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Abstract

We have created the Myocardial Uncertainty Viewer (muView or μView) tool for exploring data stemming from the
forward simulation of cardiac ischemia. The simulation uses a collection of conductivity values to understand how
ischemic regions effect the undamaged anisotropic heart tissue. The data resulting from the simulation is multi-
valued and volumetric and thus, for every data point, we have a collection of samples describing cardiac electrical
properties. μView combines a suite of visual analysis methods to explore the area surrounding the ischemic zone
and identify how perturbations of variables changes the propagation of their effects.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Health

1. Introduction

Myocardial ischemia is a disease that results from a
metabolic imbalance in which the demand for oxygen and
nutrients within the muscular tissue of the heart exceeds lo-
cal supply, caused by a restriction in blood supply, or is-
chemia. Left untreated, cardiac cells will gradually weaken
and die; in many cases, leading to heart attack. These con-
sequences make ischemic heart disease the leading cause of
death for men and women in the U.S. and most industrial-
ized countries [MFB04]. Detection of cardiac ischemia of-
ten requires inspecting the results of an electrocardiogram
(ECG) and looking for abnormalities, particularly within a
specific location within an ECG trace, known as the ST seg-
ment. However, we do not fully understand the relationship
between cardiac ischemia and abnormalities in the ST seg-
ment [TEF∗64, FZHD11].

To better understand the underlying physiology of car-
diac ischemia, mathematical models are created to study
the effect of ischemic regions on cardiac electrical proper-
ties, such as the electrical potential outside of a cell, known
as extracellular potentials. Striations in cardiac muscle pro-
duce an anisotropic conduction pathway along which elec-
trical currents flow that influences resulting tissue poten-
tials. Anisotropy can be captured through diffusion weighted
tensor imaging (DTI) using MRI and can be used in for-
ward simulations of cardiac ischemia. Unfortunately, the
anisotropy data is usually quite noisy. Defining appropriate

tissue conductivities is difficult and has a large impact on
the resulting electrical potentials within a simulation of the
diseased heart.

We are currently developing the Myocardial Uncertainty
Viewer (muView or μView) tool for visualizing the results of
cardiac ischemia simulations aimed at understanding the un-
certainty present in the forward cardiac problem with respect
to tissue conductivities. The goal of μView is to both directly
explore the simulation results, helping the scientists design
and troubleshoot experiments, and to help understand the re-
lationship of conductivity uncertainties with size and shape
estimates of the ischemic zone. The challenges to this goal
stem mainly from the complexity of the data; we are given a
volumetric model of the heart with multiple simulation out-
puts for each voxel. The structure of the data is inherently
difficult; the spatial domain of the data is 3D, so simply dis-
playing the data causes problems with occlusion and clut-
ter. Indicating further attributes within the 3D context is a
formidable challenge. To address this issue, we have created
μView to experiment with the use of a collection of visu-
alization techniques, including traditional two-dimensional
and three-dimensional displays, as well as the incorporation
of information visualization approaches. The broader goal of
this work is to develop visualization techniques that can con-
cisely express the nature of the uncertainty within this type
of complex data for domain scientists and health care profes-
sionals. The bidomain model is a widely accepted computa-
tional representation of the electrical response of the heart to
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stimuli given defined tissue conductivity and the underlying
extracellular and intracellular potentials [Hen93].

2. Background

2.1. A Model of Cardiac Ischemia

Electrocardiographic forward models describe body and car-
diac electrical activity (such as surface potentials) that result
from electrical sources that lie on or within heart tissue. The
bidomain model is a widely accepted computational repre-
sentation of the electrical response of the heart to stimuli
given defined tissue conductivity and the underlying extra-
cellular and intracellular potentials [Hen93]. In this study,
the bidomain model was adapted to generate cardiac poten-
tials at a single time instant, under the influence of ischemia.
The cardiac source is interpreted as a region of complex ge-
ometry, defined by experimental observation, during a sin-
gle time step within the cardiac cycle (a heartbeat). Tissue
within the diseased region was assigned reduced conductiv-
ity and transmural potential values.

Given the variability in reported cardiac tissue conductiv-
ities [Joh03,JK03,Cle76,RHS79,RS82], we simulate over a
selected range of values to represent longitudinal and trans-
mural conductivities within the intracellular and extracel-
lular cardiac spaces. We applied second order generalized
polynomial chaos-stochastic collocation (gPC-SC) [Xiu07]
to the conductivity ranges, shown in Table 1, to select per-
tinent conductivities within the range and reduce complex-
ity of the overall model. This method produced a series of
41 distinct conductivity combinations to use as input to the
multi-run forward simulation based on the passive bidomain
equations.

Table 1: Conductivity Ranges

Longitudinal Transmural
σi σe σi σe

Min 0.00174 0.0012 0.000193 0.0008
Max 0.0034 0.00625 0.0006 0.00236
Isch. Scaling 1/10 1/2 1/1000 1/4

Ultimately, the outputs produced are 41 simulations, each
of which has a single scalar voltage associated with each data
point. The data points will therefore each have 41 indepen-
dent scalar values associated with them. In addition to the
output data, we can leverage input data, such as the tetrahe-
dral or hexahedral mesh data or DTI data.

2.2. Uncertainty Visualization

Interest in uncertainty visualization has increased during the
past few years [GS06,JS03,MRH∗05,PWL97], and the topic
has been identified as a top research problem [Joh04]. Re-
lated to this work are techniques aimed at incorporating un-
certainty information into volume rendering and isosurfaces,
using linked multiple windows, the visual representation of
probability distribution functions (PDFs), and displaying the
results of parameter-space explorations.

Volume rendering and isosurfacing are techniques de-
signed to convey spatial characteristics of volumetric scalar

data. Approaches to add uncertainty information include
pseudo-coloring, overlay, transparency, glyphs and ani-
mation [DKLP02, JLRP99, LLPY07, RLBS03]. Fout and
Ma [FM12] propose a computational model that computes
a posteriori bounds on uncertainty propagated through the
entire volume rendering algorithm and developed an inter-
active tool to inspect the resulting uncertainty.

Rather than using isosurfaces to directly convey uncer-
tainty in data, they can be used to show shape and extent
of clusters [Luc06]. Probabilistic formulations of marching
cubes [PWH11] and isocontours [PH10] allow for the dis-
play of positional uncertainty of isosurfaces colored by their
distance from a mean [PRW11].

While these three-dimensional representations are quite
useful for conveying geometric structure and providing con-
text, the complexity of the data often requires multiple pre-
sentation types to enable full understanding. For this reason
multi-window linked-view systems are popular for address-
ing uncertainty [FKLI10a, HMH08, PWB∗09, SZD∗10].

Another way to look at uncertainty is to consider the mul-
tiple values as PDFs and to use statistical methods for char-
acterizing them. Initial work in the area began by extending
existing techniques to work with PDFs [LKP03]. Cluster-
ing [BKS04] and slice planes [KLDP02] can be used to re-
duce the dimensionality of the data for visualization, while
colormaps, glyphs, and deformations have been used to ex-
press summaries and clusters [KDP01, KKL∗05].

Finally, the type of data we are looking at here can be
thought of in terms of parameter-space exploration in which
the effect of perturbations of input parameters is related visu-
ally to outcomes through techniques such as parallel coordi-
nates [BPFG11] and preattentive highlighting [FKLI10b].

3. Visualization System

μView is an interactive 5-way linked view system, where the
main view contains a 3D visualization of the data (Figure 1
A), three side views contain orthogonal 2D slices through the
volume (Figure 1 B-D), and finally, a parallel coordinates
view of the PDFs (Figure 1 E). All interfaces are manipu-
lated through mouse interactions and a small menu system.

A B

DC
E

Figure 1: Overview of user interface. A: 3D view, B-D: 2D
views, E: parallel coordinates.
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Figure 2: Silhouettes are calculated for the surface model and used for context (left). Single value color sequential mapping of
mean value (middle) and standard deviation (right).

The data input into our system consists of three compo-
nents. The first is a set of vertices. Second, a solid mesh of
tetrahedral or hexahedral elements connects the vertices and
forms the anatomy of the heart. Finally, an ensemble of sim-
ulation results are attached to each vertex in the mesh.

3.1. Visual Interfaces
3D View: Anatomic context is important in medical appli-
cations and thus we provide a 3D rendering of the geometry.
Using a surface mesh extracted from the volume, we darken
triangle faces that are near perpendicular to the view direc-
tion to help in understanding 3D shape, as seen in Figure 2,
left. Within this interface, the data can then be visualized
either through a series of isosurfaces as discussed in Sec-
tion 3.2 or by rendering the data points colored via a transfer
function as discussed in Section 3.3.

2D View: For 2D visualization, slices of the volume are
extracted by intersecting the solid elements with a plane
and linearly interpolating vertices, triangles, and PDFs. The
three slice planes, axial, coronal, and sagittal, are a more
natural way for health care professionals to view the data,
and are displayed using transfer functions to color the mesh
and isolines to help highlight the ischemic zone. Orientation
planes (not shown) can be added to the 3D visualization to
help users identify the 3D spatial location of the slices.

Parallel Coordinate View: Parallel coordinate are an al-
ternative way to explore the high-dimensional space of the
data. We supply a parallel coordinates interface where each
dimension represents a single ensemble dimension, provid-
ing an overview of the whole data set. The lines within the
display are colored using the same transfer function as in the
other linked-views. This enables the user to directly corre-
late the values seen in the 3D visualization to those of the
values present in the data. For example, in Figure 1 it can
be seen in the parallel coordinates that the orange colored
cluster is likely enclosing the ischemic zone. Similar obser-
vations are true of the other clusters as well, though some
are difficult to see because of their limited value range in the
parallel coordinate view.

3.2. Isosurfaces over the PDFs
The range of values for an individual data point makes
isosurface location unclear [JPGJ12]. Each dimension may

maintain its own isosurface for a given isovalue, meaning the
isosurface for the PDF could exist anywhere within a range
of locations. To account for this, we reduce the PDF to a sin-
gle dimension by applying an operator, such as minimum,
maximum, or mean, to the data samples at each point. Iso-
surfaces are then extracted from the single dimensional field.
Figure 4 shows an example where the minimum isosurface
is blue and the maximum isosurface is yellow implying an
envelope containing the range of possible surfaces.

3.3. Transfer Functions over the PDFs

Because of the complexity of the data, we have adopted a
number of transfer functions to color the data, each designed
to aid understanding in a unique way.

Value-based Coloring: The first transfer function simply
assigns a single value to each data point and applies an
intensity-based sequential color map. The values can be re-
lated to individual dimensions, or derived values such as
the mean (Figure 2 middle) or standard deviation (Figure 2
right).

Coloring by Clustering: Clustering can reduce the set of
data under investigation by grouping similar data together,
such as points that respond similarly to variations in initial
conditions. We use K-means clustering [M∗67] to explor-
ing this space and employ multiple distance metrics. The
L2-norm (Figure 3 left) groups points that are similar in a
Euclidean sense and is defined by d(X ,Y ) =

√
∑(Xi−Yi)2,

where X and Y each contain the 41 simulation dimensions of
data points.

Pearson correlation coefficient [RN88] (Figure 3 right)
clusters points that respond similarly to changes in input and
is defined as d(X ,Y ) = 1− ∑(Xi−X)(Yi−Y )√

∑(Xi−X)
√

∑(Yi−Y )
, where X

and Y are the means of the sets.

As points are placed into clusters, they are colored using
a categorical color map. A collection of histograms showing
the mean of each cluster is shown to the right.

Coloring by Isovalue: As a final alternative, we have ex-
plored coloring points by isovalue. This method takes each
PDF and counts the number of dimensions above and below
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the isovalue. In this scheme, we choose solid colors to rep-
resent data points where all dimensions were above (red) or
below (blue) the isovalue. The remaining points are colored
using a sequential color map (orange to blue-green) which
partially indicate how many dimensions fall above or below
the isovalue. An example is seen in Figure 4, right.

4. Preliminary Results

Our initial experiments have been performed primarily on
a mesh created by MRI segmentations of an excised canine
heart with atrial tissue removed. The mesh consists of 1.4M
tetrahedra, 350K vertices, and 41 simulations. Our software
takes a few moments to load data (15-30 seconds) and a few
seconds to apply some operators (1-60 seconds; clustering
being the slowest), but overall the software is interactive.

We developed this tool as part of a team of visualization
and biomedical researchers to better understand the phys-
iology of cardiac ischemia. μView is being actively devel-
oped simultaneously with the development of the simulation
model, allowing results from the simulation to be explored
within μView, and the insights gleaned from μView to be
incorporated back into the simulation. While our results to
date are still in the experimental phase, we have already had
some success within this collaboration.

The conductivities of the heart are highly dependent on
the fiber directions across the tissue. The fiber direction data
can be created any number of ways, such as rule-based meth-
ods or, as in our case, using DTI. Part of our study is under-
standing the sensitivity of conductivity to fiber direction.

As we began our study, we noticed a bulge for many iso-
values (most prominently visible as the yellow area in Fig-
ure 4 right) that we could not easily explain. We then dove
into the data by directly visualizing some of the input, such
as fiber direction. This lead us to discover that the fiber direc-
tions from our DTI imaging were noisy and poorly aligned
for the first few millimeters of the heart surface. While we
have not yet confirmed that the erroneous fiber directions
have a significant influence on the bulge, this finding did
steer us to redesign our input by obtaining a more accurate
model, either through better imaging or a rule-based method.

5. Future Work

This work is an initial exploration of uncertainty data ob-
tained from the forward simulation of cardiac ischemia, and

Figure 3: K-means clustering applied to the data using the
L2-Norm (left) and Pearson correlation coefficient (right) as
distance metrics.

Figure 4: Left: Isovalue visualization using isosurfacing to
describe the range of potential isosurfaces of a given value.
Right: Isovalue color mapped by counting dimensions above
and below the isovalue.

thus we still have much work yet to do. We believe our
close collaboration with the simulation scientists will greatly
guide the choices we make regarding visualization, particu-
larly in light of our discovery of irregular fiber directions.
Such a discovery also encourages the question of the impor-
tance of fiber direction, which we plan to further investigate
through techniques such as those proposed by Jones [Jon03]
for visualizing uncertainty in fiber orientation.

The ultimate clinical goal is to be able to assess the un-
certainty in determining the ischemic zone from an inverse
simulation linked to ST segment waveform changes. If we
better understand how the uncertainty in the conductivities
affect the size and shape of the ischemic zone, it will help
determine what levels of uncertainty will be of consequence
clinically and how much confidence to assign to the under-
standing of the ischemic zone size, shape, and location.

Additionally, from a scientific point of view, these studies
can also give us a better understanding of the relationship of
conductivity uncertainty to both forward and inverse simu-
lations of cardiac ischemia. In the future, we aim to provide
confidence criteria of the simulation results as a function of
both conductivity uncertainty and the problem we are trying
to solve. It may be that for some problems, the level of un-
certainty will not greatly effect the results, while for other
applications, the uncertainty will invalidate an approach. It
may also indicate that uncertainty levels in the conductivi-
ties would have to be reduced in order to use such a method
for a particular application, which could then spark research
into generating better conductivity values.

Both clinical problems and scientific exploration provide
opportunities for improvement in uncertainty visualization
techniques, and we look forward to extending μView to have
greater research and clinical impact.
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