
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Sketch-Based Interfaces and Modeling 2007, Riverside, CA, August 02-03, 2007.

© 2007 ACM 978-1-59593-913-5/07/0008 $5.00

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2007)
M. van de Panne, E. Saund (Editors)

Designing UI Techniques for Handwritten Mathematics

Robert Zeleznik, Timothy Miller, and Chuanjun Li

Brown University, Providence, RI, USA

Abstract

We discuss the design of user interface techniques for visualizing and controlling the recognition of handwritten
mathematics. In particular, we present a range of visualization styles for displaying the result of math recognition.
These styles offer different trade-offs between ease of user correction of errors in recognition and impact on the
user’s entry of math. We also describe recognition control techniques, including using user-controlled mappings
of allographs to achieve more robust symbol recognition and provide extensions to notation, and UI control of
non-spatial information used in recognition. We generally do not discuss the precise user interface implementation
necessary to use these techniques, for example whether to use menus or gestures, but just the functionality required.
Finally, we provide, in an appendix, a sketch of the recognition and display implementation behind our techniques.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [User Interfaces]: Graphical user interfaces
H.5.2 [User Interfaces]: Input devices and strategies H.5.2 [User Interfaces]: Interaction styles

1. Introduction

Computer recognition of handwritten mathematics is an
old [BA69] and important [Mar71] field, and many advances
have been made in the decades of research on it. As some
handwritten math is ambiguous even to another human, how-
ever, it seems reasonable to expect that even the best achiev-
able recognizers will have errors some of the time, thus re-
quiring the user to correct them. Less attention has been
paid to the user interfaces needed for this task, compared
to the base problem of recognizing mathematical handwrit-
ing. In the course of our explorations into error correction
techniques, it soon became apparent that appropriate visual-
ization of the recognition was perhaps even more important,
as it determines whether the user can even tell if the recog-
nition was correct or, if not, where the errors are. This paper
largely focuses on four visualization styles we developed to
address this problem.

In developing those styles, we have paid most attention to
allowing the user to detect subtle errors, assuming that gross
recognition errors will be clear regardless of what visual-
ization is used. We also expect that improvements to recog-
nition will not result in recognizers making only, or even
mostly, gross errors, and thus that our styles will be applica-
ble even to the best achievable recognizers.

Figure 1: Different allographs for ‘i’ can be mapped to
different meanings (e.g., imaginary i and i used as an in-
dex variable). A notational extension is shown where termi-
nal arrows result in displaying symbolic simplification. The
inked arrow is highlighted in red because the cursor is over
the corresponding arrow in the offset typeset display.

Mathematics already uses duplicate notation for multiple
purposes. For example, a textbook one author has uses ux
and uy for the partial derivatives of a function u with respect
to x and y, while other authors use that notation to represent
the x and y coordinates of u. Perhaps the most common ex-
ample is the use of each of i and j to represent either

√
−1 or

an ordinary variable (perhaps for current or an index). Since,

http://www.eg.org
http://diglib.eg.org

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

as a result, a mathematics recognition system already has to
make choices when interpreting notation, and since people
will usually want to use such systems to do something with
the semantic interpretation of the math once recognized, they
may as well consider recognizing other additions to standard
notation to control that further processing. We present exten-
sions to cover simplifying and numerically approximating
the value of an expression as an initial exploration of this
idea (see Figure 1 for an example). The designers of a sys-
tem could also look at adding other UI elements, such as
buttons and widgets, to control further processing, but we
consider those outside the scope of this paper.

We also present additional UI mechanisms for controlling
the recognizer: to allow users to tell the system that they
never write certain characters in certain ways, to allow the
user to preemptively disambiguate mathematical concepts
which are traditionally represented identically (such as i and
j, above), and to allow users to control use of non-spatial
information in recognition of certain crowded layouts.

2. User Interface

Our techniques have been implemented in the context of a
system which recognizes math handwritten with a stylus on
the display. Users can then copy the typeset form of the math
to paste into any word-processing program, can copy a pre-
sentation MathML [ABC∗03] form for use in external sym-
bolic mathematics programs, and can perform some sym-
bolic simplification and evaluation on the math.

2.1. Math mode and draw mode

Computer entry of math can be used in multiple different
ways. In one extreme, the user wants the computer to rec-
ognize the math while it’s being entered, to get interactive
assistance such as computational feedback, assistance do-
ing symbolic derivations, or a typeset display. In another
extreme, the user might both not need such assistance im-
mediately and not want to be distracted.

To support these entry styles, we provide the user with
two entry modes, math mode and draw mode. In math mode,
every stroke input by the user is interpreted as part of a math-
ematical expression and immediately recognized. In draw
mode, every stroke is by default uninterpreted, but the user
can explicitly request a group of strokes to be recognized
and interpreted as math. The interpretation status of existing
strokes, whether they were left uninterpreted or recognized
as math, is unchanged when switching modes.

In math mode, recognition, including structural pars-
ing [CY00], is updated in real-time, on the fly, immediately
after each stroke is input and continuously while strokes are
interactively dragged by the user. The visualizations of Sec-
tion 2.2 are updated at the same time as the recognition, with
one exception noted in Appendix A. This is particularly use-
ful as the changing visualization is a great assistance when

dragging into place a superscript that missed being recog-
nized as such, for instance, avoiding trial and error. How-
ever, it does have two disadvantages: First, the user may be
distracted by seeing the wrong character recognized for the
first stroke of a multiple-stroke character and then corrected
after later strokes. Second, if the recognizer could know that
the user thought that the expression was complete, it could
more aggressively use structural information to change char-
acter recognitions, for instance to balance delimiters.

In draw mode, requiring explicit user action before rec-
ognizing an expression means that the system won’t distract
the user as much and can do a better job recognizing, but the
cascading effect of errors early in the expression may cause
the user to find complex parsing errors that may be diffi-
cult to interpret or fix. Draw mode seems to be particularly
useful when drawing diagrams with embedded mathematical
expressions, however. As math and draw mode each seem to
have their place in different activities and perhaps for differ-
ent users, we allow the user to choose between them based
on their current requirements.

2.2. Visualizing the recognition

We originally started our research by looking at techniques
to allow the user to correct misrecognized mathematical in-
put. We soon realized, however, that in order to do that
you need to understand what the computer recognized in a
way that makes it easy to detect differences from what you
wanted. The criteria we established for seeking an ideal tech-
nique include: requiring no extra space on the display, unam-
biguously expressing complete recognition and parse results,
not disrupting or distracting the user, and ease of use. We
present our top four alternative recognition visualizations,
along with some trade-offs (Figure 2). Our analysis here dis-
cusses the trade-offs of these techniques only for their use in
math mode; the analysis for draw mode is similar but does
not involve issues of distraction and disruption.

2.2.1. Replace with typeset

One option is to simply replace the user’s ink with appropri-
ately typeset math, at the same approximate size as the ink,
when the user pauses writing long enough (see Figure 2(a)).
This is best for reading, but it can disrupt the user’s input.
When a character is written, its position and size may be ad-
justed to fit the typeset, requiring the user to write following
characters in different places. Also, some input, such as divi-
sion lines, may cause much larger jumps, sometimes greatly
shrinking a whole row of characters to fit their typeset size in
a new numerator. These larger jumps are particularly prob-
lematic as they are likely to result in the user entering the
next character in the wrong place. We try to minimize disrup-
tion by matching the total width of the typeset output to the
total width of the ink, ensuring that the right edge remains
in the same place and thus characters at the same level of

92

© Association for Computing Machinery, Inc., 2007.

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

(a) Typeset (b) Adjusted

(c) Offset large (d) Offset small

Figure 2: We present four techniques for visualizing recog-
nition and parse results: replace with typeset math (a), re-
place with adjusted clear handwriting (b), draw typeset math
at an offset with width matching the input (c), and draw type-
set math at an offset with a fixed font size (d). For those read-
ing this in black and white, in the last three images all the
ink is black, except that the a is blue, the b and the 2 in x2

are red, the β is green, and the 2 below it is orange.

the expression (e.g., not super- or subscripts) will not be dis-
rupted horizontally. (The expression ‘1’ written as a straight
line needs a special case to match the height instead to avoid
it becoming very tiny.) Replacing the ink with typeset also
tends to disrupt the user’s mental map [ZNAZ01]; we tried
that reference’s solution of morphing the ink to the typeset
locations (and then replacing with typeset), but found that
doing so while the user is writing was slow and even more
distracting than our base technique, and as a result seemed
to provide no significant benefit.

Interactively replacing ink with typeset effectively forces
people to resolve parsing errors when they occur, which dis-
rupts the user. This happens both because characters being
moved to the wrong location will cause cascading errors for
later input if not corrected, and because all mistakes are in
the direct field of view, making them hard to ignore. In ad-
dition, the user cannot see both ink and typeset at the same
time and so can’t reason easily about what caused any errors.
Despite these limitations, we have the intuition that this tech-
nique has the potential to be the best because of its low space
use and high clarity; for this to happen, the technique must
be adapted to consider future input and paired with a more
robust recognizer. In particular, typeset replacement works
much better in situations where our recognition is most ro-
bust, such as relatively simple expressions with at most only
one level of super- or subscripts. Also, we’ve experimented
with not changing the size of certain characters like paren-
theses immediately, which seem less disruptive.

2.2.2. (Ransom note)

The inherent readjustment flaws of the typeset replacement
technique can be avoided very simply by just replacing the
ink with the corresponding typeset character, but without
moving it from the position the ink was drawn in. This only
gives feedback about the results of symbol recognition, how-
ever; to give feedback about the structural parsing we color
the character drawn based on what row of characters it’s in.
The idea is that, if there’s a possible ambiguity in the loca-
tion in the parse structure of a character, each location should
result in a different color. Everything we find to be a sepa-
rate row gets its own color. Super- and subscripts, characters
in a square root or integral, and the numerator and denom-
inator of vertical fractions (e.g., a

b as opposed to a/b) are
in separate rows from the base line. (The list could poten-
tially include more, such as elements of an array.) Not too
many colors can be readily distinguished from each other
when used to color small text, especially on the poor screens
we’ve seen on some Tablet PCs, so we use a palette of five
colors (orange, green, brown, red, and blue) and only color
the five most recently modified rows, leaving the rest black.
Our structural parser is somewhat unusual in that it can de-
cide that it doesn’t know what to make of certain characters
in its input, and exclude them from the parse result. Such
characters are colored white with a thin black outline. The
colorization is updated interactively while the user drags ink
around the screen, facilitating fixing errors by making it eas-
ier to tell when a character has been moved enough to be
recognized as a superscript, for instance.

Unfortunately, squashing of the typeset characters to fit
the ink the user drew results in ugly output we call the “ran-
som note interface” (Figure 3(a)), after the stereotypical ran-
som notes made by cutting and pasting many different fonts
and styles of letters clipped out of magazines. We do not
consider this technique viable. However, we have recently
come across a similar technique described by Smirnova and
Watt [SW06] which, like ours, draws the typeset characters
in the bounding box of the ink characters, but adjusts the
size and apparently baseline of the characters in the same
row to match better. It seems they produce more readable re-
sults, but the tech report did not give enough details of their
technique for us to be able to implement a fair comparison.
However, their version does not appear to give feedback on
structure parsing results and so would also benefit from our
colorization method. We do find the colorization part of our
technique viable and use it in later techniques.

2.2.3. Adjusted handwriting

If, instead of replacing ink characters with typeset ones, we
replace them with previously made handwritten but clear and
unambiguous ink, still colored, this seems to produce output
which is much more readable (Figure 2(b)) and less jarring.
This seems to remain true even when the replacement char-
acter ink was written by someone else, as in the figure, and

93

© Association for Computing Machinery, Inc., 2007.

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

(a) “ransom note” (b)

Figure 3: Simply replacing ink characters with typeset ones
resized to match produces an ugly output in 3(a) that we call
the “ransom note interface”. In contrast, we find in 3(b) that
even replacing the characters with ink drawn to trace over
the typeset seems to be a little more readable.

(to perhaps a lesser extent) even when the character ink was
made by tracing over the typeset characters (Figure 3(b)).
Compared to the first typeset replacement technique, this is
much less disruptive, as it never moves characters, but it’s
also less clear: the feedback in Figure 4(a) does not disam-
biguate whether the 2 was recognized as a subscript of the b
or a superscript of the c, for example.

There are many different schemes for coloring the input.
We have presented only one example, which we have de-
signed for generality, but others make different tradeoffs and
may be better for different areas of math. For instance, a
technique that colored all subscripts blue and did not use
blue for anything else would not have the ambiguity in Fig-
ure 4(a), and, since much of math does not have subscripts
on subscripts, it would work for a large range of inputs. If we
extend this to color all subscripts that are not on subscripts
blue and all superscripts that are not on superscripts red, we
robustly support a wider range of basic math but leave ambi-
guities in less common situations, as shown in Figure 4(b).

(a) (b) (c)

Figure 4: Coloration alone is not sufficient to find all possi-
ble parse errors: in 4(a) it’s not possible to tell if the 2 was
recognized as a subscript of the b or a superscript of the c.
A scheme that colors all first-level superscripts red and all
first-level subscripts blue removes that ambiguity but makes
it impossible to tell if the 2 was recognized as a superscript
of the c or a sibling of the b in 4(b), a case that is handled
by our default coloring scheme in 4(c).

2.2.4. Offset typeset (large)

A simple alternative feedback mechanism is to draw a prop-
erly typeset form of the recognized expression offset be-
low the entered ink. This technique is based on many other

systems which draw a typeset version at another location,
whether of math (e.g. [ZNAZ01]) or plain text (e.g. Mi-
crosoft’s Tablet PC text recognizer input panel). Our first
version of this is novel in that it draws the typeset output
scaled uniformly to match the width of the entered ink and
also colorizes the ink as for the previous technique (Fig-
ure 2(c)). (As with the typeset replacement technique, the
expression ‘1’ is special-cased to match the height instead.)
Unlike our earlier techniques which necessarily delay pre-
senting recognition results, feedback in this technique is up-
dated as soon as each stroke is entered and interactively as
strokes are dragged around. Continuing to colorize the ink
also means that there is immediate feedback about the struc-
tural parse without having to look away, making it easier to
fix superscripts that didn’t quite make it, for instance.

This technique is easy to read, as in the typeset replace-
ment method, and does not disrupt the user’s input, but it
does take up a lot of space on the screen. Since many users
seem to be reluctant to write on top of the typeset feedback,
that means they tend to leave extra space between expres-
sions, further using up space. However, matching the width
of the ink and typeset means that corresponding characters
in each tend to line up above one another, making it partic-
ularly easy to note incorrect symbol recognition and espe-
cially structure recognition. We presume this also makes it
easier to reason about the errors in the result. Sometimes,
however, it may be difficult for the user to determine which
ink stroke(s) correspond to a typeset character. Therefore, if
the user hovers the pen tip over a typeset character, we out-
line in red the ink stroke(s) that correspond to it, as shown in
Figure 1.

One additional problem with this technique stems from
the users’ reluctance to write on top of it. If the user goes to
write a part of an expression which goes significantly below
the bottom of that part written before it, they may hesitate if
those strokes would go through the typeset display. In prac-
tice this does not seem to be a big obstacle, however.

On the other hand, the typeset display allows us to pro-
vide additional feedback about the syntactic parsing of the
expression. For instance, we put a red “undersquiggle” un-
der operators which are missing operands, much like Mi-
crosoft Word’s undersquiggling of what it thinks are mis-
spelled words. In some cases, for clarity, missing operators
are represented by ‘??’. See Figure 5.

Figure 5: In our offset typeset techniques, we provide feed-
back to the user about syntax errors in the expression. In
this example, the ‘??’ indicates that the radical sign makes
no sense without an operand, and the red squiggle under the
‘+’ indicates that it also is missing an operand.

94

© Association for Computing Machinery, Inc., 2007.

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

2.2.5. Offset typeset (small)

Rather than sizing the typeset to match the ink, the type-
set can be output at a fixed, relatively small, font size (Fig-
ure 2(d)). This is somewhat harder to read than the large off-
set typeset, and there is also no correspondence between the
horizontal positions of corresponding characters in the ink
and typeset forms. It also makes it harder to relate output
characters to corresponding ink strokes, particularly for long
expressions. One benefit is that it uses less space than the
larger typeset output. However, the primary benefit of this
technique is that it is the least distracting of our techniques
while still providing easy access to the complete recognition
and parse results. Aside from the colorizing of the ink and
dynamic update of the typeset, this technique corresponds
closely to many existing systems’ feedback.

2.3. Clarifying input with allographs

Our symbol recognizer does not directly recognize charac-
ters but rather allographs, different ways of writing the same
character [PS00]. This allows us to put the mapping of allo-
graphs to characters under user control. For example, Fig-
ure 6 shows four allographs, two each for the characters
‘2’ and ‘z’. However, the middle two allographs are similar
enough to each other to be easily confused. In our system, a
user who generally does not use one of these allographs can
on the fly interactively map the unused allograph to default
to the other character, thus gaining greater robustness from
the symbol recognizer. For instance, if the user always writes
the loopy allograph for the ‘2’, the second allograph can be
remapped to default to ‘z’. The character other than the de-
fault is always still available as an alternate that the user can
choose. In our implementation, picking a different alternate
recognition result for a character is done by selecting from a
menu, while remapping which result is the default is done by
dragging the result on the same menu. This makes it easy for
the user to migrate from choosing an alternate to realizing
that the system’s default is wrong and changing it.

(a) ‘2’ (b) ‘z’

Figure 6: Both ‘2’ and ‘z’ have two different allographs that
can be used to write them. Robustness can be improved by
mapping whichever of the middle two allographs the user
doesn’t use to yield the other character.

The user can also use the allograph mapping mechanism
to distinguish between meanings of the same character. For
instance, to better support a distinction between i used as a
variable and i used to denote

√
−1, the user can map a roman

or “straight line” ‘i’ to i the variable while mapping a cursive
‘i’ to the imaginary number. (See Figure 1.)

2.4. Notational extensions

In order to improve the usability of mathematical systems,
we have explored adding notational extensions to standard
math. This includes making widgets out of existing math
notation, as well as adding plain notation that invokes ap-
plication functionality.

One way to use widgets is to introduce non-spatial data,
such as to preferentially assign symbols to the limits of a
summation in cases that are likely to be ambiguous. Tapping
on a summation symbol activates a “grabby” mode where
symbols entered are more likely to be recognized as lim-
its of the summation. When the grabby mode is active, the
summation symbol and optionally its limits are highlighted,
as shown in Figure 7. Alternatively, tapping on an integral
could bring up a dialog for choosing a method for numerical
integration.

(a) (b)

Figure 7: Users may wish to write expressions densely,
leading to ambiguous or near-ambiguous expressions such
as in 7(a). A user can tap on a summation symbol to activate
a special “grabby” mode in which the symbol and optionally
its limits are highlighted with a different background (7(b)).

Additionally, we note that math is frequently entered into
a computer because the user wishes to compute with it in
some way. We demonstrate support for this by allowing users
to end expressions with an arrow (→) or double arrow (⇒)
to simplify or numerically approximate the expression, re-
spectively. The result is typeset after the arrow. (See Fig-
ure 1.)

3. Related Work

Mathink [SW06] includes what appears to be an improved
version of the “ransom note” visualization technique (Sec-
tion 2.2.2), but the paper only very briefly mentions its
method for providing that feedback, without giving enough
details for us to be sure what the technique does. For in-
stance, it’s not clear to us whether it adjusts the location of
typeset characters drawn within the bounding box of the ink
for them, in order to match baselines, as their figure suggests.
If so, there’s no discussion of what happens when the verti-
cal extents of same-baseline ink bounding boxes are disjoint,
which can easily happen with sloping or drifting baselines.

MathBrush [LMM∗06] recognizes mathematics and
drives a symbolic algebra system with it. Their feedback is
again similar to the “ransom note” technique, without dis-
torting the characters’ aspect ratio, but the feedback is shown
in a separate window and not updated continuously.

95

© Association for Computing Machinery, Inc., 2007.

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

MathPad2 [LZ04] changed the user’s input to cleaned-up
handwritten ink the same way our adjusted technique (Sec-
tion 2.2.3) does. Since they used a trained recognizer, they
were able to construct this from the training samples rather
than use someone else’s handwriting. We are not able to use
the users’ own handwriting samples, but we extend the tech-
nique to additionally show parse recognition results by col-
orizing the characters.

Zanibbi, et al. [ZNAZ01] presented a visualization tech-
nique which computes a cleaned-up version of the input
characters’ bounding boxes, based on the recognition and
parse results, and then morphs the user’s input characters
to fit in those boxes. Our typeset replacement visualization
technique (Section 2.2.1) is very similar, except for three dif-
ferences: 1) we don’t morph; the feedback just jumps to its
final value; 2) we use actual typeset output boxes rather than
merely cleaning up the input boxes; and 3) we draw typeset
characters in those boxes rather than fitting the input ink to
them. We think this provides better feedback, as their tech-
nique provides only a tiny amount of feedback on character
recognition errors while ours shows the actual character rec-
ognized. We did try morphing, but we found that doing that
while the user is writing (the way our replacement technique
works) was slow and even more distracting than the base
technique, and as a result seemed to provide no significant
benefit. We agree morphing is effective for the batch recog-
nition case (“draw mode”, below) and so use it there.

Updating recognition and parse results after each stroke is
not a new idea [Wil69], although apparently it has not seen
much use [GFK06]. We additionally update the results while
characters or strokes are being interactively dragged.

Chellapilla, et al. [CSA06] uses character recognition
based on allographs to automatically personalize a writer-
independent recognizer to a specific user. Their system at-
tempts to automatically determine the allographs at training
time and automatically learn which allographs a user uses at
run time, within the first few samples of a given character.
Our system uses rule-based definitions of allographs and al-
lows the user to control the allograph-to-character mapping
directly. Since the user action to exercise this control is very
similar to the action for simply picking a different alternate
recognition, users are likely to remap their allographs within
the first few samples of a given character, yielding a similar
result to Chellapilla’s algorithm but under explicit control.

The Microsoft Transcriber text input method for the
Pocket PC provides a dialog where the user can turn on and
off recognition of various styles of writing characters. This
gives effectively the same control as our allowing the user
to choose the default mapping of an allograph, but with a
few differences. First, for some reason, they do not allow
separate control of certain allographs for the same character,
such as the two ways of writing ‘z’ in Figure 6. Second, our
implementation does not currently have a display of what
the allograph the user is mapping actually is, although we

expect that this can be corrected in the future. Finally and
most importantly, their method requires the user to proac-
tively plan ahead to set the mappings for the various charac-
ters, including figuring out what allographs their handwrit-
ing corresponds to, while ours allows the user to reactively
make changes only after a problem is found, and at the same
time as correcting the problem.

4. Discussion and future work

We regard the two offset typeset techniques as the clear lead-
ers because of their generality; the other two techniques have
more significant trade-offs. Given the state of recognition
technology, the “replace with typeset” technique does not
seem feasible except for very simple input—though it may
be the best technique in that case. The “adjusted handwrit-
ing” technique is not ready for particularly complicated math
because an unambiguous color scheme has not been found,
although it may be preferred over the offset typeset tech-
niques if there is a severe lack of screen space for entry. We
believe, however, that significant recognition improvements
are possible which may benefit typeset replacement and ad-
justed handwriting disproportionately.

The colorization scheme could use additional work. Not
only is it still ambiguous in some (apparently rare) situa-
tions, but even users who understand the system find it insuf-
ficient to highlight certain errors. In particular, this happens
when characters are parsed into the same row and therefore
the same color even though to the user they appear to be in
different rows, indicating that colors are not nearly as easy
to understand as typeset. However, errors where characters
should be on the same row but the computer puts them into
different rows are generally obvious and the technique seems
a net benefit over not using it at all.

A number of people seem to instinctively try to edit the
offset typeset display, even knowing that it’s not editable.
In our implementation, such edits are done with gestures,
primarily circling things to move them and scribbling over
things to delete them. One user of our system, having tried
to scribble out typeset characters several times in one ses-
sion, commented that he had understood intellectually that it
wouldn’t work, but somehow wound up doing it anyway. We
take this as a strong hint that we should investigate allowing
editing of the offset typeset. Doing that is not completely
trivial, however, as there are issues if the user has written
lines of math close enough together that the offset typeset
from one overlaps another, and if entered math can resemble
editing, for instance ‘m’ or ‘w’ looking like a scribble.

There are also some hybrid techniques and other very sim-
ilar techniques which warrant further study, such as combin-
ing adjusted handwriting with small offset typeset. Finally,
we expect there to be significant room to further enrich math
notation with control for online, interactive computational
assistance; we’ve only explored the very tip of that iceberg.

96

© Association for Computing Machinery, Inc., 2007.

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

5. Conclusion

We have presented an initial sampling of interface tech-
niques for handwritten math. We demonstrated opportunities
for enhancing mathematical notation to support interactive
computation. By making allographs a prominent UI concept
we have explored the potential to clarify mathematical entry.
We also demonstrated a variety of interactive visualization
styles, each with clear trade-offs. However, research oppor-
tunities still exist, including more systematic exploration of
notation, richer visualizations which incorporate deeper se-
mantic knowledge, and design improvements guided by us-
ability testing.

References

[ABC∗03] AUSBROOKS R., BUSWELL S., CARLISLE

D., DALMAS S., DEVITT S., DIAZ A., FROUMENTIN

M., HUNTER R., ION P., KOHLHASE M., MINER R.,
POPPELIER N., SMITH B., SOIFFER N., SUTOR R.,
WATT S.: Mathematical markup language (MathML) ver-
sion 2.0 (second edition). W3C Recommendation, http:
//www.w3.org/TR/2003/REC-MathML2-20031021, Oc-
tober 2003.

[BA69] BLACKWELL F. W., ANDERSON R. H.: An
on-line symbolic mathematics system using hand-printed
two-dimensional notation. In Proceedings of the 1969
24th national conference (1969), ACM Press, pp. 551–
557.

[CSA06] CHELLAPILLA K., SIMARD P., ABDULKADER

A.: Allograph based writer adaptation for handwritten
character recognition. In Tenth International Workshop on
Frontiers in Handwriting Recognition (October 2006).

[CY00] CHAN K.-F., YEUNG D.-Y.: Mathematical ex-
pression recognition: a survey. International Journal on
Document Analysis and Recognition 3, 1 (August 2000),
3–15.

[GFK06] GENOE R., FITZGERALD J. A., KECHADI T.:
A purely online approach to mathematical expression
recognition. In Tenth International Workshop on Fron-
tiers in Handwriting Recognition (October 2006).

[Knu86] KNUTH D. E.: The TEXbook. Addison Wesley,
1986.

[Lam94] LAMPORT L.: LATEX: A Document Preparation
System: User’s Guide and Reference Manual, second ed.
Addison-Wesley, 1994.

[LMM∗06] LABAHN G., MACLEAN S., MARZOUK M.,
RUTHERFORD I., TAUSKY D.: A preliminary report
on the MathBrush pen-math system. In Proceedings of
Maple 2006 Conference (2006), pp. 162–178.

[LZ04] LAVIOLA JR. J. J., ZELEZNIK R. C.: MathPad2:
a system for the creation and exploration of mathemati-
cal sketches. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers (2004), ACM Press, pp. 432–440.

[Mar71] MARTIN W. A.: Computer input/output of math-
ematical expressions. In SYMSAC ’71: Proceedings of the
Second ACM Symposium on Symbolic and Algebraic Ma-
nipulation (1971), ACM Press, pp. 78–89.

[PS00] PLAMONDON R., SRIHARI S. N.: On-line and
off-line handwriting recognition: A comprehensive sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 1 (January 2000), 63–84.

[SW06] SMIRNOVA E., WATT S. M.: A pen-based mathe-
matical environment Mathink. Research Report TR-06-05,
Ontario Research Centre for Computer Algebra, Univer-
sity of Western Ontario, 2006.

[Wil69] WILLIAMS T. G.: On-line parsing of hand-
printed mathematical expressions: Final report for phase
II. NASA Contractor Report: NASA CR-1455, December
1969.

[Wol88] WOLFRAM S.: Mathematica: A System for Doing
Mathematics by Computer. Addison-Wesley, 1988.

[ZNAZ01] ZANIBBI R., NOVINS K., ARVO J., ZANIBBI

K.: Aiding manipulation of handwritten mathematical ex-
pressions through style-preserving morphs. In Graphics
Interface 2001 (2001), Canadian Information Processing
Society, pp. 127–134.

Appendix A: Implementation sketch

Our system is implemented on the Microsoft Tablet PC plat-
form. As shown in Figure 8, the recognition system takes ink
as input and produces a semantic representation of the math
as output. Since our system is implemented on the Microsoft
Tablet PC platform, the input ink comes from the Tablet PC
SDK. In principle our algorithm could take digital ink from
other sources instead, so long as there is a cursive handwrit-
ing recognizer available.

UI diversion

The first stage in the recognition pipeline determines
whether a freshly input ink stroke should be handled by the
UI or not; this is used to interpret things such as gestures
and the tapping used in the summation and integral widgets
(see Section 2.4). If the UI should handle it, it exits the math
recognition pipeline; otherwise it is recorded in the set of all
ink strokes on the page and goes on to the symbol recognizer.

Symbol recognizer

The symbol recognizer looks at each stroke as it is writ-
ten and decides if it is a new symbol or if it augments and
changes an old symbol (such as a horizontal line changing
a ‘1’ into a ‘+’). The recognizer is entirely rule-based, ex-
cept that we use the Microsoft handwriting recognizer as a
fall-back if ours does not recognize the input. (Our part of
the recognizer can decide that the input really doesn’t match

97

© Association for Computing Machinery, Inc., 2007.

http://www.w3.org/TR/2003/REC-MathML2-20031021
http://www.w3.org/TR/2003/REC-MathML2-20031021

R. Zeleznik, T. Miller, & C. Li / Designing UI Techniques for Handwritten Mathematics

...

Symbol

Recognizer
Parse 1 Parse 2

Range

Subdivision
LinesUI? ExprsInk Symbols

Figure 8: Data flow in our math recognition system. Ink is gathered from the MS Tablet PC SDK, checked to see if the
UI should handle it instead, and recognized as symbols. The symbols are grouped into ranges, each containing a separate
expression. Within each range, the symbols are grouped into common baselines with geometric relationships recorded, forming
a tree, and each tree is parsed to form a semantic representation of the mathematical expression.

anything it knows about, which enables this handoff to an ex-
ternal recognizer.) We look in its output first for single char-
acters, but if it seems the Microsoft recognizer really thinks
there’s a word there, we take that. This allows the user to en-
ter cursive words, for instance for computer-program-style
variable names. As mentioned previously, our recognizer
recognizes allographs rather than characters directly. Those
results we get from Microsoft are not really allographs, but
they go through the same allograph-to-character mapping as
the results from our rules, allowing users to control the alter-
nate ordering for results from Microsoft as well.

Range subdivision

Symbols are grouped into ranges, each range being the sys-
tem’s best guess of a complete (as far as entered), single
expression. Currently this is done using a variety of some-
what ad-hoc spatial tests, some depending on what the sym-
bol was recognized as, for instance for fraction lines.

Parse 1

Determining the mathematical structure and semantics of an
expression is done in two phases, which we call “Parse 1”
and “Parse 2”. Parse 1 looks at all the symbols in a range
and determines which symbols are on the same baseline, and
the geometric relationships between different lines of sym-
bols on a common baseline. For instance, all the symbols
on a common baseline become grouped into a Line object.
Each symbol in that Line may have a sub- and/or superscript
recorded on it, which is itself on a different baseline and thus
another Line object. Fractions have Lines for the numerator
and denominator, and so on. Thus, an expression in a range
is represented by Parse 1 as a tree of Lines, where the parent
Line’s connections to its children are labeled with what sym-
bol the child Line is associated with and what the geometry
of the association is. As mentioned earlier, our parser can
decide it can’t parse certain characters, in which case they
are excluded from the output Lines.

The “rows” that ink is colored based on (Section 2.2.2)
correspond to these Lines; thus colorization only makes use
of Parse 1’s knowledge of the input.

Parse 2

Parse 2 takes the Line tree produced by Parse 1 and pro-
duces a representation of the semantics of the expression in
an internal data structure we’re calling Expr. In addition, this
phase tries to clean up the recognition in certain ways, such
as trying to make parentheses (and brackets, etc) balance by
changing alternates if that would make things better, chang-
ing slashes (‘/’) by themselves into ‘1’s, and accreting such
things as ‘s’ ‘i’ ‘n’ into ‘sin’, as well as (frequently) ‘c’ ‘0’
‘5’ into ‘cos’. The Expr output of this phase may then be
symbolically computed on directly or translated for export
to Mathematica [Wol88], LATEX [Lam94], etc.

After parsing

To produce output on the screen, we have a subsystem for
drawing Exprs as typeset math, by composing the math into
a tree of “boxes” roughly analogous to those of TEX [Knu86]
and in many cases using its formatting rules. In fact, when
we have wanted to get rid of a visual problem in the output,
usually the simplest thing to do has been to just implement
whatever TEX does. Forward- and back-references are kept
all up and down the chain of Ink—Symbol—Line—Expr—
Box so that we can do hit testing on the typeset output, high-
light the ink corresponding to a typeset character the pen is
hovered over, etc. The syntax parsed by Parse 2 and that pro-
duced by the typeset output are largely specified by the same
mechanism to make it easy to add new operators.

Because Parse 1 and 2 can each switch the alternate cho-
sen for a symbol in order to balance parentheses, etc, the
user needs to be aware that this can happen. User correction
of the alternate always takes precedence, however.

As noted earlier, recognition and parsing are updated im-
mediately after each stroke is input and continuously while
the user drags strokes or characters around the screen. The
visualizations (Section 2.2) are updated at the same time, ex-
cept that constraints of our current implementation require
characters in the typeset replacement technique, while they
are dragged, to be drawn as their ink input.

98

© Association for Computing Machinery, Inc., 2007.

