be a given sequence of ink strokes.

Let {p(dt |xt); t = 1 . . .T} be the posterior probabilities output by

the neural network. Let the log likelihood of the complete data be

defined as in Eq 6. Let S be the number of all possible hidden states.

Let p(d = j|d = i) be denoted by ai, j , and p(d = i) be denoted by

πi. Let λ be the collection of parameters
(

ai, j,πi

)

, and λ′ be the

current estimates of the parameters. We can use an EM algorithm to

estimate new values of ai, j and πi. In the M–Step of the algorithm,

we update ai, j and πi as

ai, j =
∑

T−1
t=1 p(x1,x2, . . . ,xT ,dt = i,dt+1 = j|λ′)

∑S
j=1 ∑

T−1
t=1 p(x1,x2, . . . ,xT ,dt = i,dt+1 = j|λ′)

and

πi =
∑T

t=1 p(x1,x2, . . . ,xT ,dt = i|λ′)

∑S
j=1 ∑T

t=1 p(x1,x2, . . . ,xT ,dt = j|λ′)
.

(Limited by space, proof omitted.)

Since we compute the observation probabilities p(xt |dt)
indirectly from p(dt |xt) through Bayes’ theorem, and we do
not have the probabilities p(xt), we can’t compute the quan-
tities

αi(t) = p(x1,x2, . . . ,xt ,dt = i|λ′)

and

βi(t) = p(xt+1, . . . ,xT |dt = i,λ′).

directly as in the classical Forward–Backward algorithm.

But as entailed by Theorem 1, these quantities are only

used in a “fractional” form. So we can modify the Forward–

Backward algorithm as shown in Eq 7 and Eq 8 to compute

the quantities α̂i(t) and β̂i(t) and then use them to find the

new estimates for ai, j and πi.

Modified Forward algorithm:

α̂i(1) = ỹ1,i, α̂ j(t + 1) =
S

∑
i=1

α̂i(t) ai, j

ỹt+1, j

π j

. (7)

Modified Backward algorithm:

β̂i(T ) = 1, β̂i(t) =
S

∑
j=1

ai, j

ỹt+1, j

π j

β̂ j(t + 1). (8)

In fact, the quantities α̂i(t) and β̂i(t) computed by the above
modified Forward– Backward are not unrelated to αi(t) and
βi(t). By simple induction, we can establish the relationships
among them and the probability of the observation sequence,
p(x1,x2, . . . ,xT |λ), as shown in Theorem 2.

Theorem 2 Let αi(t) = p(x1,x2, . . . ,xt ,dt = i|λ′) and βi(t) =
p(xt+1, . . . ,xT |dt = i,λ′). Let α̂i(t) and β̂i(t) be defined by the mod-

ified Forward–Backward algorithm in Eq 7 and Eq 8, we have

αi(t) = α̂i(t)
t

∏
τ=1

p(xτ)

p(x1,x2, . . . ,xT |λ) =
S

∑
i=1

α̂i(T )
T

∏
τ=1

p(xτ)

βi(t) = β̂i(t)
T

∏
τ=t+1

p(xτ),1 ≤ t < T

p(x1,x2, . . . ,xT |λ) =
S

∑
i=1

β̂i(1)ỹ1,i

T

∏
τ=1

p(xτ)

In the Baum-Welch algorithm, we compute γi(t) and
ξi, j(t) from the values αi(t) and βi(t) and then use them to
to estimate the new values for the parameters ai, j and πi of
the HMM. γi(t) is usually defined as

γi(t) =
p(x1,x2, . . . ,xT ,dt = i|λ)

p(x1,x2, . . . ,xT |λ)
(9)

Given the Markov Property of HMM, with dt known,
x1,x2, . . ., xt and xt+1, . . ., xT are independent of each other.
Thus, in the Baum-Welch algorithm, γi(t) is computed as:

γi(t) =
αi(t)βi(t)

∑S
j=1 α j(t)β j(t)

.

Although we can’t compute αi(t) and βi(t) directly, with the
relationships established in Theorem 2, we can easily prove
the following corollary.

Corollary 3 Let α̂i(t) and β̂i(t) be defined by the modified Forward–

Backward algorithm in Eq 7 and Eq 8. γi(t) as defined in Eq 9 can

be computed as:

γi(t) =
α̂i(t)β̂i(t)

∑S
j=1 α̂ j(t)β̂ j(t)

.

Similarly, let ξi, j(t) be defined as the probability of p(dt =
i,dt+1 = j|x1,x2, . . . ,xT ,λ). In the Baum-Welch algorithm,
ξi, j(t) are computed as

ξi, j(t) =
αi(t)ai, jb j(xt+1)β j(t + 1)

∑S
i=1 ∑S

j=1 αi(t)ai, jb j(xt+1)β j(t + 1)
, (10)

whereas b j(xt+1) are the parameters for the observation

probabilities p(xt+1|dt+1 = j). In our case, we do not need

the parameters b j(xt+1) because our emission probabilities

are computed indirectly from the outputs of the neural net-

work.

Analogously, with the relationships established in Theo-
rem 2, we can still compute ξi, j(t) in a similar manner with

α̂i(t) and β̂i(t).
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Corollary 4 Given the definition of ξi, j(t) as in Eq 10 and α̂i(t) and

β̂i(t) as defined by the iterative processes in Eq 7 and Eq 8, ξi, j(t)

can be computed as

ξi, j(t) =
α̂i(t)ai, j

ỹt+1, j

π j
β̂ j(t + 1)

∑S
i=1 ∑S

j=1 α̂i(t)ai, j
ỹt+1, j

π j
β̂ j(t + 1)

.

With Theorem 1, Corollary 3, and Corollary 4, we can
still use similar equations to estimate the new values of the
parameters ai, j and πi.

Theorem 5 With γi(t) and ξi, j(t) computed as in Corollary 3 and

Corollary 4, in the M–step of the EM algorithm, the new values of

the transition probabilities for the HMM can be computed as

ai, j =
∑

T−1
t=1 ξi, j(t)

∑S
j=1 ∑

T−1
t=1 ξi, j(t)

and the new values of the priors for the HMM can be computed as:

πi =
∑T

t=2 γi(t)

∑S
j=1 ∑T

t=2 γ j(t)

5.2. Numerical Overflow in the Modified

Forward–Backward Algorithm

In practice, the modified Forward–Backward algorithm in

Eq 7 and Eq 8 can have potential numerical overflow

problems. In the Forward–Backward pass of the Baum–

Welch Algorithm, αi(t) is the probability of observing the

partial sequence x1,x2, . . . ,xt and ending in the state i;

βi(t) is the probability of observing the partial sequence

xt+1,xt+2, . . . ,xT , given the HMM is in state i at time t.

Thus, the αi(t) and βi(t) quantities generated at each step by

Forward–Backward algorithm are always within the range

of [0,1].

But the α̂i(t) and β̂i(t) values computed by our modi-

fied Forward–Backward algorithm are not probabilities, and

from Theorem 2, we know that αi(t) = α̂i(t)∏
t
τ=1 p(xt).

Since ∏
t
τ=1 p(xt) can be very small, α̂i(t) can become much

larger than αi(t). In fact, it could even cause a numeric over-

flow problem in some extreme cases.

This numerical overflow problem of the modified

Forward–Backward algorithm can be avoided by normaliz-

ing α̂i(t) and β̂i(t). A natural choice for the normalization

factors is ∏
t
τ=1 p(xτ) for α̂i(t), and ∏

T
τ=t+1 p(xτ) for β̂i(t).

But we do not know the quantities p(x1), p(x2), . . . , p(xT ).
We have to improvise and find other suitable normalization

factors.

In fact, as stated in Theorem 6, no matter what values of
µt and νt , we use to normalize α̂i(t) and β̂i(t) at step t of the
forward and backward passes, our estimates for ξi, j(t) and
γi(t) remain the same. This means that the formulae to es-
timate the parameters (ai, j,πi) of the HMM do not change,
and the EM algorithm still converges to the same local opti-
mal values for (ai, j,πi).

Theorem 6 Let {µ1,µ2, . . . ,µT} be the normalization sequence for

Table 2: EM with Modified Forward–Backward Algorithm

(HMM*)

Initialize: a
(0)
i, j = atrn

i, j , π
(0)
i = πtrn

i

E–Step: Forward Pass:

α′
i(1) = ỹ1,i, α′

j(t) =
∑

S
i=1 α′

i (t)a
(k)
i, j

ỹt+1, j

π
(k)
j

∑S
j=1 ∑S

i=1 α′

i (t)a
(k)
i, j

ỹt+1, j

π
(k)
j

Backward Pass:

β′
i(T ) = 1, β′

i(t) =
∑

S
j=1 a

(k)
i, j

ỹt+1, j

π
(k)
j

β′

j(t+1)

∑S
i=1 ∑S

j=1 a
(k)
i, j

ỹt+1, j

π
(k)
j

β′

j(t+1)

ξi, j(t) =

α′

i (t)a
(k)
i, j

ỹt+1, j

π
(k)
j

β′

j(t+1)

∑S
i=1 ∑S

j=1 α′

i (t)a
(k)
i, j

ỹt+1, j

π
(k)
j

β′

j(t+1)
, γi(t) =

α′

i (t)β
′

i (t)

∑S
j=1 α′

j(t)β
′

j(t)

M–Step:

a
(k+1)
i, j = ∑

T−1
t=1 ξi, j(t)

∑S
j=1 ∑

T−1
t=1 ξi, j(t)

, π
(k+1)
i = ∑

T
t=2 γi(t)

∑S
j=1 ∑T

t=2 γ j(t)

the α̂ sequence, and let {ν1,ν2, . . . ,νT} be the normalization se-

quence for the β̂ sequence. Let α′(t) = µt α̂i(t), and β′(t) = νt β̂i(t).

We have

ξi, j(t) =
α′

i (t)ai, j
ỹt+1, j

π j
β′

j(t + 1)

∑S
i=1 ∑S

j=1 α′
i (t)ai, j

ỹt+1, j

π j
β′

j(t + 1)
,

γi(t) =
α′

i (t)β
′
i (t)

∑S
j=1 α′

j(t)β
′
j(t)

.

In summary, with the normalization of α̂i(t) and β̂i(t), the

EM algorithm (denoted by HMM*) to estimate the parame-

ters (ai, j,πi) can be summarized as in Table 2.

6. Evaluation

To evaluate the algorithms NN* and HMM*, we use 6 sets

of real–world digital ink files, manuanlly selected and la-

beled to guarantee that each set correspond to a unique file

type [Rag05].

The following list gives a brief description of each data
set:

1. Free–Form Drawings: files that contain mostly drawing strokes

and relatively few or no writing strokes.

2. Flow–Charts: in these files, writing strokes are usually grouped

into small blocks. These writing blocks are often enclosed by

drawing strokes forming containers, and/or connected by draw-

ings strokes of callouts or connectors [QSM05].

3. Maps: these files are collected to illustrate how people would

draw a map for traveling or driving instructions. They usually

contain a decent amount of drawing strokes with strong tempo-

ral correlations, and also a signficant amount of writing strokes

embedded in the drawings.

4. Tables: files that consist of writing strokes separated by a few

long and easy–to–recognize drawing strokes.
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Table 4: Metrics Definition

RecallD
# Drawing strokes classified correctly

# strokes labeled as Drawing

FPR
# Writing strokes classified as Drawing

# strokes labeled as Writing

C
# strokes labeled as Writing

# strokes labeled as Drawing

PrecisionD
RecallD

RecallD+C·FPR

FD
2∗# Drawing strokes classified correctly

# strokes labeled as Drawing+# strokes classified as Drawing

FW
2∗# Writing strokes classified correctly

# strokes labeled as Writing+# strokes classified as Writing

5. Highly Annotated Text files: files that contain mostly writing

strokes, and a few drawing strokes that annotate the writings.

6. Lightly Annotated Text files: files that contain mostly writing

strokes, and few drawing strokes that annotate the writings.

Table 3 shows the priors and the transition probabilities of
the data sets. From the table, we can see that the Free–form
Drawings data set has the strongest temporal correlations be-
tween successive strokes. The probability of transiting from
a writing stroke to a drawing stroke is only 0.074738, while
the probability of transiting from a drawing stroke to a writ-
ing stroke is also very small, 0.092399. Another interesting
trend to notice is that as the prior probability of a stroke be-
ing drawing drops, the temporal correlation among the suc-
cessive strokes also gets weaker. In this section, we describe
the design and results of a series of experiments to test the
following hypotheses:

• NN vs NN+HMM: By using HMM to exploit the temporal corre-

lation between successive strokes, does the NN+HMM algorithm

improve the classification performance of the neural network?

• NN vs NN*: By using EM to adjust the posterior probabilities

output by the neural network, does NN* improve on the perfor-

mance of the neural network?

• NN+HMM vs NN*+HMM: By using the more accurate poste-

rior probabilities produced by NN*, does the HMM find better

assignment of the labels?

• NN*+HMM vs NN*+HMM*: By adjusting the priors and transi-

tion probabilities to the data set (the current sequence or the cur-

rent file), does NN*+HMM* find better label assignments than

NN*+HMM?

In this section, we use the following four metrics (Ta-

ble 4) to evaluate these algorithms: FD, FW , PrecisionD and

RecallD. FD is the F–measure [Fla03] with drawing as the

positive class, FW is the F–measure with writing as the pos-

itive class, and PrecisionD [Fla03] and RecallD [Fla03] are

the precision and recall of the drawing class.

NN vs NN+HMM: The figure (NN vs NN+HMM)

presents the experimental results of the algorithms NN vs

NN+HMM. We can see that by using HMM to arbitrate the

outputs of a neural network in the context of the entire se-

quence, NN+HMM does improve the precision of the mi-

nority class. The improvement is even more significant for

the Highly Annotated Text and Lightly Annotated Text data

sets, where the priors of the two classes is even more skewed.

But the improvement in the precision comes at the ex-

pense of the recall of the minority class. In fact, in 4 out of

the 6 data sets, FD drops by 0.018 to 0.049, while FW also

decreases.

NN vs NN* Figure NN vs NN* shows the experimental

results of the algorithms NN vs NN*. First, we can see by

using EM to adjust the output posterior probabilities, NN*

increases both FD and FW on all data sets except the Tables

data set. The second interesting fact to notice is that the pre-

cision of drawing drops but the recall of drawing increases

on the more “drawing–intensive” data sets, but the trend re-

verses on the more “writing–intensive” data sets. The more

“drawing–intensive” data sets are the Free–form Drawings,

Flow Charts, and the Maps data sets. The more “writing–

intensive” data sets are the Highly Annotated Text and the

Lightly Annotated Text sets.

The third interesting fact to notice is that with EM, NN*

even out–performs NNs on the Free–form Drawing data set,

which the neural network was trained on. This might look

weird, considering the fact that the empirical priors we used

to train the neural network are the “correct” priors of the data

set we test it on. In fact, the differences are caused by the way

we test the NN* and the HMM* algorithms—we take each

file (a.k.a a sequence of ink strokes) as the “observation”

set for adjusting the priors for the neural network, and the

parameters of the HMM.

NN+HMM vs NN*+HMM The figure compares the

experimental results of the two algorithms. Similar to

the results of the experiments for NN vs NN*, on the

more “drawing–intensive” classes, NN*+HMM increases F-

measures on both the drawing and writing classes. The in-

crease in the FD varies from 0.009 (on the Maps data set)

to 0.11 (on the Free–form Drawings data set). On these

data sets, the recall of drawing also increases dramatically

(0.10 for Free–form Drawings, 0.13 for Flow Charts, 0.07

for Maps, and 0.03 for Tables), while the precision of draw-

ing drops slightly, around 0.005 to 0.017.

On the two “writing–intensive” data sets, again, the

trend reverses. The precision of the drawing class increases

even further, while RecallD, FD and FW all decrease.

NN*+HMM vs NN*+HMM* Similar to the proceeding two

experiments, on the more “drawing–intensive” data sets (in

this case, the Free-form Drawings, Flow Charts and Maps

data sets), NN*+HMM* further increases the FD, FW and

RecallD, but decreases PrecisionD slightly.

On the other three data sets, all four metrics decrease af-

ter adapting the priors and the transition probabilities of the

HMM to the current ink file.

7. Discussion

From the experimental results in Section 6, we found that

the six data sets can be grouped into two clusters, the more

“drawing–intensive” sets that include the Free–form Draw-

ings, the Flow Charts, and the Maps data sets, and the more
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Table 3: Priors and Transition Probabilities of Data Sets

Distribution Free–form Drawing Flow Charts Maps Tables Highly Annotated Lightly Annotation

p(d = D) 0.457708 0.283563 0.298731 0.094095 0.020122 0.0123021

p(dt+1 = W |dt = D) 0.092399 0.20133 0.150312 0.241339 0.494001 0.404412

p(dt+1 = D|dt = W ) 0.074738 0.079360 0.061211 0.024737 0.010405 0.005435

# of files 491 339 507 141 500 518

Avg Length 150.09 188.18 222.30 133.77 339.44 339.08
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“writing–intensive” sets that include the Highly Annotated

Text and the Lightly Annotated Text data sets. The sixth

data set, the Tables set, is kind of an outlier. It sometimes

behaves more like a “drawing–intensive” data set, and some-

times behaves more like a “writing–intensive” data set. Both

the EM algorithm for adjusting the outputs of the neural net-

work, and the EM algorithm for adjusting the parameters of

the HMM work reasonably well on the “drawing–intensive”

data sets, but not as well on the “writing–intensive” data sets.

The problem could be caused by the HMM’s strong de-

pendency on the Markov Property. For the more “writing–

intensive” data sets, the temporal correlation from a drawing

stroke to another drawing stroke is weaker (drawing strokes

behave more like outliers for these scenarios), and our HMM

based algorithm is no longer a good candidate for these sit-

uations.

8. Conclusion

In this paper, we present our efforts on addressing the issues

of varying underlying class distribution of drawing/writing

classification in an ink file.

First, we use an EM algorithm to adjust the outputs of the

neural network to the priors of the newly observed data to get

more accurate estimates of the posterior probabilities. Sec-

ond, we use another EM algorithm to adapt the parameters

of the HMM to new data sets.

From the experimental results of Section 6, on the more

“drawing–intensive” data sets, both the EM algorithm for ad-

justing the outputs of the neural network and the EM algo-

rithm for adapting the parameters of the HMM to the cur-

rent observed data set increase the F–Measures of both the

drawing and the writing classes and the recall of the draw-

ing class, while only slightly decreasing the precision of

the drawing class. The algorithms do not perform well on

the more “writing–intensive” classes, where the prior of the

drawing strokes are much smaller, and the temporal correla-

tions between successive strokes are also weaker.
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