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Abstract
We present new solutions to tackle the problem of reconstructing a deforming surface viewed in monocular videos
without a template, by exploiting the fact that many deforming surfaces are on the local scale approximately rigid
and planar. The reconstruction task can then be seen, from bottom up as first multi-plane based pose estimation
then dense surface reconstruction from planar samples. In practice there are major obstacles to overcome. In
this paper we specifically target computing stable orientation estimates at small surface regions from interview
image motion. We achieve this using local affine projection models which are stable and accurate when local per-
spective effects are small. Our core theoretical contributions are closed form solutions to multiview orthographic
planar pose estimation in both the minimal and overdetermined cases. We use this to efficiently construct a weak
deformable template; an undirected graph with nodes holding the surface’s local planar structure and edges de-
noting physical deformation constraints. The template can then be used to recover dense 3D shape very efficiently
from affine image motion via unambiguous planar pose estimation combined with surface regularisation.

1. Introduction

Recovering the 3D shape and motion of nonrigidly mov-

ing bodies from monocular image data remains one of the

most sought after goals in computer vision. The Non-Rigid

Structure From Motion (NR-SFM) paradigm uses motion

detected on the camera’s image plane to recover 3D infor-

mation. Currently there are two broad NR-SFM categories.

Category 1: Template-Based, requires a model of the sur-

face geometry (i.e. a 3D template.) This is assumed to be

known prior to reconstruction. Category 2: Templateless, is

the more recent and attempts to recover geometry and mo-

tion with no such template. This is a considerably more chal-

lenging problem. Even if a geometric template is known

the problem is intractable without additional assumptions.

Methods in both categories can be separated by what par-

ticular assumptions are made. Currently the two most com-

mon are (a) statistical low rank assumptions and (b) physical

assumptions. This work fits into category 2(b). We exploit

constraints arising from the assumption of approximate lo-

cal rigidity; a characteristic found for objects made from a

broad range of materials such as paper, cloth and plastics. A

few recent works have pursued this direction. In [VSTF09]

homographies from planar perspective projection were used

to recover surface normals, which was followed by enforcing

surface continuity to recover 3D shape. However, the core

physical assumption is that the deformable surface is planar

on the local scale. It is well known that homography estima-

tion from small image regions is ill-conditioned [LF06], and

perhaps should not be relied on for general deformable sur-

face reconstruction. Instead in this paper we reject the idea

of estimating local perspective transforms, and use the fact

that the perspective model can be locally approximated by

Scaled Orthographic (SO) models. This leads to affine inter-

view transforms, which are estimated more stably than lo-

cal homographies, yet retains good pose estimates in prac-

tice. This idea relates to recent work in Shape-from-Texture

[CDGB10]. This can be considered a special case of plane-

based SfM, but when the fronto-parallel planar appearance

is known (i.e. it is locally template based.)

There are other template-based methods that use the

closely related inextensibility constraint with considerable

success [SF09, SSL10, PHB10, BHB∗10, FXC09]. The re-

cent convex problem formulation has marked a major step

forward, however in the templateless case the problem is no

longer convex. Inextensibility in conjunction with PCA-like

shape models have also been considered [VSTF09, SUF08].
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Figure 1: Proposed NR-SFM Pipeline

Very recently there has been some work in templateless in-

extensible surface reconstruction. In [WF06] fronto-parallel

views of a surface’s texture were recovered from ortho-

graphic views, and the resulting ambiguities then largely

eliminated with the shading cue and global perspective. In

complex illumination settings shading may be difficult to

work with however. In this work we seek disambiguation us-

ing geometric and temporal constraints alone. Furthermore,

frontoparallel planar views were computed based on [LF06],

which uses exhaustive search. In [FXC09] inextensible sur-

faces are reconstructed from point correspondences using a

novel factorisation-based approach. This appears promising,

but required dense correspondences (such that the euclidean

approximation to geodesic distances is reasonable), no mis-

matches, and the surface to be globally developable. At the

time of submission we have become aware of concurrent

work by Taylor et al. [TJK10]. Their’s is similar in treat-

ing the reconstruction first as orthographic planar pose es-

timation. While their method of projected-length equations

provides a closed form solution to planar structure from

point samples, they then estimate planar pose with a sec-

ond stage using nonlinear iterative least squares. For surfaces

with many planes this may be time consuming, and may find

only local minima corresponding to spurious solutions. Fur-

thermore, their method requires 4 or more views for pose

estimation. By contrast we present a method for closed form

structure and pose. This covers the minimal case of 3 views.

We believe this is the first method in existence to achieve

this. Technically, [TJK10] differs by reconstructions based

on a contiguous triangulation of feature points, and may suf-

fer from noise and drop-off. Ours is based on clusters of

freeform planar regions, and consequently may offer better

stability and robustness.

The overarching pipeline we take from image sequences

to reconstructed deforming 3D surfaces is illustrated in Fig.

1, and is broken into two broad phases. The first is template

construction: modelling the surface’s topology, local planar

structure and appearance from interview image motion. The

second is 3D shape estimation: exploiting the template to re-

construct shape in each view. Fully automatic template con-

struction is certainly the harder process. The focus of this

paper is not on topology estimation. Here we assume the sur-

face is of disc topology and an unoccluded view is present

in at least one reference frame. This is manually selected by

a user with a corresponding Region of Interest (ROI).

The template building process is as follows. In stage 1 the

reference frame and ROI is selected by the user. In stage 2,

piecewise affine motion is estimated within the ROI over the

image sequence. We derive this from point tracks, and assign

these to spatially localised clusters. Each cluster collectively

move according to the same affine motion. This is automatic,

and provides (i) clusters robust to outlier tracks and (ii) it re-

veals the extent of the surface’s local planarity. The problem

is posed as a MRF-based segmentation, however we do not

consider this a key contribution and defer exact details to the

supplementary material. In stage 3, the deformable template

is constructed from the clusters. The template is an undi-

rected graph T = (V,E), where each planar cluster defines a

node vi ∈ V . The template is used primarily to counter the

problem that planar pose estimation from affine motion is

inherently ambiguous: we have a 2-fold ambiguity per-plane

due to Necker reversal. We associate with each node a binary

Necker state, and the graph’s edges E correspond to physical

constraints acting between the nodes which serve to resolve

the ambiguities. We call this a weak template, since it does
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not correspond to a complete 3D surface template, but rather

a locally-planar abstraction.

The planar structure of each node is estimated from its

affine motion and an inversion of the planar projection pro-

cess. In §3.1 we provide the theory for SO projection mod-

els which extends the theory given in [CDGB10] to the

multi-view templateless setting. Affine motion of a plane

under SO-projection holds its euclidean structure up to a

3-parameter 2D affine group, and recovering pose in all

views becomes a problem of finding the euclidean upgrade.

In §3.2 we provide our closed-form solutions to the mini-

mal and overdetermined cases for single scale orthographic

projection. We call this Orthographic Affine Decomposition

(OAD). Our solutions are absent in the literature and has ap-

plicability beyond NR-SFM. In §3.3 we provide empirical

results supporting OAD.

In §4 we present our 3D shape estimation process us-

ing the weak template. This is also divided into 3 stages.

In Stage 1, ambiguous planar poses are estimated for each

template node, using a closed form solution. Outliers can

be detected based on a local consensus using neighbouring

nodes. In Stage 2 (§4.1–4.2), planar poses are disambiguated

using the weak template’s edge constraints, derived from a

model of local surface bending. In non-degenerate surface

configurations this can only reduce the template’s ambigu-

ity to a global 2-fold. With also the assumption of temporal

smoothness combined with one unambiguous frame, we can

arrive at a unique solution across the video (§4.4). In stage 3

(§4.5), the unambiguous normals are used to recover a dense

reconstruction, posed as a regularised system using a sparse

normal field. In §4.6 we present results of our method using

real image sequences, which is followed in §5 with conclud-

ing remarks, current limitations and future work.

2. Background: Template-Based Planar Pose Recovery
with SO Cameras

We now review the theory of Scaled Orthographic planar

pose estimation given affine motion between two projected

views. Here the plane’s orientation in the first view is known

and normal aligned along the camera’s z axis. We call this

template-based pose recovery, since the euclidean structure

of the plane in the first view is known. Suppose we are imag-

ing a 3D surface S with a perspective camera with central

projection matrix given by P = diag( f , f ,1) [I3×3|O3]. We

treat as unknown the focal length f and other projection

parameters (principle point and skew) assumed known and

their effects undone. While the model is globally perspec-

tive, the projection of small image regions can be well ap-

proximated by local affine models. A first order approxima-

tion to perspective projection ψ(Pq), where q = [x,y,z,1]�

is a point in homogeneous 3D coordinates in the camera’s

frame and ψ
(
(x1,x2,x3)

�)
= (x1/x3,x2/x3,1)

�
, is given

by the SO model: ψ(Pq) ≈
[
diag(α,α,0)

∣∣∣[0,0,1]� ]
q.

αi = f/z denotes a local isotropic scaling factor. For planar

projection, denote the transformation Tt =

[
Rt tt
0� 1

]
map-

ping a planar region defined at z = 0 and centred at the

origin into the camera’s coordinate system at some time t.
Let us also define the notation Ŷ = [Y]2×2 to mean tak-

ing the top left 2× 2 submatrix of some matrix Y ∈ R
3×3,

and v̂ = [v]2×1 taking the top 2×1 elements of some vector

v ∈ R
3×1. The plane-to-image projection At is given by

At =

[
αt R̂t αt t̂t

0� 1

]
(1)

It was shown in [CDGB10] that planar pose can be recon-

structed by factoring At to give a solution unique in αt and

a 2-fold ambiguity in Rt. This is of the form:

Rt = α−1
t

⎡
⎣ Ât γ

[
g
h

]
γ
[

k l
]

nz

⎤
⎦ γ ∈ {−1,1} (2)

with nz = α−1
t det

(
Ât

)
. The solution is ambiguous up to a

reflection about the z axis (i.e. a Necker reversal) denoted

by the binary variable γ which we call the plane’s Necker
state. When γ is known let us define the unambiguous re-

covery of R j using Eq.(2) with the notation R j =
[
Â j,γ

]
3×3

:

R4 ×{−1,1} → S3. Importantly the decomposition does not

depend on the focal length, and so is applicable for uncali-

brated perspective and orthographic cameras.

3. Template-Free Planar Pose from SO Views

We now generalise the theory of §2 to the multi-view tem-

plateless setting and present our closed-form solutions for

single-scale orthographic planar pose estimation in the min-

imal and general n ≥ 3-view cases.

3.1. Multiview Affine Structure

The transform A ji between two projected views i and j of a

rigidly moving plane P under SO projection is given by:

A ji = AiA−1
j =

[
αiR̂i αiti
0T 1

] [
α jR̂ j α jt j

0T 1

]−1

(3)

Suppose we have n views of P . Ignoring the translation

terms, a 2n× 2n inter-view measurement matrix M can be

constructed which factorises according to:

M=

⎡
⎢⎣

I2 Â21 · · · Ân1

Â12 I2 · · · Ân2

.

.

.

.

.

.
.
.
.

.

.

.

Â1n Â2n · · · I2

⎤
⎥⎦=

⎡
⎢⎣

α1R̂1

α2R̂2

.

.

.

αnR̂n

⎤
⎥⎦
⎡
⎢⎢⎣

α−1
1 R̂−�

1

α−1
2 R̂−�

2

.

.

.

α−1
n R̂−�

n

⎤
⎥⎥⎦
�

+ε

(4)

with ε denoting measurement noise. Consider the left 2n×2

factor
[

Â�
1 Â�

2 · · · Â�
n

]�
= P, with Ât = αt R̂t .

Referring to Eq.(2), Ât contains the 3D orientation of P
at view t up to a 2-fold ambiguity. In the templateless case
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the factor P is unknown. Suppose however we have an esti-

mate of the left column-block of M (acquired for example by

tracking from the first view:
[

I2 Â�
12 · · · Â�

1n

]
= B.

Consider now as unknown the 2× 2 plane-to-view projec-

tion term for view 1: Â1 =

[
xa xb
xc xd

]
= X. Given X, P

is now recoverable from B by P = BX. X can therefore be

seen as an upgrading matrix taking the multiview affine im-

age structure B to 3D euclidean geometry held in P. The

rotation component of X denotes an arbitrary rotation on the

support plane of P , and so is uninformative for pose esti-

mation at each view. This can be eliminated by for exam-

ple clamping xb = 0. Thus the matrix B contains the mul-

tiview pose structure up to a 3-parameter family (2D shear

and anisotropic scale) and general 2n-fold orientation ambi-

guity. Note that the affine structure was defined in a tracking

setting with with respect to the first view, however this is

not a requirement. Suppose we have access to the matrix M
(with possibly missing entries.) B can be computed, up to

the affine ambiguity, by taking the closest rank-2 decompo-

sition of M using for example the SVD. This has the benefit

of exploiting all measurement redundancy in M.

Under SO approximation, the problem of euclidean pose

estimation is that of finding X such that the matrix BX

decomposes with BX =
[

α1R̂�
1 α2R̂�

2 · · · αnR̂�
n

]�
.

This is under-constrained given a single plane’s affine struc-

ture; each αtR̂t has 4 DOF, thus for an arbitrary X we can

find such a decomposition.

3.2. Upgrading with Orthographic Affine
Decomposition (OAD)

In the orthographic case we assume αt = γ ∀t. This is a valid

approximation to perspective projection when the relative

change in depth of the plane is small when compared to the

depth to the camera’s centre. The world-to-image scaling is

irrecoverable, yet does not affect orientation recovery and

may be arbitrarily set to γ = 1. With no measurement noise,

X and each 2×2 sub-block Bt of B are then related by:[
BtX at

bT
t ct

]
= Rt ∈ S

3

for some at ,bt ∈ R
2×1 and scalar ct . This implies

BtXX�B�
t + btb�

t = I2. Rearranging, we have that

BtXX�B�
t − I2 has rank 1 ∀t. This leads to the following

quartic constraint on X:

det
(

XX�−Kt

)
= 0 (5)

where Kt = B−1
t B−�

t . Now, denoting the vector of un-

knowns as x = [xa,xc,xd ]
�

(with xb = 0), given k views we

have k constraints from Eq.(5), confirming 3 non-degenerate

views are needed for a finite set of solutions [HL89, LF06].

Solving Eq.(5) for x leads to a 4th order system of 16 mono-

mials, and can easily be solve with Gröbner bases [BJÅ09].

With an estimated solution X̃, the planar pose in each view

is then recovered by factorising each 2×2 sub-block of BX̃
using Eq.(2), resulting in the 2-fold solution at each view.

The compactness of OAD comes directly from our decou-

pling euclidean upgrading from ambiguous pose generation,

which can then be done for each view independently. In our

extensive experiments comprising many thousands of runs,

the number of real solutions were found to be between 0 and

2. In the noise free case the correct solution is always given.

With noise it is possible for no real solution to exist; since

the affine motion has no exact physical interpretation.

Our method can be taken a step further. Given n ≥ 3 views

with noisy measurements we can satisfy Eq.(5) in the least-

squares sense by solving for x such that:

d
dx

n

∑
t=1

(
det

(
XX�−Kt

))2
= 0 (6)

However solving Eq.(6) leads to a 3-equation 7th order poly-

nomial system in x. A practical way we can reduce the or-

der is to replace XX� by the Positive Definite (PD) matrix

W =

[
w1 w2

w2 w3

]
= XX� and solve for w = (w1,w2,w3).

By relaxing the PD condition on W we are left with a 3rd

order polynomial of 16 monomials. This we again solve ef-

ficiently with Gröbner bases. X̃ may then be recovered from

W̃ via Cholesky decomposition and BX̃ can be block fac-

torised as before. In the event that W̃ is non-PD we currently

use the closest least squares PD approximation to W̃. For

n > 3 views we have found multiple solutions may be re-

solved in general by taking the single best solution W̃ as the

one with smallest error (either algebraic from Eq.(5) or re-

projection error - see Eq.(7)). Importantly because the num-

ber of equations and number of unknowns (i.e. 3) do not

increase with additional views OAD is practical for any rea-
sonably large n.

Because OAD minimises an algebraic cost (and is there-

fore suboptimal in the maximum likelihood sense), pose

estimates may be optionally refined via Orthographic Pla-

nar Projection Bundle Adjustment (OPP-BA.) If the affine

motion has been estimated from point tracks, generated by

p ≥ 3 point samples located on the support plane at un-

known positions {u1,u2, .,up}, these can be estimated, to-

gether with poses {Rt , t̂t} optimally from their image corre-

spondences {vi
t}. Assuming these are corrupted by IID gaus-

sian noise this is achieved by minimising the reprojection

error:

EOPP

(
Rt , t̂t ,ui

;vi
t

)
=

n

∑
t=1

p

∑
i=1

([
R̂t t̂t

0T 1

]
ui −vi

t

)2

(7)

and setting u1 = [0,0]�,u2 = [0, ·]� to fix the translational

and in-plane rotation gauge ambiguities. Once optimised the

set {ui} holds the planar euclidean structure of the point
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(a) OAD (tracking):

Structure error

(b) OAD (tracking):

Pose error

(c) OAD (full measure-

ments): Pose error

(d) OAD vs OPP-BA

Figure 2: Emperical Performance of OAD

samples up to a scale factor, and can be used to compute the

plane-to-image transforms At from image correspondences.

3.3. OAD: Empirical Results

We now present some synthetic studies to assess the empir-

ical performance of OAD reconstruction; in particular ro-

bustness with respect to measurement noise. A planar quad

patch was simulated undergoing random rotations, ortho-

graphically projected and its four projected corners sub-

jected to additive zero mean Gaussian noise with SD = σ.

For us to present scale independent results, we vary σ rel-

ative to the patch’s scale: σ = k/100×w where w denotes

the patch’s width, set to w = 100. First the affine transforms

were estimated in a tracking setting: affine transforms be-

tween the first and all subsequent views were computed us-

ing the corner correspondences, and OAD performed on the

affine structure with the least squares formulation (Eq. 6).

The corner positions on the support plane were recovered

using Eq.(7). This is a linear operation given the image cor-

respondences and recovered plane-to-view transforms. Fig.

2(a) shows the RMS error of the planar point position with

respect to k, and Fig. 2(b) the RMS error in the planes’

normals. With increased views we observe better robust-

ness to noise, as expected. Interestingly there appears to

be little benefit in using 4 views over the 3 view minimal

case however. We also tested the performance when a com-

plete measurement matrix M is provided. This was synthe-

sised by computing interview transforms for all view pairs,

with point correspondences subject to varying noise, and the

affine structure estimated by taking the rank-2 SVD decom-

position of M. Fig. 2(c) shows the performance of the orien-

tation estimates. This marks a clear improvement over Fig.

2(b), becoming substantially better with 16 views, and shows

OAD can exploit well the redundancy present in a full mea-

surement matrix. We then investigated the benefits of run-

ning OPP-BA in the tracking setting, initialised by the OAD

solution. Our results are summarised in 2(d). Our findings in-

dicate that it is in fact detrimental to perform OPP-BA with

as few as 4 views at higher noise levels. The benefits only

become clearly apparent beyond 8 views. This suggests for

some applications the additional cost of running OPP-BA

after OAD may not always be worth it.

4. The Weak Template for Planar Pose Disambiguation
and Shape Estimation

In §2 we have presented methods for euclidean-upgrading

an isolated planar patch using multiple orthographic views.

Let us return back to the context of deformable surfaces. For

each frame, a surface comprising n tracked planes would

result in a 2n-fold orientation ambiguity. We show in §4.1

and §4.2 this can be reduced, to at best a 2-fold ambiguity

by exploiting physical constraints acting between pairs of

neighbouring planes. The 2-fold ambiguity corresponds to

a global reflection of the surface about the camera’s z axis.

Treated as independent frames, this ambiguity is irresolv-

able in orthographic views without additional cues. We pro-

pose that with the assumption of temporal continuity, we can

recover a unique solution across the video using a disam-

biguated seed frame. The problem amounts to inferring the

template’s MRF state for each frame, with energy of the clas-

sic form E(γ1
t ,γ2

t , .,γN
t ) = ∑(p,q)∈E ϕ(γp

t ,γ
q
t )+α∑i∈V φ(γp

t ),

where φ(γp
t ) denotes the per-node temporal constraints and

ϕ(γp
t ,γ

q
t ) denotes the pairwise physical constraints with tun-

ing weight α.

4.1. Bending Surface Constraints

What constraints can exist between the poses of two planes

located on a deformed surface to solve Necker disambigua-

tion? When these planes are far apart the answer is very little

in general. However when in local proximity a local model

of surface bending can be used to constrain their poses, and

hence be used for disambiguation. Our model uses the fact

that inextensible surfaces such as those made from cloth

or paper exhibit local developability, and prohibits poses

corresponding to high twisting or shearing of the surface.
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Formally, nearby tangent planes are constrained by bending

about local rulings (Fig. 3.) On the local scale a developable

surface is modelled by a parabolic cylinder [MC98], with

rulings approximately parallel. Parallel rulings imply that

the orientations of two nearby planar patches P and Q can be

modelled by a hinge system. Fig. 3-(a) illustrates an image

Figure 3: Surface bending constraining two disjoint patches

of a locally ruled surface with parallel rule lines shown in

dashed, and two planar patches P and Q. Fig. 3-(b) shows

the corresponding hinge system. The red lines indicate the

projection of these rulings on the planes supporting P and

Q. The planes are consistent with surface bending if these

projections are parallel. Fig. 3-(c) shows a configuration in-

consistent with surface bending, and here is caused by the

wrong Necker state attributed to P . Note that the bend model

does not necessarily correspond to a real physical hinge; it

constrains only the orientations of the two patches. Note also

that as the surface deforms the rulings may change.

It is possible in theory to recover the rule orientations di-

rectly from the planes’ affine structures. However estimat-

ing rulings from image data is notoriously unstable. Instead

we optimise over the range of rule orientations. Suppose

we have estimated the 3D orientations of P and Q unam-

biguously from their plane-to-view affine transforms Ap and

Aq respectively. Call these Rp and Rq, with normal vec-

tors np and nq respectively. Suppose also we have a puta-

tive estimate of the angle θ made between the camera’s x
axis and the 3D rulings. That is, the rulings lie on paral-

lel planes orthogonal to the viewing direction with normals

nr = [cos(θ) ,sin(θ) ,0]�. P and Q mutually satisfy the

hinge model if the intersection lines between these planes,

and P and Q are parallel. The model’s error is defined as:

E (θ,Rp,Rq) = 1/z(np ×nr) · (nq ×nr) (8)

with z = ‖np ×nr‖‖np ×nr‖. We optimise θ by sampling

over the range [0 : π] (we currently use 25 samples), giving

the bend error Eb:

Eb (Rp,Rq) = arg min
0<θ≤π

[E (θ,Rp,Rq)] (9)

There exist additional constraints on θ which should be con-

sidered, because the extents of P and Q constrain the rul-

ings. A rule should not bisect either region, since these are by

definition planar (Fig. 3-(d).) Currently, we keep only those

θ whose line does not bisect the point samples in P or Q.

If no such angle exists, it implies P and Q cannot bend (i.e.
they are planar in that view) and so we arbitrarily set θ = 0.

4.2. Pose Disambiguation

Now consider when only the planes’ affine motion is known,

but not their Necker states. The unambiguous orientations

are given by Rp = [Ap,γp]3×3 and Rq = [Aq,γq]3×3. The

joint 4-fold ambiguity can be brought down by evaluating

Eq.(9) using each state permutation, and Necker states vi-

olating the hinge model can be detected by inspecting the

model error. In fact the ambiguity cannot be totally resolved,

but merely brought down to 2-fold. This is a consequence of

the Necker reversal of the hinge system itself. It is easy to

show that Eq.(9) is of the following form:

Eb

([
Ap

t ,γ
q
t
]

3×3
,
[
Aq

t ,γ
q
t
]

3×3

)
=

{
c1 ifγp

t = γq
t

c2 otherwise
(10)

for some c1,c2 ≥ 0. That is, if we flip the Necker states of

both P and Q we generate the same fitting error. Returning

to the template’s MRF, each edge is associated with a sym-

metric interaction potential derived from Eq.(10). We simply

use it directly: ϕ(γp
t ,γ

q
t ) = Eb

([
Ap

t ,γ
q
t
]

3×3
,
[
Ap

t ,γ
q
t
]

3×3

)
.

In fact there exists surface configurations where the bend-

ing model provides no additional constraints. The degener-

acy arises when the hinge axis is orthogonal to the camera’s

z axis where it can be shown that c1 = c2 = 0 (under per-

fect modelling conditions.) In these configurations the hinge

system provides no constraints. As a result it may be possi-

ble for sections of the template to be unconstrained in some

frames. Additional constraints are needed.

4.3. Outlier Removal

The bending model can also be violated by outliers; planes

with poorly estimated poses due to erroneous affine motion.

An outlier plane will usually violate the bending model for

most of its edges in the template graph. Given two connect-

ing nodes Q and P , we deem the edge to violate the model

if min(c1,c2)> 0.35. P is marked as an outlier if r/e ≥ 0.8,

where r denotes the number of violating edges.

4.4. Unambiguous Pose with Temporal Continuity

To resolve the global 2-fold ambiguity per frame, and to

circumvent the degenerate bend configurations, we can ex-

ploit the fact that the surface deforms smoothly over time.

The nodes’ states in subsequent frames are strongly con-

strained. This naturally suggests a 3D MRF formulation.

However in this paper we opt for a simpler, albeit less op-

timal strategy: sequentially processing the video and make

hard state decisions at previous frames. Suppose at frame

t the Necker states of a node have been resolved up to the
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(t −1)th frame. We give preference to its state γq
t if the rota-

tion
[
Ap

t ,γ
q
t
]

3×3
is predicted by smooth angular motion. We

fit a quaternion smoothing cubic spline (ignoring the unity

constraint) to the rotations assigned in the previous m = 10

frames. Denote R̃p
t to be the prediction of the spline extrap-

olate at time t. The MRF’s temporal constraints are given by

φ
(
γp

t
)
=

∥∥∥R̃p
t −

[
Ap

t ,γ
p
t
]

3×3

∥∥∥, with ‖·‖ being the Frobenius

norm. To initialise the temporal constraints, we currently

provide a manual disambiguation at frame 1. The MRF con-

tains submodular interaction terms, and so resolving sate is

NP-hard. We have however found good success using belief

propagation.

4.5. Recovering Nonrigid Shape

After template node disambiguation, we densely reconstruct

the deformed surface. Our goal is a 2.5D reconstruction: re-

constructing the region Rt of the deforming surface that is

visible in each frame. Formally, we determine at each time

the function S (x,y;θt) : R2 →R
3 that projectively maps im-

age pixels to 3D. In orthographic conditions this is given by:

S (x,y;θt) = (x,y,Dt (x,y;θ)) ∀(x,y) ∈Rt (11)

where D(x,y;θt):R
2 → R denotes a scalar depth field pa-

rameterised by θt . Importantly, although the template con-

struction process is run in orthographic conditions, shape

estimation may be run in perspective conditions by chang-

ing Eq.(11) to a perspective depth function. Planar orienta-

tions are estimated in the same way using Eq (2). Recov-

ering depth over Rt given only a sparse set of orientation

estimates is ill-posed (i.e. the Poisson equations for normal

integration are under-constrained.) If we assume that within

Rt shape is generally smooth this becomes tractable. We

cast the reconstruction problem as classic pseudo MAP esti-

mation by minimising the reconstruction energy: E (S;θt) =
EN (θt)+λEbend (θt). The estimated unambiguous normals

act as data terms of the form:

EN (θt) = ∑pi

(
∂S
∂x

∣∣∣∣
pi

·ni

)2

+

(
∂S
∂y

∣∣∣∣
pi

·ni

)2

(12)

where pi denotes the locations of the point samples in the im-

age with normals ni within each inlier plane. For the smooth-

ing term Ebend we use the TPS regulariser penalising the sec-

ond order bend energy of S (x,y;θt). This is weighted by λ
that currently we experimentally set. The system is solved

by quantising Rt with a dense quad mesh. θt now holds the

mesh vertices’ depths. We use a finite differences to approx-

imate the surface tangents in Eq.(12) [NRDR05] and TPS

bend energy [PLF05]. These are linear operators, leading to

a sparse linear system in θt , and thus solved efficiently.

4.6. Experimental Results and Practical Considerations

In this section we show some results our NR-SfM approach

applied to two real sequences. The first sequence is of a de-

forming creased sheet of paper with printed text (Fig. 4.)

This comprises 80 frames taken in approximate orthographic

conditions. Frames 1 and 80 shown in Fig. 4-(a,e). A ROI

R was manually marked in frame 1 (shown in blue) and

keypoints within R were tracked using KLT, and clustered

into affine groups (shown in Fig. 4-(b).) Each colour de-

notes a cluster, with white denoting an outlier point track

not assigned to a cluster. The weak template was constructed

with nodes corresponding to clusters and edges taken from

a Delaunay triangulation of the clusters’ centres in the first

frame, and keep only the edges contained within R. OAD

was then performed on each node. In Fig. 4-(f) we show the

projection of the unambiguous normal in frame 1. Normals

coloured in blue denote detected outliers. R was then trans-

ferred throughout the sequence by warping the ROI in the

first frame using affine moving least squares [SMW06]. In

Fig. 4-(c,g) we show the reconstructed surfaces at frames 1

and 80. Qualitatively the results look convincing, particu-

larly in capturing the crease edge. To inspect the reconstruc-

tion’s quality, we flattened the surface at frame 1 onto the 2D

plane (shown in Fig. 4-(d)). The results suggest a faithful re-

construction, highlighting applications for monocular docu-

ment restoration. Finally in Fig. 4-(h) we transferred a differ-

ent texture to the 3D surface, showing the reconstruction was

sufficiently good for augmented reality. Next we processed

the sequence used in [SUF08] (Fig. 5), comprising 87 frames

of a bending cardboard surface. This is quite challenging for

templateless reconstruction because of the texture sparsity.

The affine point clusters are shown in Fig. 5-(a). We show the

projection of the unambiguous normals in Fig. 5-(b,c,d) at

frames 9, 27, 45 and 65 respectively. The corresponding sur-

face reconstructions are shown below each image rendered

from a different view and the normals and reconstructions

appear faithful. However with no ground truth data available

quantitative performance results are unavailable.

5. Conclusion and Future Work

We have presented new methods for solving NR-SFM us-

ing the assumption of local planarity and rigidity. Solutions

have been given for planar structure and motion in ortho-

graphic conditions, called Orthographic Affine Decomposi-

tion (OAD). This provides closed form solutions to the mini-

mal 3-view and general n > 3-view cases. Secondly, we have

proposed the idea of a weak deformable template for sur-

face reconstruction; a surface abstraction with nodes holding

local planar structure and edges corresponding to pairwise

physical constraints embodying a local bending model. In

conjunction with temporal continuity, the ambiguities can be

brought down to a unique solution across a video sequence.

As future work we aim to make disambiguation fully auto-

matic and perform fuller quantitative performance analysis

of the 3D reconstructions for more complex scenes. We wish

to extend the scope of our work to handle scenes with self oc-

clusions, handle lost point tracks and ultimately reconstruct

complete 3D surfaces from partial reconstructions.
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Figure 4: Reconstruction of creased paper

Figure 5: Reconstruction of a sparsely textured surface
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