EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006)

Thomas Stahovich and Mario Costa Sousa (Editors)

Sketch-based Volumetric Seeded Region Growing

H.L.J. Chen' F.F Samavati!

M.C. Sousa! J.R. Mitchell!% T

! Department of Computer Science, University of Calgary, Canada
2Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Canada 1

Abstract

Interactive volume segmentation is an essential and important step in medical image processing. Conventional
interactive methods typically demand significant amounts of time and do not lend to a natural interaction scheme
with the 3D volume. In this paper we present a sketch-based interface for seeded region growing volume segmen-
tation. In our approach, the user freely sketches regions of interest (ROI) directly over the 3D volume. Parts of the
volume outside the ROIls are then automatically cut out in real-time. The user repeats this process as many times
as necessary until he/she decides to specify the seed point 3D location directly at the ROI. To prevent unexpected
segmentations, the region growing is restricted to the specified ROI. Our sketch-based system utilizes GPU pro-
gramming to achieve real-time processing for both rendering and volumetric cutting independent from the size

and shape of the sketched strokes.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Image Processing and Computer Vision]: Seg-

mentation, partitioning

1. Introduction

Medical imaging systems, such as computerized tomogra-
phy (CT), magnetic resonance imaging (MRI) and ultra-
sound, are becoming increasingly ubiquitous. Clinicians and
surgeons often use computer-based segmentation to identify
and analyze anatomical structures of interest in medical im-
age datasets. For example, neuroradiologists often segment
and examine the internal carotid artery to determine its de-
gree of stenosis in patients suffering from transient ischemic
attacks (TTAs - "mini" strokes). The degree of carotid steno-
sis is a critical factor to determine if TIA patients should
have surgery to open up this vital vessel. Other measure-
ments (such as the shape, topology, and cubic volume) could
also be obtained during the segmentation process [ONIO5].
Therefore, volume segmentation is an essential and impor-
tant step in medical image processing.

Segmentation is often broken down into "edge based"
or "region based" methods. Each of these in turn may be

T http://www.ImagingInformatics.ca
i http://www.mrcentre.ca

(© The Eurographics Association 2006.

"manual" or "computer assisted" (including completely au-
tomatic). Along the edge-based category, a typical man-
ual segmentation process requires a trained specialist to
draw contours around the region of interest (ROI) on cross-
sectional images. These contour lines are then linked and
reconstructed into a 3D representation for further analysis
(Figure 1, top). This procedure can become a challenging
task if the target is, for example, blood vessels in the brain,
which by nature involves complex shape and unpredicted
turning directions. Automatic methods currently focus on
low-level features such as edge detection and texture analy-
sis. An example of an edge detection algorithm exists in the
use of histograms by considering the relationship between
three quantities: the data value and its first and second di-
rectional derivatives along the gradient direction [KD98]. A
number of contributions and efforts were made in the re-
search direction for obtaining automatic segmentation re-
sults. However, the difficulty for a complete automatic ap-
proach is limited in one sense or another. Kirbas and Quek
[KQO3] pointed out that all such attempts for developing au-
tomatic segmentation algorithms are limited to some global
parameters or can fail with certain data.

The region growing [RK82] algorithm is one of the well-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

@ (b) ()

(d) (e)

Figure 2: Our sketch-based volume segmentation method: user sketches a ROI directly over the data (a), the ROI is extruded
(b), volume outside is cut out and user plants the seed point (c), region grows (d) and segments volume portions within the

extruded ROI (e).

Figure 1: Conventional segmentation methods. Top row:
edge-based method. Bottom row: region-based method.

known region-based segmentation methods that is simple
to compute and applicable to a wide range of data types.
Seeded region growing was first introduced by Rolf Adams
and Leanne Bischof [AB94]. Their algorithm requires the
planting of an initial seed point in the 3D volume dataset.
However, the challenge of specifying a 3D coordinate from
a 2D device, such as the mouse, is associated with providing
an intuitive interface in assisting with the mapping process.
Existing methods for specifying the seed point [SHNO3] can
be outlined as follows: the user navigates from a stack of 2D
image slices; a desired slice is selected (i.e. equivalent to se-
lecting one of the axis as a first step); and then the user places
the seed point from the cross-sectional view of the data (Fig-
ure 1, bottom). As a result the seed point is propagated to the
entire volume based on certain criteria the user defines.

The key limitations with the conventional seeded grow-
ing region process are the large amount of cross-sectional
images a user has to go through. The user is also required
to have a priori knowledge of the data in order to quickly
identity the correct slice number and the appropriate seed
location on the 2D grey-scaled image. This procedure de-
mands a significant amount of time and does not lend to a
natural interaction scheme with the 3D volume (i.e. direct
manipulation of the 3D data).

In this paper, we propose a sketch-based interface for vol-
umetric seeded region segmentation. Figure 2 illustrates the

key stages of our method applied over a raw MRI super-brain
dataset (152x154x181). At first, the user loads the volumet-
ric data and defines an intensity range from the histogram.
And then the user directly sketches a ROI over the displayed
volume (Fig. 2, a). The system extrudes the ROI along the
viewing direction within the entire volume (Fig. 2, b - dotted
lines). The volume outside the extruded ROI is cut out and
the user places the seed at the red cross (Fig. 2, c). The region
starts to grow (Fig. 2, d) and finally the complete segmenta-
tion inside the extruded ROI is obtained (Fig. 2, e). In ad-
dition, the user could place multiple sketches from different
views to form arbitrary-shaped ROI. Our system uses GPU
programming for real-time rendering and interactive sketch-
ing. Furthermore, we utilize the stencil buffer to achieve a
processing rate that is independent of the sketch complexity.

The rest of the paper is organized as follows. In Section 2,
we review related work and current sketch-based interfaces
for volume segmentation. In Section 3, we outline our sys-
tem framework. In Sections 4, 5, and 6, we provide details of
our sketch-based system for volume segmentation. Results
are discussed in Section 7, and conclusions are presented in
Section 8.

2. Related Work

Interactive seeded region growing. Many segmentation ap-
proaches have been proposed for the 2D image segmentation
task. The set of well-known techniques include thresholding,
k-means clustering, watershed segmentation, and level-set
methods (see the survey conducted by Pham et. al. [PXP99]).
For segmenting 3D medical datasets, these techniques could
also be applied and adapted easily by re-using the 2D image
techniques. Sherbondy et. al. [SHNO3] developed a fast vol-
ume segmentation system using GPU. Their work was based
on seeded region growing. The seed selection step allows the
user to paint seeds by drawing on the sectional views of the
volume. Their segmentation merging criteria are based on
non-linear diffusion metric. They also incorporated image
smoothing algorithms for noise conditions. More recently,
Schenke et. al. [SWDO0S5] analyzed the GPGPU paradigm

(© The Eurographics Association 2006.

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

and implemented the seeded region growing method with
fragment shaders and VTK. In order to fully take advantage
of the GPU parallelism, the user was encouraged to specify
as many seed points as possible.

Sketch-based interfaces for volume segmentation. For
general sketch-based modeling of volumetric data, Owada
et. al. [ONNIO3] presented a system that captures hand-
drawn sketches and creates volumetric objects with internal
structures. Owada et. al. [ONOIO4] further extended the in-
terface for users to define internal volumetric textures of a
model. The system allowed interactive design and brows-
ing for volumetric illustrations. Recent work for segment-
ing volumetric data have also focused on incorporating user
intervention and developing interactive segmentation sys-
tems. Tzeng et. al. [TLMO3] developed a novel interface for
volume data classification. They allowed the user to draw
strokes on the cross-section of volume data that roughly in-
dicate foreground and background regions. The stroke infor-
mation was used to train a classifier that is designed for seg-
menting voxels. Yuan et. al. [YZNCOS5] presented a novel
method to cut out volumetric structures by drawing sim-
ple strokes directly on volume rendered images. Owada et.
al. [ONIO5] proposed an intuitive user interface for volume
segmentation. The user traces the contour of the target re-
gion using a 2D free-form stroke on the screen. The volume
catcher system then returns a plausible 3D region inside the
stroke.

Similar to Owada’s approach [ONIO5], the concept of
our system extends the stroke and sweeps through the vol-
ume. We use histograms as a first classification step whereas
they applied opacity transfer functions. In contrast, we adapt
closed strokes that include free-form and other variations.
Most importantly, our approach allows the user to interact
with a simple sketch-based interface for navigating to the
ROl instead of browsing through hundreds of cross-sectional
slices ([SHNO3]; [SWDO05]). For seed planting, our tech-
nique is fundamentally 3D and the user no longer needs to
look at texture-mapped 2D planes. In addition, we enable
the user to define a sub-volume of arbitrary shape with few
sketches to constrain the region grow and provide rapid seg-
mentation feedback.

3. Particle System Framework

In our sketch-based system, we utilize a particle system
framework. Because of the generality and the fundamental
design of the framework, the system can be easily extended
to work with irregular datasets. Other potential applications
include general point-based systems and polygonal meshes
(which were converted to a point-cloud).

At the first stage of our system, a desirable range of in-
tensities is selected by using the intensity histogram to de-
fine target voxels from the volumetric dataset. Since only a
subset of the entire volume is rendered to the scene, we rep-
resent the target voxels by a particle system. We use lists of

(© The Eurographics Association 2006.

particles for rendering and processing. This avoids the need
to traverse the 3D array containing the original dataset every
time we access these target voxels.

In order to maintain the lists of particles, we organize
them with a central particle system scheme. The particle sys-
tem contains a list of particle objects. Each particle object
can be organized and displayed by using the display list or
vertex buffer objects (VBOs). When the display list option is
used, each particle object contains an object color if particles
do not possess color information. The particle object also
maintains a list of particles and each particle contains infor-
mation such as: position (x,y,z), color (r,g,b,a), and refer-
ence to voxel (which contains intensity and gradient). Posi-
tion is used during the sketch-based volume cutting (Section
4). Reference to voxel is required to locate neighboring vox-
els during segmentation (Section 5). For rendering (Section
6), position, color, and voxel gradient (normal) are needed.

Alternatively, particle objects can utilize the various
VBOs stored in a collection of particle buffersets. Each
particle bufferset contains a vertex buffer (i.e. voxel posi-
tion), normal buffer (i.e. voxel gradient), and color buffer
(i.e. voxel intensity). Each of these buffers is stored on the
GPU texture memory using VBO. The required voxels only
travel across the system bus once whenever the histogram
is defined. Each particle object then maintains only index in-
formation into the corresponding particle bufferset. Particles
are rendered in either X-ray mode or surface mode (Section
6). Each particle object contains an attribute for its assigned
rendering mode.

4. Sketch-based Volume Cutting

To place the seed for the region growing, we use a novel
sketch-based interface. In the first stage, the user specifies
a ROI by a closed free-form sketch on the screen. The ex-
trusion of this sketch forms the ROI and likely contains the
target area (organ). This approach has several benefits: it in-
creases the performance of seed-growing after extrusion and
cutting, the user is able to navigate and place the seed more
easily, and finally it is very intuitive.

The main challenge here is to cut the extrusion from the
volume at an interactive rate. With the defined histogram
intensity range, a collection of particles is composed from
the 3D volume array. The set of particle attributes is pack-
aged into vertex buffer, normal buffer, and color buffer us-
ing VBO. These buffers are sent only once and stored on
the GPU texture memory for successive rendering and pro-
cessing. The sketched area is extruded along the view direc-
tion and pierces into the entire volume (Figure 3). The com-
puted sub-volume is rendered in the surface mode and the
background volume is rendered in the X-ray mode (Figure
9, right). Subsequent sketches affect only the ’visible’ sub-
volume currently rendered in the surface mode. Then the re-
maining task is to distinguish the particles that fall *inside’
the extrusion from the ones that are “outside’.

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

Sketch

Extrusion

Figure 3: Sketch extrusion.

In order to find the list of selected particles that fall in-
side the sketched extrusion, one possible strategy is to use
the standard polygon fill or crossing test algorithms [Hai94]
[Fra]. For this, we can project the particle to the screen and
check whether it is inside of the sketched stroke. The speed
of this method depends on the number of points on the stroke
(as a polygon). Unfortunately, this method suffers from a
slow speed when the stroke (polygon) has a good quality.
Although we could implement the crossing test in GPU, the
speed is still dependent on the complexity of strokes and the
level of interactivity can vary depending on the user input.
Instead, we adapt a novel GPU-based technique that is inde-
pendent of the sketch complexity.

4.1. Computational Mask

The fundamental concept of our sketch-based system is a
real-time filtering process employing a computational mask
(Figure 4). We move the mask to traverse the entire volume
in a front-to-back order and pick up the particles (or vox-
els) that are inside the sketched area. The particles which
are not visited by this process are labeled as being *outside’.
As depicted in figure 4, the volumetric dataset can be in any
orientation with respect to the computational mask.

Figure 4: Computational mask.

The computational mask is composed of 1s and Os, where
1 indicates that the pixel is covered by the sketched area and
0 means that the pixel is outside the area. Figure 5 illustrates
the process for generating the mask. At first, the user places
strokes on the screen and a closed curve is obtained. Next,
we fill the enclosing area using the stencil buffer with a 1-bit

color [WNDS99]. Then we save the content of the stencil
buffer as a texture as demonstrated in Figure 5.

1]] LI
seagiddeiens

Render to texture

Sketch Fill

Figure 5: Generating the computational mask using the
stencil buffer.

4.2. GPU-based Sketch System

In order to quickly filter the entire volume with the gener-
ated computational mask, we perform all of our computation
in GPU and send back the result as a single texture to the
CPU. We leverage the workload to both vertex and fragment
shaders and optimize the speed by minimizing the program
complexity. Notice that we use the fragments (pixels) and
the framebuffer somehow different from their regular func-
tions. Instead of sequential processing of the particles, we
map many particles to the fragments at a time. This helps us
to use parallel architecture of GPU for processing of the par-
ticles. Therefore, the fragments’ "position" in our method is
an index to the particles instead of being a position of vis-
ible pixels. We also use a binary "value" for the fragments
to show whether the particle is inside of the extrusion. To
map the index of particles, which has a linear order, to the
position of fragments, that has two components, we use a 2D
texture coordinate buffer. In addition, not all particles can be
uniquely mapped to the screen. Consequently, to process all
of the particles, we need to do the process in several passes of
saving the current screen and mapping a new set of particles.
For saving the current screen, which contains binary values,
we use a one-bit plane of the framebuffer (off-screen). For
example, with a given 100x100 sized screen, we are able
to process 10,000 particles for each pass through the graph-
ics pipeline. Figure 6 gives an overview of the processing
pipeline.

4.2.1. Preparing Data Buffers for Pipeline Processing

The vertex buffer (1) contains all particles collected from the
histogram pre-classification phase. It is not deleted unless
the intensity range has been redefined. This enables the sys-
tem to quickly fetch the target particles whenever a sketched
region shall be resolved. This mechanism prevents unneces-
sary traffic of particles traveling across the system bus for ev-
ery processing cycle. The texture coordinate buffer (2) stores
a 2D array of screen coordinates (0, 0), (0, 1), ..., (s, t), ...,
(height - 1, width - 1). Each particle is mapped to a screen
coordinate using the associated texture coordinate. During
the execution of the processing pipeline, we redirect every
particle to its designated screen location.

(© The Eurographics Association 2006.

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

| Texture Memory
5)

L 1.
Lomput

(8)

(@ o (2)
|| Index Texture

|| Buffer ::,:: Coordinate
| Buffer

Fetch particles

Mask look-up

Off-screen Buffer
(3) Vertex Shader (4) Fragment Shader —

5

(6)

—_—— = ————s Bit-planes
| Particle
' = Transformation = Perform masking I
l = Swap attributes * Assign render color |
L —

32x (7) CPU

Figure 6: Sketch system implemented in GPU.

4.2.2. The Vertex and Fragment Programs

The vertex shader (3) is used to perform the particle coordi-
nate transformation. In order to rasterize the current vertex
(e.g. rendered as a 3D point) to the designated fragment loca-
tion, we swap the incoming attributes as follows. The vertex
(input) is multiplied by the model-view matrix, and the result
is assigned to the texture coordinate (output). The accompa-
nied texture coordinate (input) is multiplied by the projec-
tion matrix, and the result is assigned to the position (out-
put). After the vertex shader has finished processing, both
the resulting texture coordinate and position are rasterized
and passed onto the fragment shader.

The fragment shader (4) performs the masking operation
and assigns a pre-defined render color if the mask value is
valid. The input texture coordinate (i.e. the particle’s posi-
tion assigned by the vertex shader) is adjusted with respect
to the projection parameters and the value is looked up from
the computational mask stored as a stencil buffer texture (5).
If the texture look-up results a value of 1, then the parti-
cle processed by the current fragment program is inside the
sketched region; otherwise, it is outside.

4.2.3. Parameter Calculations

Note that we only need one bit in the off-screen buffer (6) to
store the selection information (i.e. one being selected, and
zero being not selected). For a typical off-screen color buffer
with RGBA components, and each component having 8-bit
resolution, it is possible to encode 320,000 particle selec-
tions information by adding all render colors. Thus, the re-
quired off-screen buffer dimension is [/N/32], where N is
the total number of particles to be processed from the vertex
buffer. The calculated buffer dimension becomes the width
and height of the off-screen buffer.

4.2.4. Composing the Result

Finally, the CPU (7) receives the texture and decodes the
selected particles to construct two index buffers, one con-

(© The Eurographics Association 2006.

taining indices of the selected particles and the other one for
the non-selected particles. These index buffers are then sent
and stored in the GPU texture memory for the next process-
ing cycle as well as for rendering purposes. In subsequent
sketch operations, the index buffer (8) (storing the indices
of the previously selected particles) is used to index into the
vertex buffer when the *fetch particles’ command has been
issued.

5. Seeded Region Growing

After describing a rough estimate of the target area using the
sketch-based volume cutting, the user can navigate the vol-
ume and place a seed point directly on the visible surface
to obtain an accurate segment. To find out the seed loca-
tion in the 3D object-space from a 2D input device (e.g. the
mouse), we use an intuitive interface that is consistent with
our sketch-based system. In this interface, the user inputs a
visible voxel (particle) by clicking the mouse on the screen.
The entered pixel can be associated with several particles in
various depths and we need to find the best candidate. To do
this, we extend the pixel area to a larger rectangle whose ex-
trusion in the volume contains all the involved particles (see
Figure 7). To extrude the rectangle in the volume, we use the
same technique as described in section 4. After determin-
ing all the involved particles, we select the one that has the
shortest distance to the entered seed point (Figure 7). The
selected particle is then used as the actual 3D seed point. For
the region growing algorithm, we start from the seed point as
the current voxel and move to adjacent voxels with intensity
values close to the current intensity. We use the breath-first
search algorithm as appears in the context of graph travers-
ing techniques [CLRSO1]. This approach helps to maintain
a balanced and coherent growth. We use a threshold for the
closeness of the intensities. It is obvious that the growing
process can be sensitive to thresholds and the resulting re-
gion can be dramatically enlarged when the threshold is in-
creased by one or two scales. However, as a benefit of our
volume cutting tool, we can constrain the growing region to
be inside of the cut sub-volume as a rough estimate of the
desired region.

s ® ©®
! | 7 @
C | oo /@ ®
) @ ' 2o L ®
O e 71 @
. ©
Device input Draw rectangle Extrusion Seed point in 3D

Figure 7: Searching the seed point.

6. Rendering

In our approach, we adapt the splatting technique [Wes91]
for direct volume rendering using GPU programming. For

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

rendering the volumetric data, each particle associated with
a voxel is rendered as a square texture using the OpenGL
hardware accelerated point sprite. Point sprite enables us
to send only a single vertex information for each particle
(voxel) through the rendering pipeline. We adapt the Gaus-
sian kernel as our texture generation function (Figure 8, left).

In the fragment shader, we simply check the incoming
opacity value and discard the current fragment if alpha is
less than 0.2. We adapt two rendering modes for point-based
splatting: X-ray and surface modes (Figure 8, middle and
right, respectively).

Figure 8: (left to right) Disk texture with Gaussian dis-
tributed transparency values. Different rendering of the
brain: X-ray and surface modes.

The X-ray mode accumulates all fragments to compute
the final pixel value with the following OpenGL formula-
tion: ¢ (x) = Otnew (x)Inew (x) + I (x) [XCO4]; where I7(x) is
the frame-buffer intensity value at pixel location x, Jyew(x) is
the incoming fragment value, and Otew (x) is the opacity of
the new fragment. We use glBlendFunc(GL_SRC_ALPHA,
GL_ONE) to perform the accumulation [XC04].

In order to render particles and obtain a surface represen-
tation, we apply a two-pass rendering technique that con-
sists of the visibility pass followed by the shading pass
[BHZKOS5]. During the visibility pass, we perform the so-
called e-test operation. For implementing the e-test, we per-
form the following steps. First, we scale all the particles
with the value of € in the negative z-direction. Then we ren-
der to the depth buffer and turn off the color buffer. Dur-
ing the shading pass, we perform lighting computation for
each particle processed by the vertex shader. Note that in
both passes, we discard fragments whose opacities are less
than 0.2. We also combine the X-ray mode and the surface
mode to form the hybrid mode as follows: (1) render the par-
ticles (X-ray mode) to the frame buffer using alpha-blending
with no lighting and (2) render the particles (surface mode)
and perform the visibility pass and the shading pass respec-
tively. However, during the visibility pass while rendering
the surface mode particles, we enable writing to both the
depth buffer and the color buffer. In the fragment shader, we
output black pixels for all fragments processed (i.e. to over-
write the X-ray mode particles).

Figure 9: Sketch types: (a) rectangular strokes, (b) elliptical
strokes, and (c) free-form strokes.

7. Results and Discussions

All the results were generated on an AMD Anthlon
64 X2 3800 with a GeForce 7800 GT, 256 MB card.
We selected raw volumetric datasets of the brain (MRI,
152x154x181), skull (MRI, 256°), and angiography (3T
MRT, 256x320x128).

For all datasets, the sketch response time (SRT) was be-
low 1 second. From loading a full-range histogram, Figure
2 shows the segmentation of grey and white matter of the
left hemisphere of the brain (SRT = 0.384 sec). Figure 9
illustrates the before/after effects on the brain dataset after
sketching rectangular, elliptical and free-form ROIs (SRT
= 0.515, 0.392 and 0.384 sec, respectively). Figure 10 (top
row) shows a successful segmentation of the right ventricle
with SRT = 0.267 sec. Figure 10 (bottom row) illustrates a
series of volume cutting after free-form sketched ROIs (SRT
= 0.261 sec) and the resulting segmented portions of the
teeth. With the 3T MRT time-of-flight angiography dataset
of a human head (Figure 11), we were able to quickly seg-
ment the carotid and cerebral arteries with SRT = 0.224 sec.

Our system also allowed a real-time preview of seed lo-
cations as the user moves the mouse. The interactive rate of
seed searching was achieved by utilizing the core system im-
plementation and from the aid of GPU. Note that in order to
obtain smooth sketching lines, we froze the background ren-
dering (i.e. the volume splatting) by saving the entire scene
to a texture. Thus when the user placed strokes on the screen,

(© The Eurographics Association 2006.

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

we rendered the screen-sized texture first followed by the
ROI strokes.

8. Conclusion and Future Work

We presented a novel interface for volume segmentation
based on seeded region growing. Instead of the traditional
way of browsing from hundreds of cross-sectional slices, we
proposed a sketch-based interface for interactive volume ex-
ploration and navigation for the ROI. We provided real-time
rendering when the user interacts and places the seed point
from a truly 3D environment. More importantly, our sketch-
based system constrained the region grow from the cut sub-
volume to enforce focus-of-attention. In designing from a
particle system perspective, our approach can be easily ex-
tended to a number of applications including other point-
based systems, polygonal meshes, and irregular volume with
changing topology.

Future improvements include extending our system with
other algorithms for sketch-based volume manipulation. It
would also be useful to have the capability of multiple
sketched ROIs assigned in different regions of the volume
to allow, for instance, better control of the level of detail
in selected regions of the dataset. The criteria that we used
to judge the quality of the results were solely based on our
observations on the speed and flexibility of volume data cut-
ting, exploration, and seed planting/growing control. It is im-
portant to conduct more formal evaluations and user/clinical
studies to provide quality sketch-based volume segmentation
tools for professionals in medical science.

References

[AB94] ADAMS R., BISCHOF L.: Seeded region growing.
IEEE Trans. on PAMI 16, 6 (June 1994), 641 — 647.

[BHZKO05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High-quality surface splatting on today’s
gpus. In Proc. of the Eurographics Symposium on Point-
Based Graphics "05 (2005).

[CLRSO1] CoRMEN T. H., LEISERSON C. E., RIVEST
R. L., STEIN C.: Introduction to Algorithms. MIT Press
and McGraw-Hill, 2001.

[Fra] FRANKLIN W. R.: Pnpoly - point inclusion in
polygon test. http://http://www.ecse.rpi.edu/
Homepages/wrf/Research/Short_Notes/pnpoly.
html.

[Hai94] HAINES E.: Point in polygon strategies. Graphics
Gems IV (1994), 24-46.

[KD98] KINDLMANN G., DURKIN J.: Semi-automatic
generation of transfer functions for direct volume render-
ing: Methods and applications. In Proc. of Visualization
"98 (1998), pp. 79 — 86.

(© The Eurographics Association 2006.

[KQO3] KIRBAS C., QUEK F.: Vessel extraction tech-
niques and algorithms: a survey. In Proc. of Bioinformat-
ics and Bioengineering ’03 (2003), pp. 238 — 245.

[ONIO5] OWADA S., NIELSEN F., IGARASHI T.: Vol-
ume catcher. In Proc. of the Symposium on Interactive
3D graphics and games ’05 (2005), pp. 111 — 116.

[ONNIO3] OwADA S., NIELSEN F., NAKAZAWA K.,
IGARASHI T.: A sketching interface for modeling the
internal structures of 3d shapes. In Proc. of 3rd Inter-
national Symposium on Smart Graphics (2003), pp. 49 —
57.

[ONOIO4] OwaADA S., NIELSEN F., OKABE M.,
IGARASHI T.: Volumetric illustration: Designing 3d
models with internal textures. Proceedings of ACM
SIGGRAPH(SIGGRAPH2004) (2004), 322-328.

[PXP99] PHAMD. L., XU C., PRINCEJ. L.: A survey of
current methods in medical image segmentation. In Tech-
nical Report JHU/ECE 99-01, The Johns Hopkins Uni-
versity (1999).

[RK82] ROSENFELD A., KAK A.: Digital picture pro-
cessing. New York Academic Press 2 (1982), 138 — 145.

[SHNO3] SHERBONDY A., HOUSTON M., NAPEL S.:
Fast volume segmentation with simultaneous visualiza-
tion using programmable graphics hardware. In Proc. of
IEEE Visualization 03 (2003), pp. 171 — 176.

[SWDO05] SCHENKE S., WUENSCHE B., DENZLER J.:
Gpu-based volume segmentation. In Proc. of IVCNZ 05
(2005), pp. 171 — 176.

[TLMO03] TzENG F.-Y., LuM E. B., MA K.-L.: A novel
interface for higher-dimensional classification of volume
data. In Proc. of IEEE Visualization *03 (2003), pp. 505 —
512.

[Wes91] WESTOVER L.: Splatting: A Parallel, Feed-
Forward Volume Rendering Algorithm. PhD thesis, De-
partment of Computer Science, University of North Car-
olina at Chapel Hill, 1991.

[WNDS99] Wo00 M., NEIDER J., DAVIS T., SHREINER
D.: OpenGL Programming Guide Third Edition.
Addison-Wesley Publishing Ltd, 1999.

[XC04] XUE D., CRAWFIS R.: Efficient splatting using
modern graphics hardware. Graphics Tools 3, 8 (2004),
1aV21.

[YZNCO5] YUAN X., ZHANG N., NGUYEN M. X.,
CHEN B.: Volume cutout. The Visual Computer (Spe-
cial Issue of Pacific Graphics 2005) 21, 8-10 (2005), 745—
754.

http://http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

H.L.J. Chen & F. F. Samavati & M. C. Sousa & J. R. Mitchell / Sketch-based Volumetric Seeded Region Growing

Figure 10: Segmentation of right ventricle (top) and partial teeth (bottom). (a) Raw volume, X-ray, with sketched-region. (b)
Resulting cut, rotating the view, new sketch. (c) Resulting cut, rotating the view, plating the seed. (d) Region growing contained
within sketched/resulting volume from (c).

Figure 11: Segmentation of carotid and cerebral arteries. (a) Raw volume, X-ray, with sketched-region. (b) Resulting cut,
rotating the view, plating the seed on the arterial branch. (c,d) Region growing contained within sketched/resulting volume from

(b).

(© The Eurographics Association 2006.

