
Cascading Recognizers for Ambiguous Calligraphic 
Interaction

João P. Pereira 
Dep. de Eng.ª Informática, ISEP/INESC

R. de São Tomé, Porto 
jpp@dei.isep.ipp.pt

Joaquim A. Jorge 
Dep. de Engª. Informática, IST 

Av. Rovisco Pais, Lisboa 
jorgej@acm.org 

Vasco A. Branco 
Dep. de Comunicação e Arte, UA 

Aveiro
vab@ca.ua.pt

Nelson F. Silva 
Inst. Superior Técnico, IST
Av. Rovisco Pais, Lisboa 

nelson.faria@netcabo.pt

Tiago D. Cardoso 
Instituto Superior Técnico, IST 

Av. Rovisco Pais, Lisboa 
tiagocardoso@netcabo.pt

F. Nunes Ferreira 
Dep. de Eng. Electrotécnica, FEUP 

R. Dr. Roberto Frias, Porto 
fnf@fe.up.pt

ABSTRACT

Throughout the last decade many approaches have been made to the problem of developing CAD systems that are 
usable in the early stages of product ideation. Although most of these approaches rely on some kind of drawing 
paradigm and on the paper-and-pencil metaphor, only a few of them deal with the ambiguity that is inherent to 
natural languages in general and to sketching in particular. Also the paper-and-pencil metaphor has not in most 
cases been fully accomplished, since many gesture-based interfaces resort to secondary buttons and modifier keys 
in order to make command strokes easier to differentiate from their geometry instantiating counterparts. 
In this paper we describe the architecture of GIDeS++, a sketch-based 3D modeling system that approaches these 
problems in three different ways: by dealing with ambiguity and exploring it to the user’s benefit; by reducing the 
command set and thus minimizing the cognitive load on the user; and by cascading different types of gesture 
recognizers, which allows interaction to resort only to the button located on the tip of an electronic stylus. 

Calligraphic Interfaces, Non-Command Interfaces, One-Button Interfaces, Ambiguity, Expectation Lists, Sketch-
Based Modeling.

1. Introduction and Related Work 

The evolution of computer-aided design systems has been 
characterized, amongst other aspects, by the fact that its 
remarkable increment in functionality was obtained at the cost 
of an undesirable increase in the complexity of its use and of a 
consequent distance in relation to traditional paper and pencil. 
The abundance of existing commands and the strictness of the 
interaction tend to interfere with the designer’s mind and 
disturb her/his creative processes, so it is not surprising that 
users continue to rely on paper and pencil in the initial stages of 
the design, resorting to the computer only in the final stages, 
when the shape of the object being created is already 
established and it is important to convert the sketch into a 
precise drawing. 

Since then a lot of research has been done in order to develop 
CAD system interfaces that adopt some kind of drawing 
paradigm in an attempt to resemble the look and feel of paper 
and pencil. 

On the one hand there are what we call pure drawing 
paradigms, in which the user sketches one (sometimes more) 
view of the object she/he plans to create and invokes a 3D solid 
reconstruction algorithm, which converts the drawing into a 
three-dimensional model. The resemblance with paper and 
pencil is high but there are a few drawbacks. As a matter of 
fact, most solid reconstruction techniques continue to rely on
Huffman and Clowes labeling schemes [Huf71] [Clo71], which
may only be applied to polyhedrons with trivalent junctions. 
Also the validity of the line drawing can’t be fully verified 
since labeling is based on necessary, but not sufficient, 
conditions for the drawing to represent a 3D object [WG93]. 
Examples of CAD systems that rely on this type of paradigm 
are IdeS [BFC94], Digital Clay [SG98], and Stilton [TCP00]. 

On the other hand there are constructive (or incremental) 
drawing paradigms in which three-dimensional scenes are 
progressively built by combining and/or editing gesture-
recognized instances of a small set of primitives. The paper and 
pencil metaphor is not as well accomplished as in the previous 
case, but there are not so many limitations in what concerns to 

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2004)
John F. Hughes and Joaquim A. Jorge (Editors)

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


the category and complexity of the solid’s geometry. They can 
be smooth (e.g. an object of revolution), junctions must not be 
necessarily trivalent (e.g. the apex of a quadrangular pyramid) 
and the validity of the line drawing is always assured 
(otherwise no recognition takes place). Examples of CAD 
prototypes that resort to this kind of paradigm are SKETCH 
[ZHH96], Teddy [IMT99], the Translucent Sketchpad 
[EBSC99] [BES00], and Sketch-N-Make [BZ*98]. 

Another problem with some sketch-based CAD systems 
relates to the use of many buttons and modifier keys, in 
opposition to the pencil, which has no buttons at all. The 
identification of gestures based on the button the user is 
pressing (e.g. left button for creating geometry, and right button 
for instantiating commands) is easier from the system’s point of 
view, but increases the cognitive load on the user. 

Last but not least, sketching, as well as all other natural ways 
of conveying information, is intrinsically ambiguous. Such 
ambiguity can’t therefore be avoided, and systems that try to 
unambiguously recognize a drawing tend to fail more 
frequently than others. Also for that kind of systems the 
recognition patterns must be mutually exclusive, which 
increases the number of different gestures that are subject to 
recognition, thus increasing once again the cognitive load on 
users. Mankoff describes many different ways of dealing with 
ambiguity in recognition-based interfaces [MAH00]. Examples 
of such interfaces are Burlap [MAH00], Pegasus [IMKT97], 
and Chateau [IH01]. 

The remainder of this paper describes the architecture of 
GIDeS++, an incremental drawing calligraphic interface that 
tries to address these problems by naturally handling 
ambiguous interactions. We show how the system successively 
tries to recognize commands, 2D primitives, 3D primitives, and 
Boolean operations without the need for more than just the 
button located on the tip of an electronic stylus. Finally we 
describe ongoing research directions and future work. 

2. Cascading Recognizer Architecture 

The architecture of GIDeS++ includes four different classes 
of cascade recognizers – commands, 2D primitives, 3D 
primitives and Boolean operations. Two modules compose each 
one of these subsystems. The next sections describe the 
recognition process in GIDeS++ with some detail. 

2.1 Command Recognizer 

Figure 2 in the next page illustrates the basic architecture of 
GIDeS++. The first step on the recognition process consists of 
preprocessing the stream of points that make up strokes drawn 
by users. There are two purposes for this procedure: to 
eliminate jiggle, which is achieved by discarding every input 
point that lies within 3 pixels in relation to the previous input 
point; and to perform segmentation, that is to create a polyline 
that reasonably resembles the original stroke. 

The preprocessed stroke is then fed into two different 
recognition units: a modified version of Rubine’s gesture 
recognizer [Rub91] (module no. 1) and an auxiliary recognizer 
(module no. 2). 

2.1.1 Rubine’s Modified Recognizer 

The enhancements made to Rubine’s recognition process had 
four main purposes [PJBF00]: 

Support for multiple-stroke gesture recognition. The 
sequence by which strokes are drawn is irrelevant. 
Recognize strokes regardless of the direction they were 
drawn.
Force recognition to depend on context aspects not 
necessarily related to gesture geometry. 
Support for handling ambiguity. 

Rubine proposes a set made up of 11 static (geometric) features 
and 2 optional dynamic (temporal) features to identify strokes 
input by users. GIDeS++ takes into account the geometric 
features only, so that users sketching speed do not affect the 
recognition process. A second level of geometric features was 
added in order to deal with gestures made up of multiple 
strokes. For every possible pair of strokes that make up each 
gesture, a pair of values representing the distances (both 
horizontal and vertical) between the center points of stroke 
bounding boxes is computed (Figure 1). Whenever a stroke is 
identified as being part of a multi-stroke gesture a timer is 
triggered. If the user draws the next stroke before the timeout 
occurs and the stroke meets the spatial relationships described 
above, it is considered as being part of the same gesture. 
Otherwise the system assumes that a new gesture is being 
initiated. Taking into consideration both time and space 
relationships gives much generality and flexibility to the 
recognizer, allowing gestures that share the same strokes to 
coexist (for example the “3D” gesture shown in Figure 1 could 
coexist with a “3” gesture, a “D” gesture and even a “D3” 
gesture).

Figure 1: Distances between pairs of strokes

Slight modifications in the statistic equations proposed by 
Rubine were also made. The changes take into account that 
each gesture class is now eventually made up of more than one 
stroke.
Let C be the number of gesture classes, Sc the number of strokes 
that make up the gesture class c, Ec the number of training 
examples of gesture class c, and F the number of features used 
to identify strokes. 
Let fcesi be the ith feature of the sth stroke of the eth training 
example of gesture class c. The sample estimate of the mean 
feature vector for each stroke of each class is given by the 
equation:

f
E

fcsi
c

cesi
e

Ec1
0

1

0 c C , 0 s Sc , 1 i F

y

x

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction64



Figure 2: G
ID

eS+
+

 C
ascade Architecture

B
oolean O

peration 
R

ecognizer 

M
odule 

no. 1 
M

odule 
no. 2 

Preprocessed 
Stroke

C
om

m
and 

Expectation Lists 
2D

 Prim
itive 

Expectation Lists 

* Feedback for system
 learning and adapting to user 

3D
 Prim

itive 
Expectation Lists 

B
oolean O

peration 
Expectation Lists 

U
ser O

ptions

Sm
ooth-

ness 
Shape 

2D
 Prim

itive 
R

ecognizer 

Topo-
logy 

G
eo-

m
etry 

3D
 Prim

itive 
R

ecognizer 

O
ver-

lapping
D

ot 
Product 

*

3D
 Scene 

C
om

m
and 

R
ecognizer 

D
raw

ing G
raph 

65



The sample estimate of the covariance matrix for each stroke 
of each class is then given by the equation: 

csij cesi
e

E

csi cesj csjf f f f
c

( )( )
0

1

0 c C , 0 s Sc , 1 i j F,
An estimate of the common covariance matrix is then 

evaluated as: 

ij

csij
s

S

c

C

c c
c

C

c

E S

0

1

0

1

0

1

1( )

1 i j F,
The weights used to evaluate each stroke of each class over 

its features are computed as follows: 

w fcsj ij
i

F

csi( )1

1

w w fcs csi csi
i

F

0
1

1
2

0 c C , 0 s Sc , 1 j F
To make the recognition process independent of the direction 

strokes are drawn, one or two steps are performed: the fist one 
attempts to classify the stroke in the original direction drawn by 
the user. If it fails to recognize the stroke, its internal 
representation is reversed (that is the direction is reversed) and 
a second classification attempt is accomplished. 

Rubine’s gesture classification process also had to undergo 
some changes so that it can deal with ambiguity. 

Rubine proposes a linear equation that uses the previously 
computed weights and features to evaluate, for each gesture 
class c, a quantity called vc. The classification of gesture g
consists simply in finding the c that maximizes vc. An estimate 
P(c|g) of the probability that g was correctly classified is then 
evaluated, along with a quantity 2, called Mahalanobis 
distance [DH73]. The gesture will be rejected if P(c|g) < 0.95
or if 2 > F2 / 2.

In our case we begin to evaluate, for each stroke s of each 
class c the Mahalanobis distance, given by the equation: 

cs ij i csi j csj
j

F

i

F

f f f f2 1

11

( ) ( )( )

0 c C , 0 s Sc

Strokes for which cs
2 > F2 / 2 are rejected. Then, for each 

one of the remaining candidates, we compute the quantity vcs as 
follows:

v w w fcs cs csi
i

F

i0
1

0 c C , 0 s Sc

Based on these values we estimate the probability P(cs|g)
that user stroke g can be identified with stroke s of class c:

P cs g
e v v

j

S

i

C
ij cs

i
( | )

( )

1

0

1

0

1

0 c C , 0 s Sc

The acceptance or rejection of candidate strokes is then made in 
accordance to the following set of rules: 

If there is a candidate with probability P  0.95, the 
candidate is accepted and all others are rejected (no 
ambiguity at all, as it happens with Rubine’s algorithm). 
Otherwise, if there are two candidates each one with 
probability P  0.95 / 2, both candidates are accepted 
(ambiguity) and all others rejected. 
Otherwise, if there are three candidates each one with 
probability P  0.95 / 3, the three candidates are accepted 
(ambiguity once again) and all the others rejected. 
And so on. 

The dependency of the recognition process on other aspects 
not related with the shape of strokes is achieved by means of a 
set of software functions, one for each gesture, which return the 
Boolean values TRUE or FALSE depending on whether those 
aspects are met or not. 

2.1.2 Auxiliary Recognizer 

The aim of the auxiliary command recognizer is to classify 
strokes that can’t be classified by Rubine’s improved 
recognizer. Instead of being specified by example, each gesture 
is coded into a dedicated software function responsible for its 
recognition, allowing the classification process to be more 
flexible and to deal with aspects such as variable geometric 
features, insensitivity (or not) to geometric transformations, etc. 

Figure 3 illustrates the need for this auxiliary recognizer. The 
size and shape of the object selection gesture (lasso) vary 
according to the objects the user wants and wants not to select, 
making it impossible for Rubine’s modified recognizer to 
classify it. 

Figure 3: Object selection gesture

The auxiliary recognizer is also capable of dealing with 
multiple stroke gestures, ambiguity, and features stroke order 
and direction independence as well. 

2.1.3 Command Expectation List 

The final step in the command recognition process is to 
present the user with a set of all commands that were 
recognized in relation to the sketched gesture. The user may 
then choose which one of the available commands shall be 
performed. She/he may also ignore the expectation list and 
proceed with the drawing process. 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction66



a) delete b) apply texture c) ambiguity 

Figure 4: Command Expectation List

Figure 4 shows an example of a command expectation list. 
It also illustrates the way GIDeS++ deals with ambiguities 
and how expectation lists allowed us to overload command 
gestures, thus significantly reducing the number of needed 
command gestures and therefore minimize cognitive load on 
users [PJBF03]. 
In this case two commands – delete and apply texture – share 
the same “scratch” gesture. The difference is that the delete
stroke must cross the object’s boundary (Figure 4a), while the 
texture stroke must be entirely drawn over the object’s 
surface, i. e. inside its two-dimensional projection (Figure 4b). 
The user may also opt to delete or conversely, to apply a 
texture to a previously selected object or set of objects. In that 
case GIDeS++ does not have enough contextual information 
to identify which command to apply. Therefore, the 
application generates a command expectation list and prompts 
the user to select the intended command (Figure 4c). 

2.2 2D Primitive Recognizer 

The next step on the recognition process consists of 
identifying 2D primitives. A gravity processing unit (not 
shown in Figure 2) compares the preprocessed stroke (a 
polyline) both with itself and with preexistent strokes stored 
in the drawing graph, and eventually modifies its component 
points in order to make them coincide with other existent 
points (linear gravity). It may as well align line segments with 
any of the main drawing directions (angular gravity). 

The sample points of the preprocessed stroke are also used 
in generating a cubic spline. Both the polyline and the spline 
are then fed into the smoothness recognition module. 

2.2.1 Smoothness Recognizer 

The purpose of this unit is to find out whether the user 
intended to draw a rough stroke such as a polyline, or a 
smooth curve that will be subsequently converted into a cubic 
spline. Both the rough and the smooth strokes are compared to 
the original stroke and the one that closely matches it is 
elected to be the default option in the 2D primitive 
expectation list. Stroke comparison is performed by 
computing an error function consisting on the sum of the 
distances between each pair of corresponding points 
(interpolations are computed as needed). The stroke (polyline 
or spline) with the least error value is considered to be the one 
that closely matches the original stroke. 

The smoothness recognizer has the ability to adapt itself to 
each user’s unique drawing style, as described later in Section 
2.2.5.

2.2.2 Shape Recognizer 

The shape recognizer is responsible to determine whether 
the user intends to draw some specific primitive such as a 

circle or an ellipse, or a general one such as a smooth curve or 
a polyline. Three differently oriented ellipses are recognized, 
each one corresponding to the projection of a circle over each 
one of the three main planes in 3D space. Since the user can 
change the viewpoint over the scene, the ellipse recognition 
process is slightly more complex. In fact, what happens is that 
the geometric recognizer first projects the stroke onto each 
one of the three main planes and then tries to recognize a 
circle. The circle itself is identified by computing once again 
an error function that compares the stroke with a perfect 
circle. The centre of the circle corresponds to the center of the 
stroke’s bounding box and the radius is the average distance 
between the centre and the stroke’s sample points. 

2.2.3 2D Primitive Expectation List 

As soon as the recognition process itself comes to an end, a 
2D primitive expectation list is generated. Figure 5 illustrates 
how this kind of expectation list also deals with ambiguity 
and explores it to the user’s benefit. In this case the designer 
sketched a stroke that resembles an ellipse. 

Figure 5: 2D Primitive Expectation List

The smoothness recognizer classified the stroke as being 
smooth and the geometry recognizer classified it as being an 
ellipse. The resulting expectation list thus suggests an 
accurate ellipse as its default option. Nevertheless it is 
possible that the user wanted a generic smooth curve that 
happens to resemble an ellipse, instead of the ellipse itself. Or 
maybe the smoothness recognizer described above made a 
mistake and interpreted the stroke as smooth instead of rough. 
The remaining two options in the expectation list reflect these 
possibilities

2.2.4 Preprocessor and Gravity Control 

The geometry recognizer has the ability to make changes to 
the parameters that control both the stroke preprocessor and 
the gravity processor units, in order to make them more 
tolerant to the imprecision inherent to hand drawn strokes. 
Figure 6 shows an example of a stroke originally recognized 
as a two-segment polyline (default option) that can also be 
interpreted as two different kinds of line segments. The 
conversion of the polyline into a line is a consequence of a 
change in the parameters that control the stroke preprocessor, 
and the different slope of the line segment that constitutes the 
third option in the expectation list is a result of a change in the 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction 67



gravity processor control parameters, which forced it to align 
with one of the main drawing directions. 

Figure 6: Changes in Stroke Preprocessor and Gravity 
Control Parameters

2.2.5 Adapting to User Behavior 

The smoothness recognizer described in Section 2.2.1 is 
responsible for identifying whether the stroke input by the 
user should be interpreted as a rough or a smooth line. An 
error function relating the original stroke both with the 
polyline and spline interpolations is evaluated.Let p and s
respectively, be the error summations of the polyline and 
spline approximations over the entire length of the stroke. 
Then we compute two estimates of the likelihood of choosing 
the polyline (pp) or spline (ps) approximations, respectively. 
Note that 0  pp, ps  1 and pp + ps = 1. 

sp

s
pp

sp

p
sp

The simplest way to classify the stroke is to compare ps (or 
pp) against a preset threshold (typically 0.5; Figure 7a). If ps is 
above the threshold (ps > 0.5), the stroke is a smooth line; 
otherwise (ps  0.5) the system chooses the polyline 
approximation. Preliminary user tests showed this was not 
entirely acceptable, so we decided to develop an adaptive 
approach, using a dynamic threshold (pth), which varies as a 
function of the number of previous mistakes (Figures 7b and 
7c). Mistakes are identified based on user choice over the 
expectation list: 

1
1
1

1

p

s
th

n
n

p

where ns and np are the number of times the stroke was 
erroneously classified as a spline (ns) or a polyline (np),
respectively. We now compare ps to pth, to decide whether to 
select a spline approximation (ps > pth) or a polyline otherwise 
(ps  pth).

A simple analysis of this procedure shows that the formula 
is simple (which is good), also balanced (ns = np  pth = 0.5), 
and converges rapidly with the number of errors. This can be 
seen by the partial derivatives: 

2)1()1(

1

ps

p

s

th

nn
n

n
p

2)1()1(
1

ps

s

p

th

nn
n

n
p

which are inversely proportional to the number of errors 
squared.

2.3 3D Primitive Recognizer 

The next step on the recognition process consists of 
identifying 3D primitives. 

2.3.1 Drawing Graph 

Whenever the user inputs a stroke that is recognized as a 
drawing element, the corresponding 2D primitive is inserted 
into the system’s drawing graph, triggering the 3D 
recognition process. 

2.3.2 Subgraph Evaluator 

First we evaluate the subgraph consisting of the recently 
inserted stroke along with all the eventually preexistent 
strokes that are connected to it. The gravity processing unit 
plays an important role here since it helps users in connecting 
strokes, thus avoiding the need for timeouts in identifying 
which strokes relate to the very same gesture. 

 a) b) c) 

Figure 7: Thresholding

0.50

0.00

1.00

0.25

0.00

1.00

0.75

0.00

1.00
Key

Smooth Strokes 

Rough Strokes 

Threshold 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction68



Figure 8: 3D Primitives and Corresponding Instantiating Gestures

2.3.3 Topology Recognizer 

The subgraph is then subject to a topological classification 
process that tries to identify which one of the following 
categories the gesture falls into (Figure 8): 

Trivalent junction (box gesture). 
Closed line (sphere gesture). 
Closed line connected to an open line consisting of one or 
more line segments (surface of revolution and duct 
gestures), or of one single line segment (remaining 
gestures).

2.3.4 Geometry Recognizer 

If the topological recognition process succeeds, the gesture is 
then subject to a geometry analysis procedure in order to find 
the primitive (or primitives, if there is an ambiguity) that 
eventually matches the gesture. 

For example for the cylinder, cone and truncated cone to be 
recognized, the above-mentioned closed line must be an ellipse. 
In the case of the cylinder, the line segment connected to the 

ellipse must be perpendicular (in 3D) to the ellipse’s plane. 
Otherwise, the segment’s open end must (in the case of the 
cone) or must not (in the case of the truncated cone) be close to 
the axis perpendicular to the ellipse’s plane that goes through 
its center. 

2.3.5 3D Primitive Expectation List 

Whenever both the topological and geometric recognition 
processes succeed, a 3D primitive expectation list is generated. 
Figure 9 shows an example of such a list. 

Figure 9: 3D Primitive Expectation List

Again notice how the interface explores ambiguity in order to 
reduce the required repertoire of recognized gestures. In this 
case the same idiom can instantiate four distinct objects, 
namely a truncated cone, a surface of revolution (the most 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction 69



obvious choices) and two less evident kinds of cylindrical 
sections with different orientations. The user may as usual 
ignore the suggestions and proceed with the drawing. 

2.4 Boolean Operation Recognizer 

Whenever users sketch a primitive over an existent solid in the 
scene, the newly created object is properly placed and attached 
to that solid. Under these circumstances GIDeS++ attempts to 
find the appropriate Boolean operation (union or subtraction) 
based on gesture orientation. 
Figure 10 illustrates this procedure. The gesture orientation (in 

the example the orientation provided by the line segment 
together with the ellipse attached to it) is compared with the 
object’s surface normal. The system chooses to perform union 
or subtraction depending on whether the sign of the dot product 
is positive or negative. 

Figure 10: Recognizing Boolean Operations

Some primitive gestures such as the sphere provide no 
orientation information. It may also happen that the above-
mentioned dot product equals zero (i. e. the gesture orientation 
and the surface’s normal are perpendicular to each other). 
These circumstances prevent GIDeS++ from identifying the 
desired Boolean operation. An expectation list is then 
generated, allowing the user to choose between union and 
subtraction as shown in Figure 11. 

Figure 11: Boolean Operation Expectation List 

3. Conclusions and Future Work 

GIDeS++ (as well as its predecessor, GIDeS) was subject to 
usability evaluation sessions in which participated designers, 
mostly from the mould industry, and architects. The results 
achieved were very encouraging and seem to validate the 
calligraphic model of interaction, as well as the adopted 
drawing paradigm and the corresponding architecture. 

Nevertheless we are currently working on a hybrid paradigm 
that combines the advantages of incremental drawing with the 
straightforwardness of 3D solid reconstruction techniques such 
as the one proposed by Naya for creating normalons and quasi-
normalons [NJC*02] (Figure 12). 
In addition to the 2D drawing graph we will have a 3D graph 
for those circumstances in which it is possible to infer the 
coordinates of the stroke in the 3D space. Examples of these 
situations are when the user is drawing with the help of an 
auxiliary plane (the equation of the plane is known), or when 
she/he is sketching on the surface of an existing solid (the 
description of the surface is known as well). In those cases the 
drawing is directly stored in the 3D graph and fed into the 3D 
input of the primitive recognizer. The recognition process 
becomes simpler, since there is no need for taking the currently 
defined projection into account. 
Whenever it is not possible to determine the space coordinates 
of the stroke, it is stored in the 2D graph and an attempt is made 
to reconstruct the resulting subgraph’s 3D geometry. If it 
succeeds, the subgraph is passed to the 3D graph and then to the 
primitive recognizer, which builds the corresponding normalon
or quasi-normalon. Otherwise everything happens the same 
way it is happening now, that is the subgraph is fed into the 2D 
input of the primitive recognizer, which tries to identify it as 
one of the basic solids illustrated in Figure 8. 

4. Acknowledgements 

The work described in this paper has been supported in part 
by the European Commission Grant #IST-2000-28169 
(SmartSketches project) and by the Portuguese Science 
Foundation under grant POSI/34672/SRI/2000. 

b) subtraction 

a) union 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction70



References 

[BES00] BIMBER O., ENCARNAÇÃO L. M., 
STORK A.: A multi-layered architecture for 
sketch-based interaction within virtual 
environments. Computers & Graphics, Vol. 
24, No. 6, pp. 851 – 867, Elsevier, Dec. 2000. 

[BZ*98] BLOOMENTHAL M., ZELEZNIK R., FISH 
R., HOLDEN L., FORSBERG A., 
RIESENFELD R., CUTTS M., DRAKE S., 
FUCHS H., COHEN E.: Sketch-N-Make: 
Automated Machining of CAD Sketches. 
Proceedings of ASME Design Engineering 
Technical Conferences, Atlanta, Georgia, 
September 1998. 

[BFC94] BRANCO V., FERREIRA F. N., COSTA A.: 
Sketching 3D models with 2D interaction 
devices. EUROGRAPHICS '94 Conference 
Proceedings, Daehlen M, Kjelldahl L (Eds.), 
Oslo, Blackwell Pub., 489-502, 1994. 

[Clo71] CLOWES M. B.: On Seeing Things. Artificial
Inteligence, 2(1):79-112, 1971. 

[DH73] DUDA R., HART P.: Pattern Classification 
and Scene Analysis. Wiley Interscience, 1973. 

[EBSC99] ENCARNAÇÃO L. M., BIMBER O., 
SCHMALSTIEG D., CHANDLER S. D.: A 
Translucent Sketchpad for the Virtual Table 
Exploring Motion-based Gesture Recognition. 
Computer Graphics Forum, Vol. 18, No. 3, 
pp. C-277 – C-285, 1999. 

[Huf71] HUFFMAN D. A.: Impossible objects as 
nonsense sentences. B. Meltzer, D. Michie 
(Eds.), Machine Intelligence, 295-323, 
Edinburgh University Press, 1971. 

[IMKT97] IGARASHI T., MATSUOKA S., 
KAWACHIYA S., TANAKA H.: Interactive 
Beautification: A Technique for Rapid 
Geometric Design. Proceedings of the ACM 
Symposium on User Interface Software 
Technology (UIST), 1997. 

[IMT99] IGARASHI T., MATSUOKA S., TANAKA 
H.: Teddy: A Sketching Interface for 3D 
Freeform Design. SIGGRAPH ’99 Conference 
Proceedings, ACM, 1999. 

[IH01] IGARASHI T., HUGHES J. F.: A Suggestive 
Interface for 3D Drawing. 14th Annual 
Symposium on User Interface Software and 
Technology (UIST ’01), Orlando, Florida, 
173-181, Nov. 2001 

[MAH00] MANKOFF J., ABOWD G. D., HUDSON S. 
E.: OOPS: a toolkit supporting mediation 
techniques for resolving ambiguity in 
recognition-based interfaces. Computers & 
Graphics, Vol. 24, No. 6, pp. 819 – 834, 
Elsevier, Dec. 2000. 

[NJC*02] NAYA F., JORGE J., CONESA J., 
CONTERO M., GOMIS J. M.: Direct 
Modeling: from Sketches to 3D Models. 
Proceedings of the First Ibero-American 
Symposium in Computer Graphics,
Guimarães, Portugal, 109-117, July 2002. 

[PJBF00] PEREIRA J. P., JORGE J. A., BRANCO 
V., FERREIRA F. N.: GIDeS: Uma 
Abordagem Caligráfica à Edição 3D. 
Actas do 9.º Encontro Português de 
Computação Gráfica, pp. 101 – 108, Feb. 
2000.

[PJBF03] PEREIRA J. P., JORGE J. A., BRANCO 
V., FERREIRA F. N.: Calligraphic 
Interfaces: Mixed Metaphors for Design. 
Proceedings of the 10th International 
Workshop on the Design, Specification, 
and Verification of Interactive Systems,
Funchal, Madeira Island, Portugal, June 
2003.

[Rub91] RUBINE D.: Specifying Gestures by 
Example. SIGGRAPH ‘91Conference 
Proceedings, ACM, Vol. 25, No. 4, pp. 
329 – 337, 1991. 

[SG98] SCHWEIKARDT E., GROSS M. D.: 
Digital Clay: Deriving Digital Models 
from Freehand Sketches. Proceedings of 
ACADIA ’98, T. Seebohm and S. V. Wyk 
(Eds.), Quebec City, Canada, 202-211, 
Oct. 1998. 

[TCP00] TURNER A., CHAPMAN D., PENN A.: 
Sketching space. Computers & Graphics,
Vol. 24, No. 6, pp. 869 – 879, Elsevier, 
Dec. 2000. 

[WG93] WANG W., GRINSTEIN G. G.: A 
Survey of 3D Solid Reconstruction from 
2D Projection Line Drawings. Computer
Graphics Forum, 12(2):137-158, 1993. 

[ZHH96] ZELEZNIK R. C., HERNDON K. P., 
HUGHES J. F.: SKETCH: An Interface 
for Sketching 3D Scenes. SIGGRAPH '96 
Conference Proceedings, ACM, Vol. 30, 
No. 4, pp. 163 – 170, 1996. 

J.P. Pereira, J. A. Jorge, V. A. Branco / Cascading Recognizers for Ambiguous Calligraphic Interaction 71



Figure 12: G
ID

eS+
+

 Future Architecture

B
oolean O

peration 
R

ecognizer 

M
odule 

no. 1 
M

odule 
no. 2 

Preprocessed 
Stroke

C
om

m
and 

Expectation Lists 
2D

 Prim
itive 

Expectation Lists 

* Feedback for system
 learning and adapting to user 

3D
 Prim

itive 
Expectation Lists 

B
oolean O

peration 
Expectation Lists 

U
ser O

ptions

Sm
ooth-

ness 
Shape 

2D
 Prim

itive 
R

ecognizer 

Topo-
logy 

G
eo-

m
etry 

3D
 Prim

itive 
R

ecognizer 

O
ver-

lapping
D

ot 
Product 

2D
 D

raw
ing G

raph 

*

3D
 Scene 

C
om

m
and 

R
ecognizer 

3D
 R

econstruction 

3D
 D

raw
ing G

raph 

3D 2D

72


