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Figure 1: Voxelization of the Knossos model (109170 triangles) into a 1283 grid. The volumes in the order that they appear are
the occupancy volume, the albedo volume, the normals volume and the lighting volume.

Abstract
An increasing number of rendering and geometry processing algorithms relies on volume data to calculate any-
thing from effects like smoke/fluid simulations, visibility information or global illumination effects. We present two
real-time and simple-to-implement novel surface voxelization algorithms and a volume data caching structure, the
Volume Buffer, which encapsulates functionality, storage and access similar to a frame buffer object, but for three-
dimensional scalar data. The Volume Buffer can rasterize primitives in 3d space and accumulate up to 1024 bits
of arbitrary data per voxel, as required by the specific application. The strength of our methods is the simplicity
of the implementation resulting in fast computation times and very easy integration with existing frameworks and
rendering engines.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and frame-buffer operations

1 Introduction

Volume representation of polygonal models is an important
basic operation for many applications in computer graph-
ics and related areas. Polygonal models, for example, have
often been substituted by volume representations to remove
unnecessary complexity for certain calculations, to provide a
uniform sampling of the underlying data, to structure multi-
resolution information in an easily and rapidly accessible
manner or to enhance the models with additional data. Vox-
elization methods have been used in domains as diverse as
global illumination computation [THGM11], fluids simula-
tion [CLT07] and ambient occlusion computation [PMP10].

Surface voxelization describes the process of turning a
scene representation consisting of discrete geometric entities
(e.g. triangles) into a three-dimensional regular spaced grid
that captures the surface of the scene. Each cell of the grid
encodes specific information about the scene. In the case of
binary voxelization, a cell represented by single bits in a bit-
mask stores whether geometry is present in it or not. In a
multi-valued voxelization, occupancy is extended to repre-
sent the (scalar) coverage of a voxel by the geometry and
can also store additional spatial information.

We present a novel voxelization algorithm and volume
data-caching structure, the Volume Buffer, which encapsu-
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lates functionality, storage and access similar to a frame
buffer object, but for three-dimensional data. The Volume
Buffer can rasterize primitives in 3d space and accumulate
up to 1024 bits of arbitrary data per voxel, as required by
the specific application, by using up to 8 floating point ren-
der targets, as necessary (where 8 is currently the maximum
available number of MRTs). The strength of our method is
the simplicity of the implementation (about 15 lines of ge-
ometry shader code and 1 line of pixel shader code - see Sec-
tion 3.2) resulting in fast computation times and a very easy
integration with existing engines and rendering frameworks.

Our multi-channel voxelization algorithm runs entirely on
the GPU and can generate volume data from arbitrary com-
plex and dynamic models in real time. The proposed volume
sampling technique is not limited to providing an occupancy
volume representation of the scene, but also a complete at-
tribute set for complex calculations (i.e. in global illumina-
tion calculations an albedo buffer, a normal buffer, a direct
lighting buffer can be generated). This way heavy computa-
tions are disassociated from the surface representation data,
thus making the method suitable for both primitive-order and
screen-order rendering, such as deferred rendering. We do
not require watertight models nor is our method dependent
on the depth complexity of the scene.

2 Previous Work

Many voxelization algorithms with various properties have
been devised. Among the most relevant real-time approaches
are variations of the XOR slicing method that was first pre-
sented by Chen et al. [CF98] and Fang et al. [FC00]. The
algorithm rendered the geometry once for each slice of the
volume grid, each time restricting the view volume to this
slice. It required watertight models and suffered from mul-
tiple passes over the geometric data, once for each texture
slice per sweep axis in order to correctly assign the geome-
try into voxels.

At the same period, a depth-buffer-based voxelization
method appeared by Karabassi et al. [KPT99], which per-
formed a fast volume rasterization of arbitrary geometry but
could not voxelize correctly the cavities of objects. Passalis
et al. [PTTK07] proposed a depth-peeling multi-directional
generalization of the above technique, lifting its concavity
restrictions. Unfortunately, their algorithm requires a num-
ber of depth layers equal to the scene depth complexity in
each sweeping direction, rendering it practical mostly for
single object voxelization.

Dong et al. [DCB∗04] encode binary voxels in separate
bits of multiple multi-channel render targets, allowing to
treat many slices in a single rendering pass. A fragment’s
depth is used to derive the voxel and its bit is set via additive
alpha blending. A triangle is rendered only if its normal’s
dominant direction is parallel to the current axial sweep. Un-
fortunately, the performance is influenced by the dynamic
update of the sorted triangles required by deformable ob-

jects or dynamic scenes. Eisemann et al. [ED06] presented
an extension to this approach achieving higher performance.
Their method, taking advantage of the same efficient en-
coding, uses the RGBA-channels of a texture as a binary
mask to encode the boundary of the scene geometry. The
depth of a fragment is used as an indicator as to which bit
in the mask has to be set by using the more robust bitwise
or-blending. The resulting representation though, frequently
exhibits holes as only one viewing direction is considered in
the original implementation.

Forest et al. [FBP09] suggest a hierarchical volumet-
ric representation by offering an extension to Dong et al.
[DCB∗04] method. Furthermore, Zhang et al. [ZCEP07]
proposed to use a conservative rasterization approach to cap-
ture more details of the scene geometry. Another method
based on slicing was presented by Crane et al. [CLT07].
They used the geometry shader to intersect all triangles of
the scene with each plane of the three dimensional grid to
successively fill each layer.

Schwarz et al. [SS10] directly build a hierarchical vol-
ume representation using a GPGPU triangle processing algo-
rithm. It can achieve sparse, high resolution voxelization but
it is complex, requires GPGPU architectures and GPU con-
text switching. Thiedemann et al. [THGM11] introduced an
interactive volume-based global illumination method, where
the spatial occupancy and color data are generated by inject-
ing a geometry texture atlas containing point samples of the
polygonal geometry. Their method requires model prepro-
cessing and extra storage for the texture atlas and is sensitive
to the point sampling rate and surface deformations.

Contrary to our methods, these approaches do not allow
for the storage of multi-channel scalar data at the location of
each voxel.

3 Overview of Voxelization procedure

The goal of our voxelization method is to reduce the raster-
ization and unnecessary clipping operations over the entire
volume grid, while sending the geometry from host to de-
vice only once per slicing direction. To this end, we regard a
slice-order voxel fragment generation along a principal axis.

A volume covering the extents of the scene is created
and updated at every frame or whenever the environment
changes. In order to sample the triangles coherently, we take
three perpendicular volume sweep planes and each trian-
gle is selectively rasterized only to the plane of maximum
projection (i.e. to the direction where its normal is mostly
aligned with). Therefore the primitives are rasterized only
once. This ensures that the triangles’ surface is densely sam-
pled.

The main operation in both proposed voxelization meth-
ods is the clipping or “slicing” of the incoming triangles
against the boundaries of each volume slice. The difference
between the two methods is where the triangle clipping op-
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Figure 2: Geometry shader triangle slicing. The incoming
triangles are sliced into stripes and each stripe is rasterized
into the associated layer. (See Algorithm 1)

eration takes place. In the first method (see Section 3.1) each
triangle is clipped against the current volume slice, in a ge-
ometry shader, allowing only the valid parts of the triangle
to go through for rasterization. In the second method (see
Section 3.2) each triangle is rasterized in each volume slice
it intersects and the fragments are further clipped in the pixel
shader.

The final volume is generated from the fusion of the three
intermediate passes into a single multi-buffer by using the
MAX blending operation. We substituted the OR operation
commonly used in binary voxelization, as in our case, we
deal with scalar data. Since all fragments have to be treated,
face culling and z-test are disabled and hence no z-buffer
is attached to the frame buffer object. All volume multi-
channel attributes are computed and rendered simultane-
ously (e.g. occupancy, albedo, normals etc.) using multiple
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Figure 3: The six possible triangle strip configurations with
respect to the volume grid. (See Algorithm 1)

Algorithm 1: Geometry Shader used for triangle slicing
(Z-Pass). (ECS: Eye Coordinate Space)
Input: v1, v2, v3 - the△ vertices
Data: z slice thickness (in volume sweep ECS)
Result:△ sliced into stripes and rasterized into the

appropriate volume layer. New � is emitted with
generated vertices v1L, v1R, v2L and v2R per
slice.

if△ not aligned with Z-axis then return
sort vertices according to Z-axis.
layer← minimum slice index for the first vertex
slice← current slice depth in ECS
if v3 depth is≥ slice then CASE A

Emit△ v1, v2, v3→ layer
return

if v2 depth is ≥ slice then v1L← v1R← v1
else v1L← v2 ; v1R← v1
v2L, v2R← Intersect Edges (slice)
Emit � v1R, v1L, v2L, v2R→ layer
repeat

slice += z thickness ; layer ++
v1L← v2L ; v1R← v2R
if v2 depth is≥ slice then CASE B

v2L, v2R← Intersect Edges (slice)
else

if v3 depth is < slice then
if v2 depth was≥ slice then CASE C

v2L← v2 ; v2R← v3
else CASE D

v2L← v2R← v3
else

if v2 depth was < slice then CASE E
v2L, v2R← Intersect Edges (slice)

else CASE F
v2L, v2R← Intersect Edges (v2 depth)
Emit � v1R, v1L, v2L, v2R→ layer
v1L← v2L; v1R← v2R
v2L, v2R← Intersect Edges (slice)

Emit � v1R, v1L, v2L, v2R→ layer
until v3 depth < slice

render targets into corresponding volume buffers (see Fig-
ure 1).

We take advantage of the OpenGL extension for layered
rendering. It allows a geometry shader to write to the build-
in special variable gl_Layer thus enabling the rendering of
primitives to arbitrary volume texture layers computed at run
time and eliminating the multiple passes over the incoming
data or the restriction to record only a binary volume repre-
sentation in one pass.

3.1 Geometry Shader Triangle Slicing

To assign the geometry (or parts thereof) to the appropriate
buffer layer (see Figure 2) we intersect each triangle with the
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Figure 4: Pixel shader clipping method. The Geometry
shader rasterizes each triangle into all the volume slices it
intersects and the Pixel shader discards the fragments based
on their depth (See Algorithm 2).

Eye Space Coordinates (ECS) of the volume slices of each
axial sweep. If the triangle is aligned with the major axis of
the specific pass, its vertices are sorted in ascending order.
If the triangle is contained within one slice (Figure 3, Case
A) the triangle is exported as is and the exit condition is met.
Otherwise, we clip the triangle’s edges against the planes
perpendicular to the major axis (slice boundaries), produc-
ing a surface strip for each slice that the polygon intersects.
At each step, we decide on the configuration of the triangle
(see Figure 3) and whether a triangle split needs to occur or
not. At each split, a quad-shaped triangle strip is being gen-
erated and rasterized to the appropriate volume layer (see
Algorithm 1). The pixel shader is virtually empty, comput-
ing just the multi-channel data that an application requires.

3.2 Pixel Shader Fragment Clipping

The second algorithm is very simple as the geometry shader
does not do any triangle clipping. Rather the method relies
on fragment rejection in the pixel shader.

For each directional voxelization, each triangle in the
scene passes from a geometry shader (see Algorithm 2)
where, if it is aligned to the current sweeping direction, it
is rasterized into all the volume slices that it intersects. The
slice boundaries are computed in Normalized Device Coor-
dinates (NDC) and passed to the pixel shader where frag-
ments are discarded if their depth is outside these bound-
aries. The process is demonstrated in Figure 4.

Algorithm 2: Geometry and Pixel Shaders used for tri-
angle rasterization (Z-Pass). (ECS: Eye Coordinate Space,
NDC: Normalized device Coordinates).
Input: v1, v2, v3 - the△ vertices
Data: z slice thickness and z volume min (in volume

sweep ECS)
Result:△ rasterized into the appropriate volume layer.

/* Geometry Shader */

flat out zMin, zMax // directed to pixel shader

if△ not aligned with Z-axis then return

sMin← min triangle z− z volume min/z slice thickness
sMax← max triangle z− z volume min/z slice thickness

for slice between sMin and sMax do
zMin← min depth of slice in NDC
zMax← max depth of slice in NDC
layer← slice
Emit△ v1, v2, v3→ layer

/* Pixel Shader */

flat in zMin, zMax

if frag depth not between (zMin, zMax) then discard
else write data to volume

4 Implementation

In order to create the data storage structure, we generate on
the GPU a uniform spatial partitioning structure in real-time.
For the voxelization, the user has the option to request sev-
eral attributes to be computed and stored into floating point
buffers for later use. Among them are surface attributes like
albedo and normals but also dynamic lighting information
and radiance values in the form of a compact spherical har-
monics (SH) coefficients representation.

5 Performance and Comparisons

We have integrated the multi-channel voxelization algorithm
in a real-time deferred renderer using OpenGL and GLSL.
We tested our methods for multiple models and various
voxel grid resolutions. The results, reported in the following
tables, were obtained on an Intel Core i7 860 @ 2.80GHz
with 8 GB of RAM and equipped with an nVIDIA GeForce
GTX 285 GPU with 1 GB of memory.

We compare our two methods based on the number of ver-
tices that a geometry shader can output as the running times
can vary greatly even for small changes to the number of
requested output vertices. The number of vertices emitted
from the geometry shader triangle slicing method is 3+ 4n
(we detect the emittance of a triangle and do not produce a
degenerate quad) and from the pixel shader clipping method
is 3n, where n is the number of slices that a triangle spans.

We observe (see Table 1) that both methods have approx-
imately the same running speed and produce the same num-
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Model Grid Grid Memory Geometry slicing Pixel clipping
#voxels

size actual (MB)
vertices out vertices out

7 11 15 19 6 9 12 15

Bunny
643 53 × 64 × 41 1.06 1.74 1.79 2.03 2.51 1.13 1.15 1.28 1.58 5.3K
1283 106×128× 82 8.49 2.37 2.38 2.66 3.19 1.71 1.72 1.86 2.16 22K

69451 triangles
2563 213×256×165 68.64 5.92 5.97 6.43 6.98 4.92 4.98 5.12 5.48 89.6K
5123 425×512×330 547.85 28.2 28.6 29.3 30.1 26.9 27.3 27.5 27.8 –

Sponza II
643 39 × 27 × 64 0.51 3.99 4.03 4.52 5.38 2.88 2.91 3.24 4.01 20K
1283 79 × 54 ×128 4.17 5.10 5.13 5.78 6.74 3.53 3.57 3.94 4.79 100K

219305 triangles
2563 157×107×256 32.81 8.38 8.40 9.26 10.66 5.93 6.02 6.48 7.51 445K
5123 315×214×512 263.32 21.92 22.01 23.03 24.86 18.44 18.64 19.23 20.51 1980K

Dragon
643 64 × 62 × 29 0.88 69.1 70.6 71.3 72.0 70.0 71.2 74.1 74.9 5.4K
1283 128×123× 57 6.85 75.4 75.8 76.0 76.3 75.1 75.4 75.8 76.2 22.5K

871414 triangles
2563 256×247×114 55.00 77.1 77.5 77.8 78.3 76.9 77.3 77.6 78.0 93K
5123 512×493×229 441.00 88.1 88.7 89.4 90.3 88.3 89.1 89.6 90.4 –

Table 1: Running time (in ms) for the construction of a half-float (16bit) single channel Occupancy Volume buffer for the two
surface voxelization methods, based on the number of vertices that the geometry shader outputs. The third column gives the
actual grid sizes as tight volume grids are generated dynamically. The last column reports the number of the resulting voxels.

ber of voxels. The pixel shader clipping method achieves
slightly better results but when the number of triangles that
need to be processed increases (i.e. Dragon model) then the
two methods are equivalent.

The quality of the voxelization depends on the number of
volume slices each triangle spans. The smaller the limit of
output vertices of the geometry shader, the higher the prob-
ability that the triangle will be partially sliced, resulting in
empty voxels. However, due to the fact that triangles are se-
lectively processed in the volume sweep plane of maximum
projection, this is seldom the case.

Figure 1 depicts the multi-channel voxelization of the
Knossos model, an open environment with no watertight sur-
faces (e.g. the ground).

In Figure 5 we compare the voxelization of the pixel
shader clipping method for various geometry shader output
vertices. If we request too few output vertices from the ge-
ometry shader (eg. 3 vertices) then holes start to appear in the
voxelization. A higher output vertex count gradually reme-
dies this issue. In many effects, such as in the case of dif-
fuse global illumination (e.g. virtual point light injection), a
high vertex output limit would not be necessary, since even
a sparse or incomplete volume representation can still work
satisfactorily due to the low-frequency nature of secondary
diffuse light transport. On the contrary, fluid effects (e.g. wa-
ter) require a higher vertex output limit in order to produce
dense volumes as the granularity of the volume affects the
simulation as a whole.

Apart from the occupancy buffer, where virtually no com-
putations are involved, the construction speed of the rest of
the buffers depends on the computations that are involved
in their creation. Table 2 lists the minimum required time to

write to 1, 2 or 3 multiple render targets without performing
any computations.

For the sake of comparative examination (see Table 3), we
have implemented a modified version of the method by Fang
et al. [FC00], which supports multi-channel data. The big
difference in the running times is attributed to the number
of passes that Fang et al. do over the geometry data which
increases their timings especially for large models.

In addition we show the timing results for our imple-
mentation of Eisemann et al. [ED06] binary occupancy-only
voxelization method. The running time is the fastest of all
but their method cannot take into account partial occupancy
or transparency.

6 Discussion

The decision for the choice of method depends mostly on
the GPU architecture. Implementations for non-unified ar-
chitectures may favor the geometry shader approach (see
Section 3.1), if the pixel shader cores are intensively used
and vice versa. For unified architectures, the expected load
in terms of triangle count is indicative of the best approach.

Grid
Geometry slicing Pixel clipping

15 vertices output 9 vertices output
size MRTs used MRTs used

1 2 3 1 2 3
643 2.36 2.54 2.70 1.33 1.33 1.52
1283 3.22 4.12 5.18 2.90 2.90 3.96
2563 10.2 17.4 25.1 15.8 15.9 24.3

Table 2: Comparison of the running time (in ms) for the
bunny model for a floating (32bit) four channel buffer and
different sizes of multiple render targets (MRT).
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Figure 5: Comparison of the voxelization using the pixel
shader clipping method at 2563 volume resolution with 3
and 9 geometry shader vertices output. The number of vox-
els produced are 52382 and 89696 (complete voxelization)
respectively.

Furthermore, certain GPU implementations do not favor
the execution of complex geometry shaders with large out-
put primitive streams. Our pixel shader approach (see Sec-
tion 3.2) is very simple to implement but produces a lot of
fragments in the geometry shader. These are rejected in the
pixel shader but on architectures with small bandwidth, this
could be an issue. It is a reason to favor the first method
which produces exactly the fragments that are going to be
rasterized in the final volume slices.

For scenes with slow or gradual animations, the three di-
rectional voxelization steps could be interleaved, recalculat-
ing only one axis pass in each frame, further reducing the
volume buffer creation time by a factor of 3.

7 Conclusion

We have presented two methods for surface voxelization
of dynamic scenes. The two strong points of the methods
are the ability to generate multi-channel data at high per-

Model Grid Fang et al. Eisemann et al.
Time #voxels Time #voxels

size (ms) (ms)

Bunny
643 20.3 5.5K 0.171 2.1K
1283 40.8 22.2K 0.174 18.6K

(69451 tris)
2563 83.5 90.3K 0.21 145.4K
5123 181 – 0.61 1124K

Sponza II
643 77.4 20.2K 0.73 6.6K
1283 155 102K 1.09 60K

(219305 tris)
2563 310 452.3K 2.53 408.3K
5123 629 2090K 7.11 3283K

Dragon
643 3206 5.7K 35.1 1.5K
1283 7710 23.2K 35.3 11.2K

(871414 tris)
2563 – 94.5K 36.5 91.9K
5123 – – 38.8 739.6K

Table 3: Comparison of the running time and voxels pro-
duced by different approaches.

formance and their simplicity in implementation and inte-
gration into existing frameworks in order to create anything
from effects like smoke/fluid simulations, visibility compu-
tations or global illumination effects.
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