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Abstract
In this study, we propose a k-means clustering algorithm combined with glyph-based encoding method to analyze
the spatial distribution and dependence of multivariate, time-varying 3D microclimate data. We obtained five
climate variables, i.e. air and surface temperature, specific humidity, direct shortwave radiation and sensible heat
flux, from an ENVI-met R© simulation of a residential neighborhood in Phoenix, AZ. In a preprocessing step, we
aggregated the 3D gridded simulation data by adding up value differences between two consecutive time steps
for each grid cell over the entire simulation time to get a highly compressed view of the data without losing the
spatial context. K-means clustering was then conducted in coordinate space by weighting each grid cell based
on its difference to the spatial mean of temporal value differences. To reduce occlusion and to encode additional
cluster member information, the visualization focused on the k-means cluster centroids. Resulting images show
that the applied technique is suitable to provide a first insight into the spatial relationship of features based on
their temporal variability.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering—Algorithms
J.2 [Physical Sciences and Engineering]: Earth and atmospheric sciences—

1. Introduction

As urban population continues to increase, urban climatol-
ogy research becomes more important for solving issues that
may result from this growth. It not only seeks to describe and
explain the effects of built structure on the atmospheric en-
vironment at different scales, it is also strongly connected to
several areas of application such as urban planning and - in
this context - air quality, human health and thermal comfort
[MH87, Arn03]. Since the measurement of parameters con-
tributing to the unique atmospheric conditions in cities can
only be conducted pointwise in space and time and, there-
fore, lacks insight into the spatial and temporal continuity of
meteorological processes, considerable research has been di-
rected towards computational modeling of atmospheric pro-
cesses in urban areas at various scales. The smallest scale is
the so-called microscale. Models operating at that scale in-
clude, for example, the thermal comfort model Rayman R©

[MRM07] and the three-dimensional model ENVI-met R©

[Bru13, BF98]. As these simulation models become more
and more complex due to advanced computing power, al-
gorithms and visualizations that facilitate the analysis of in-

creasingly large data sets need to be developed. Sophisti-
cated visualizations contribute to the understanding of inter-
dependencies between the factors responsible for feedbacks
between urban form and the surrounding atmosphere and
therefore need to be spatially explicit.

In the context of atmospheric research, the field of fore-
cast verification provides methods that can also be applied
to the urban microscale - not only for verification purposes.
Traditionally, forecast verification compares corresponding
grid cells of predicted and observed data, but this approach
disregards the spatial connection between forecast and real-
ity. If, for example, a predicted meteorological field is off-
set from the real event, but intensity and extension are com-
puted correctly, the use of the traditional verification method
would lead to a higher error rate than necessary. Therefore, it
is not easy to interpret the verification results with regard to
the physical properties of forecast performance [CWS∗08].
In order to overcome this issue, forecast verification methods
such as the so-called feature-based approach have been de-
veloped [CWS∗08, GAB∗09]. These techniques detect and
isolate matching features in the forecast and observation
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fields by different criteria, e.g. by a treshold. Then, the spe-
cific properties of such feature pairs are compared with re-
gard to their size, position or intensity [CWS∗08, LK10].

The challenge of finding spatial correlations and poten-
tial feedbacks between different atmospheric parameters due
to physical processes such as advection can also be trans-
ferred from weather forecasting to the urban microscale.
In this study, we applied an easily implementable feature-
comparison to an ENVI-met R© simulation output resulting
from a microclimate study of typical neighborhoods in the
Phoenix metropolitan area [MHB∗12]. The time-varying
character of the data was taken into account by defining
"features" as areas with an above-average temporal variabil-
ity over the entire simulation time. These features were re-
trieved individually for each variable. In order to gain in-
sight into possible spatial correlations within the multivari-
ate dataset, we applied a standard k-means clustering routine
to each regarded variable independently. We ran the algo-
rithm in the simulation’s coordinate space, which allowed
us to structure features within their spatial context. By using
the cluster centroids as glyphs, we highlighted the features’
locations, created a visual summary of each cluster’s proper-
ties, and avoided clutter, facilitating an overview of the com-
plex dataset.

2. Exploring the temporal variability in coordinate
space using k-means clustering

The k-means clustering algorithm is a traditional clustering
method based on the Euclidian distance, which makes it par-
ticularly suitable for identifying areas of similar data behav-
ior in coordinate space. After defining an initial set of cluster
centers at random spots within the investigated space, the al-
gorithm allocates the surrounding data points to the nearest
cluster and calculates the new coordinates of each center by
averaging the allocated points’ positions. Thus, the cluster
centroids are iteratively refined until they represent the cen-
ter of a local point pattern [WFH11].

2.1. Data preprocessing

The underlying ENVI-met R© dataset is organized on a reg-
ular and almost completely equidistant grid. The simula-
tion area comprises 215 x 195 x 34 grid cells and a spatial
resolution of 1 m in each direction (Figure 1). The lowest
grid cells between 0 m and 1 m height are each subdivided
into five sub-grid cells with a vertical extent of 0.2 m each
for a better resolution of surface-atmosphere exchange pro-
cesses [Bru13]. The dataset contains both three- and two-
dimensional components: surface parameters (0 m height)
are organized on a two-dimensional grid and atmospheric
parameters are simulated in a three-dimensional space (0-
30 m height). Details about the creation of the underlying
dataset as well as its microclimatic analysis can be found
in [MHB∗12].

Figure 1: The Raw Area, which served as a base for the
microclimate simulation with ENVI-met R©.

We chose five sample variables for our study: air temper-
ature (3D), specific humidity (3D), direct shortwave radia-
tion (3D), surface temperature (2D) and sensible heat flux
(2D). Since the purpose of our study was the detection of ar-
eas with similar behavior over time, which could then serve
as "features" for a multivariate data analysis, it was neces-
sary to preprocess the data. We used a comprehensive ap-
proach in order to take the time-varying component of the
data into account. For each grid cell within the simulation
area and each variable under investigaton, we added the ab-
solute difference between two simulation timesteps (1 h)
over the entire simulation time of 24 h. As a result, each
grid cell has a single value for each variable representing
its temporal variability. Since we defined "features" as areas

Figure 2: The total sum of hourly differences in direct short-
wave radiation, classified according to the distance to the
area average.

with an above-average temporal variability, we computed
the variable-specific spatial average of these values and ex-
tracted those grid cells where the mean was exceeded by
more than 20%. Finally, we classified the extracted grid cells
and their associated data according to the magnitude of dif-
ference ∆V to the area average with a stepsize of 10%. Fig-
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Figure 3: Results: (a) close up view; (b) overview over area.

ure 2 shows the extracted and classified grid cells for the
direct shortwave radiation.

2.2. Initializing and running the k-means algorithm

The space coordinates of the extracted grid cells served as
an input for the k-means clustering, which was conducted
individually for each variable. Since the space coordinates
alone do not account for the intensity of a variable’s tem-
poral variability at its location, we weighted the input posi-
tions according to the difference ∆V (in percent) to the vari-
able’s spatial average. This was implemented by decompos-
ing the data into units with one unit corresponding to 10 %
difference between the particular value and the area aver-
age. These units were then represented as a discrete dataset
{x1,x2, ...,xn}, where each xi corresponds to a two- or three-
dimensional vector of space coordinates for each variable
and n is the total amount of data units per variable. This im-
plies that each xi can occur several times in the set of vectors,
pulling the center of the k-means clustering to the location
with the highest ∆V .

A common problem when applying the k-means algo-
rithm is finding the proper initialization. Since the minimal
distance from a point assigned to a center only minimizes the
local Euclidian distance, the results of the algorithm are very
sensitive to the sample of initial cluster centers [WFH11]. In-
spired by two initialization routines described in [HLT∗04],
we chose the cluster centers ki,var individually for each vari-
able var by subdividing the model area into 100 subareas of
size 39 x 43 x 8. For each subarea, we used the local max-
imum as an initial ki,var. We checked for other grid cells in
each subarea with values ranging around this maximum and
chose these positions as another cluster center if their dis-
tance to each local maximum exceeded half of the subarea’s
diagonal. If the subarea was only filled less than 1%, it was
skipped and no k was added for this section. Once the ini-
tial cluster centers were found, the k-means clustering algo-
rithm was run. The number of necessary iterations diverged

Table 1: Number of extracted grid cells as described in sec-
tion 2.1, number of cluster centers, number of necessary it-
erations and total runtime for each considered variable on
an Intel R© CoreTM i7 (2.5 GHz) with 8GB RAM (average of
10 runs).

between the individual variables, which is reflected in the
specific runtimes (Table 1).

3. Visualizing the results

To visualize the results of the k-means clustering, we fo-
cussed only on the cluster centers. This approach avoids
clutter when displaying multiple variables. In addition, the
cluster centers can be used to encode summarizing infor-
mation about the cluster properties. Hence, we rendered the
centroids as spheres and designed their visual appearance
according to three of their clusters’ characteristics. The un-
derlying microclimate variable is encoded as the base color
of the sphere: pink spheres stand for air temperature, red
spheres for surface temperature, yellow spheres for direct
shortwave radiation, and so on. The second characteristic is
the cluster’s mean value, represented by the shade of base
color used for the particular variable, with lighter colors rep-
resenting lower mean values. The third property illustrated
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by the cluster centroid is the spatial spreading of the clus-
ter’s members, which is visually encoded as the diameter of
the rendered sphere. For this purpose, the maximum Euclid-
ian distance between each cluster’s center and the cluster’s
members was measured and used as a base for the spheres’
radius.
Although the visualization is focused on the cluster centers
to reduce clutter, occlusion problems can occur due to the
size of the rendered spheres. If two cluster centers are lo-
cated adjacent to each other, the spheres can intersect. We
solved this problem by introducing transparency of the cen-
troids depicting the cluster centers for the 3D data.
Figure 3 shows the results of the k-means clustering and their
visualization as described above. Since the spatial context of
the cluster centers is important for the analysis of interde-
pendencies between the individual microclimate variables,
we included the built environment and the soil types in the
resulting image as well.

4. Evaluation

The visualization shown in Figure 3 illustrates the advan-
tages of the described approach. First, our method facilitates
the analysis of how maximum temporal difference is dis-
tributed within one variable. For example, the location of the
cluster centers for the direct shortwave radiation are located
adjacent to the buildings in the model area. These are the
spatial locations where this parameter is most variable in the
course of a day due to the shading patterns of the built struc-
tures. The cluster centers of the air temperature are equally
distributed over the near-surface part of the simulation area,
indicating a high feedback between diurnal surface temper-
ature changes and temperature changes of the adjacent air
masses. The cluster centers for the specific humidity are lo-
cated over impervious surfaces within the simulation area,
since the amount of evaporation is potentially higher in these
sections due to an increased soil moisture reaching the sur-
face. These findings also highlight a second advantage of the
algorithm, i.e. the areas of maximal temporal differences can
be related to the underlying urban form. A third benefit lies
in the comprehensible interdependencies between the micro-
climate variables. Thus, the centroid patterns within the sim-
ulation area show a relationship between the local maximum
surface temperature differences and the slightly offset local
maximum air temperature differences at the western border
of the area. The offset of the air temperature’s centroids to
the east compared to those of the surface temperature can be
associated with advective effects due to the western wind di-
rection.
Although these findings can easily be derived using the re-
sulting images, the approach also shows several drawbacks,
which will be addressed in future work. First, the interdepen-
dencies between different variables are not quantified. To ad-
dress this issue, we will implement measures such as the Eu-
clidian distance between the cluster centers and the volume
difference between the rendered spheres, which can be ap-

plied both to an intra- or an intercomparison of microclimate
variables. Similar methods are already used in the feature-
based approach to forecast verification, e.g., in [LK10] based
on a Gaussian Mixture Model. Another possible solution is
to quantify correlations in a statistical manner as presented
in [SWMW09]. Their approach, based on a Canonical Cor-
relation Analysis, has the disadvantage that the analysis is
restricted to a maximum of two different variables.
Another drawback of our approach is that the resulting im-
ages do not offer any information about the absolute values
of the variables, nor do they exhibit the direction of changes
over the meaasured time span. This issue can be solved by
using more sophisticated time series analysis methods as de-
scribed in [WS09], where the time-activity curve (TAC) of
each grid is taken as a base for similarity measures at differ-
ent time scales.

5. Conclusion

In this study, we explored the temporal variability of se-
lected variables based on a multivariate microclimate dataset
derived from simulations with the three-dimensional model
ENVI-met R©. For each grid cell, we added the absolute dif-
ference between two time steps over the simulation time of
24 h. On this basis, we ran the k-means clustering algorithm
to determine regions of similar temporal behavior for each
regarded variable. In order to visually compare the resulting
clusters, we focused the visualization on the cluster centers,
which were used as glyphs to encode central characteristics
of each underlying cluster.
To address the drawbacks of our approach, future work is
underway, aiming at

(a) quantifying the spatial relationship between the dif-
ferent variables’ temporal dynamic by introducing measures
such as spatial offset and volume differences,

(b) taking into account the absolute values of the variables
under investigation, and

(c) and including the direction of the value difference be-
tween two time steps.

The described approach provides a simple, yet insightful,
overview of the underlying dataset and helps highlight inter-
esting sections in the whole simulation area that are worth
analyzing more closely.
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