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Abstract
A new technique for rendering convective clouds is suggested. The technique uses two lattice-Boltzmann (LB)
models, one for generating the spatial and temporal distribution of water density and the other for photon trans-
port, that is, lighting the water density with correct anisotropic scattering. The common LB structure is easily
mapped to parallel execution environments such as a GPU or multiple CPUs connected via the Message Passing
Interface (MPI), thereby providing sub-minute execution times on commodity hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Rendering clouds from three-dimensional models has be-
come an integral task for visual productions ranging from
feature films to the evening weather report. When those
models are physically-based, they offer the potential for in-
tegration into larger, weather prediction systems such as the
commonly used Weather Research and Forecasting model
(WRF) [MDG∗05].

A complete model naturally comprises two components: a
water density model, used to generate the spatial and tempo-
ral distribution of both vapor and condensate, and a photon
transport model, used to capture the anisotropic (principally
forward) scattering of photon streams through the medium.
Most of these models are expressed as coupled systems of
partial differential equations (PDEs) which are solved with
variations on conventional (finite-element, finite-difference)
techniques. An exception is the lighting model proposed by
[GRWS04], which is based on the lattice-Boltzmann (LB)
technique.

Lattice-Boltzmann methods are computational alterna-
tives to finite-element methods, and they have provided sig-
nificant successes in modeling fluid flows and associated
transport phenomena [AR93, CD98, SD95]. The methods
simulate transport by tracing the evolution of a single par-
ticle distribution through synchronous updates on a discrete
grid. They provide stability, accuracy, and computational ef-
ficiency comparable to finite-element methods, but they real-

ize significant advantages in ease of implementation, paral-
lelization, and an ability to handle inter-facial dynamics and
complex boundaries.

The principal drawback to the methods is the counter-
intuitive direction of the derivation they require. Differential
equations describing the macroscopic system behavior are
derived from a postulated computational update, rather than
the reverse. Thus a relatively simple computational method
must be justified by a relatively intricate derivation.

The purpose of this paper is to demonstrate that the same
LB technique used for lighting clouds [GRWS04] can be
used to generate their vapor density and temperature distri-
butions. To this end, we draw upon the multi-component, LB
model due to Shan and Doolen [SD95], Shan’s simulation of
Rayleigh-Bénard convection [Sha97], and the fundamental
structure used in the lighting model [GRWS04].

In this three-dimensional, two-component model, the two
components are water vapor density, sometimes called abso-
lute humidity, and temperature. The key quantity of interest
is the per-component directional density, fσ,i(~r, t), which is
the density of component σ arriving at lattice site~r ∈ <3 at
time t in direction ~ci. The directions ~ci, i = 0,1,...,18, are
all the non-corner lattice points of a cube of unit radius,
{−1,0,1}3. If λ is the lattice spacing and τ is the time step
of our simulation, then the entire lattice Boltzmann computa-
tion is just an iterated, synchronous update of the directional
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densities according to:

fσ,i(~r +λ~ci, t + τ) = fσ,i(~r, t)+ [Ωσ( fσ)]i (1)

where Ωσ : <19 →<19 is a linear (affine) collision operator.
The simplicity of the required computation (1) somewhat be-
lies the underlying complexity of the limiting case. We can
show that the limiting case is, in fact, a multi-component,
Navier-Stokes equation that includes both conventional ex-
ternal forces (e.g. gravity) and those arising from component
interactions.

Although our approach does not provide the real-time
rendering of the best techniques currently available [HL01,
HISL03], it does provide a stronger physical basis, images
of high quality, and reasonable execution times for grids of
relatively high resolution (1283 nodes or larger).

2. Related Work
Both the generation of cloud densities and the lighting of
participating media have been studied extensively in the lit-
erature. [Kv84] addressed both in their foundational work.
In generating cloud densities they used a coupled system of
PDEs that represented air velocity, temperature, and water
mixing ratios, i.e., the mass of vapor/liquid per unit mass of
air. The governing equation was the Euler equation of hy-
drodynamics, which is just the Navier-Stokes equation with-
out the dissipative effects of viscosity. The velocity field was
assumed to be divergence-free, and pressure was not explic-
itly modeled. In the related problem of modeling flows of
hot gases, [FM97] make a convincing case for use of the
full Navier-Stokes equations. They employ a finite differ-
ence scheme for solution. Restricting their simulations to
smoke, [FSJ01] suggest that the Euler equations will suffice
for visual accuracy and are computationally less intensive.
A principal contribution of this work is the vorticity con-
finement correction, which adds back fine-scale flow detail
that is damped out by coarse-grid solvers. [WLMK04] use a
lattice-Boltzmann model to simulate the dynamics of steam.
They model air flow and then attach textures, constructed
from photographs of steam, to particles in the flow. Attach-
ing textures in this way can be regarded as a simple alter-
native to the vorticity confinement correction. [MYDN01]
use a coupled map lattice simulation of the Navier-Stokes
equation for air flow to generate some high quality cloud
images. The coupled map lattice bears some similarity to the
lattice-Boltzmann approach in that both may be regarded as
cellular automata. A drawback is their approximation of the
substantial derivative, D~u/dt = ∂~u/∂t +~u · ∇~u, by the or-
dinary partial, ∂~u/∂t, and an unusual approximation for the
pressure term. The effects of each approximation on physi-
cal accuracy are not addressed. [NR92] generate cloud den-
sities using a percolation model. Their results offer excel-
lent agreement with real clouds in 2D (view from below)
fractal analysis, but the model does not generate macro-
scopic cloud structure. The approach of [HISL03] provides

both high quality images and excellent execution time. Their
model is similar to that of [Kv84], but they draw on models
of [Hou93] in including both positive and negative buoyancy
effects. They solve using fragment programs on GPUs.

Radiative transfer in scattering volumes is also well-
studied topic. Early approaches assumed that propagating
rays encountered at most one scattering event [EP90,Sak90].
Later techniques capture multiple scattering. Analytic mod-
els of multiple scattering have invariably lead to diffusion
processes. [Kv84] used spherical harmonics to expand both
the light intensity field and the scattering phase function.
They obtained a coupled set of partial differential equations
in the spherical harmonic coefficients whose solution would
yield intensity at each spatial coordinate. [Sta95] observed
that an approximate solution was a diffusion process and
provided substantial detail regarding this process, includ-
ing a suggested multi-grid solution technique. [JMLH01]
showed that a simple, two-term approximation of radiance
naturally leads to a diffusion approximation that is appropri-
ate for a highly scattering medium. As noted earlier, we will
use the lighting model of [GRWS04], where it is shown that
the limiting process (λ,τ → 0) for the update given by (1)
can be described by the standard diffusion equation

∂ρ
∂t = D∇2ρ (2)

with diffusion coefficient

D =

(

λ2

τ

)

[

(2/σt)−1
4(1+σa)

]

which is completely determined by the absorption and scat-
tering coefficients, σa and σt .

3. A Multi-Component, Water Density Model
We now describe our water density model and sketch the
derivation of the associated Navier-Stokes equation for the
limiting (λ,τ → 0) case. Although we will ultimately restrict
to two components, vapor density and temperature, much of
the derivation will apply to an arbitrary number of compo-
nents. The full details of the derivation may be found in the
online technical report [Gei06].

As noted earlier, the key quantity of interest will be the
per-component directional density, fσ,i(~r, t), which is the
density of component σ arriving at lattice site ~r ∈ <3 at
time t in direction ~ci, and the directions ~ci, i = 0,1,...,18,
are the non-corner lattice points of a cube of unit radius,
{−1,0,1}3. We take ~c0 = (0,0,0), and ~c1 through ~c6 to be
the axis directions. Note that these directions are really pro-
jections from 4D space of 24 lattice points that are equidis-
tant from the 4D origin,

(±1,0,0,±1) (0,±1,±1,0)

(0,±1,0,±1) (±1,0,±1,0)

(0,0,±1,±1) (±1,±1,0,0)
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where the projection is truncation of the fourth component.
The equidistant points allow for isotropic flow, but the pro-
jection to 3D means that the axial directions will carry dou-
ble weight in the discussions below.

Component density per site is ρσ(~r, t) = ∑18
i=0 fσ,i(~r, t),

and total density per site is ρ(~r, t) = ∑σ ρσ(~r, t). If we take
unit velocity v = λ/τ, and ~vi = v~ci, then component velocity
per site is ~uσ(~r, t) = (∑18

i=0 fσ,i(~r, t)~vi)/ρσ(~r, t).

The fundamental, synchronous update (1) obviously de-
pends upon the structure of the affine operator, Ω. For light-
ing, [GRWS04] used a simple, 19 × 19 matrix whose en-
tries were determined by the absorption and scattering coef-
ficients, the scattering phase function, and the cloud density
at the site. Any operator must satisfy:

18
∑
i=0

[Ωσ( fσ)]i = 0 conservation of mass (3)

∑
σ

18
∑
i=0

[Ωσ( fσ)]i~vi = 0 conservation of momentum (4)

If external force ~Fσ(~r, t) is applied to component σ, then in-
stead of (4) we must have:

∑
σ

18
∑
i=0

[Ωσ( fσ)]i~vi = τ∑
σ

~Fσ(~r, t) (5)

Note that if there is no net momentum flux at the boundaries,
then momentum of the entire system is still conserved.

Many collision operators satisfy these constraints. When
direct control over individual collision events is unimportant,
a convenient operator is the LBGK operator [BEK54]:

[Ωσ( fσ)]i = −
1

ξσ

[

fσ,i(~r, t)− f (eq)
σ,i (~r, t)

]

(6)

where ξσ is the relaxation time of the σth component (a
parameter), and f (eq)

σ,i (~r, t) is the local equilibrium density.
It is defined, per direction per component, by f (eq)

σ,i (~r, t) =

ρσ(d − [~uσ
(eq)]2/(2v2)) i = 0

ρσ( 1−d
12 + ~vi·~uσ

(eq)

6v2 + ~vi~vi:~uσ
(eq) ~uσ

(eq)

4v4 −
[~uσ

(eq)]2

12v2 ) i = 1...6
ρσ( 1−d

24 + ~vi·~uσ
(eq)

12v2 + ~vi~vi:~uσ
(eq) ~uσ

(eq)

8v4 −
[~uσ

(eq)]2

24v2 ) i = 7...18

where d ∈ [0,1] is a parameter denoting the desired fraction
of density with zero speed at equilibrium, ‘:’ denotes the
scalar product of tensors, and ~uσ

(eq) is defined so that (4)
or (5) holds. Specifically, if we use elementary identities on
the weighted direction sums, e.g., ∑6

i=1 2viα + ∑18
i=7 viα = 0

α ∈ {x,y,z}, then it is easy to verify that

∑
i

f (eq)
σ,i = ρσ (7)

and

∑
i

~vi f (eq)
σ,i = ρσ ~uσ

(eq) (8)

regardless of the definition of ~uσ
(eq). To enforce constraint

(4) we would then need

0 = ∑
σ

∑
i
−

~vi
ξσ

[

fσ,i − f (eq)
σ,i

]

= −∑
σ

ρσ ~uσ
ξσ

+∑
σ

ρσ ~uσ
(eq)

ξσ

In the absence of external forces, we choose to make all
~uσ

(eq)s equal, i.e., independent of σ. Thus we are led to the
definition:

~uσ
(eq) =~u(eq) =

(

∑
σ

ρσ ~uσ
ξσ

)

/

(

∑
σ

ρσ
ξσ

)

(9)

In the presence of external forces, we instead define

~uσ
(eq) =~u(eq) +

ξστ
ρσ

~Fσ (10)

which guarantees that (5) holds. The principal motivation for
the choice (6) is that it is computationally fast and will lead
to the Navier-Stokes equation at the macroscopic level.

We have yet to define an overall, component-independent
velocity, ~u. This is a matter of choice (within reason), since
there is no apriori-correct weighting for the components.
We observe that total momentum at a site before a col-
lision is ∑σ ρσ ~uσ and total momentum after the collision
is ∑σ ρσ ~uσ + τ∑σ ~Fσ. If we want ρ~u to match the cross-
collisional average, we must have

~u =

(

∑
σ

ρσ ~uσ +
τ
2 ∑

σ
~Fσ

)

/ρ (11)

Although we have yet to specify the parameter values, ex-
ternal forces, and initial conditions used in our computation,
it is worth noting that the procedure is otherwise complete:
we synchronously update all nodes in the lattice using (1)
where Ω is given by (6).

3.1. Macroscopic System Behavior

The standard flow equations (continuity, Euler, Navier-
Stokes) can now be derived directly from the specified com-
putational update (1), although the full derivation is long and
arduous. Here we provide only a sketch. For the full details,
the reader is referred to [Gei06].

We use the so-called Chapman-Enskog expansion, stan-
dard in lattice-Boltzmann modeling. (See [CD98].) We as-
sume that fσ,i can be written as a small perturbation about
some local equilibrium, f (0)

σ,i :

fσ,i = f (0)
σ,i + ε f (1)

σ,i (12)

where ε is the Knudsen number, which represents the mean
free path between successive collisions.
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The choice of f (0) is not necessarily unique. The con-
straints are that it carries the density and the momentum,
specifically:

∑
i

f (0)
σ,i = ρσ (13)

∑
i
~vi f (0)

σ,i = ρσ~u (14)

From (7) and (8), it is easy to find a suitable choice for f (0)
σ,i :

use f (eq)
σ,i and replace every instance of ~uσ

(eq) with ~u.

We also consider system behavior at multiple time scales
as both lattice spacing and time step approach 0. We partition
the time scale

t = K t0
ε

+(1−K)
t1
ε2 (15)

where t0 = o(ε), t1 = o(ε2), and K ∈ [0,1]. Similarly, we
write distance

~r =
~r0
ε

(16)

where ~r0 = o(ε). Note that the relationship among the par-
tials is given by:

∂
∂t = ε ∂

∂t0
+ ε2 ∂

∂t1
(17)

∂
∂rα

= ε ∂
∂r0α

for α ∈ {x,y,z}

All of the standard flow equations now result from insert-
ing (12) and (17) into a two-variable Taylor expansion of (1)
and equating coefficients of like powers of ε.

In particular, we obtain the standard continuity equation

∂ρ
∂t +∇· (ρ~u) = 0 (18)

The Navier-Stokes equation includes a pressure term, and
so we need an appropriate definition. We assume that, for
those external forces, ~Fσ, that contribute to pressure (typ-
ically, all component interactions but not gravity), we can
find a potential, i.e., a function V with the property that
∇V = −∑σ ~Fσ. We then define pressure as

p = v2
(

1−d
2

)

ρ+V (19)

so that

∇p = v2
(

1−d
2

)

∇ρ−∑
σ

~Fσ (20)

With this definition, we can then derive the Navier-Stokes
equation:

∂~u
∂t +~u ·∇~u = −(1/ρ)∇p+∑

σ
(ρσ/ρ)~gσ −∑

σ
µσ∇

2(ρσ~u)

(21)

where component viscosity, µσ = τv2

6ρ (1−2ξσ). Thus, unlike
other treatments, we are not limited to the Euler equation as
a macroscopic description of system behavior.

Nevertheless, the most interesting behavior arises from an
attempt to establish a per-component version of the continu-
ity equation. It turns out that individual components do not
satisfy the standard continuity equation with respect to the
composite velocity. Instead, we can derive
∂ρσ
∂t = −∇· (ρσ~u)−ξστ∇· ~Fσ

+ (τξσ − τ/2)∇·

[

−(ρσ/ρ)∇p+ v2
(

1−d
2

)

∇ρσ

]

+ τ∇·
ρσ
ρ

[

1
2 ∑

σ
~Fσ +∑

σ
ξσ ~Fσ

+
∇p
ρ ∑

σ
ξσρσ − v2

(

1−d
2

)

∑
σ

ξσ∇ρσ

]

(22)

and from this other important model properties will follow,
as described below.

3.2. Interaction Forces
We assume the interaction potential, V , is of the form:

V = (1/2)∑
σ1

∑
σ2

Gσ1,σ2 Ψσ1(ρσ1)Ψσ2(ρσ2) (23)

where Gσ1,σ2 = Gσ2,σ1 is a symmetric strength of interaction
and Ψσi is an effective density. We can then take

~Fσ1 = −Ψσ1(ρσ1)∑
σ2

Gσ1,σ2 Ψ′

σ2(ρσ2)∇ρσ2 (24)

so that ∇V = −∑σ ~Fσ, as required.

To include external forces that are not interactions, e.g.,
gravity, we write instead

~Fσi = −Ψσi(ρσi)∑
σ j

Gσi,σ j Ψ
′

σ j (ρσ j )∇ρσ j +ρσi ~gσi (25)

where ~gσi carries the non-interactive external force on com-
ponent σi. Now ∇V = −∑σ ~Fσ + ∑σ ρσ ~gσ, and so we need
to correct (20) and subsequent expressions involving ∇p, in
particular (22), by replacing ∇p with ∇p−∑σ ρσ ~gσ wher-
ever it occurs.

3.3. Other Model Properties
In addition to satisfying a multi-component Navier-Stokes
equation, the model has other important properties that dis-
tinguish it from previous treatments.

3.3.1. Diffusion of Thermal Energy
In his simulation of Rayleigh-Bénard convection, [Sha97]
argues that when viscous and compressive heating effects
can be neglected, temperature can be modeled as a separate
component whose molecular mass is (relatively) 0. Assume
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we have only two components where the first is vapor den-
sity and the second is temperature. To simplify notation, as-
sume ξ1 = ξ2 = ξ. Then from (22) and (20) we have

∂ρ2
∂t +∇· (ρ2~u) = ∇·

[

D
[

ρ1
ρ
∇ρ2 −

ρ2
ρ
∇ρ1

]

+ τξ
[

ρ2
ρ

~F1 −
ρ1
ρ

~F2

]]

(26)

where D = τ(ξ−1/2)v2
(

1−d
2

)

.

If we now use (24) and assume that Gi, j = 0 for i 6= j, we
can collect coefficients of density gradients to obtain

∂ρ2
∂t +∇· (ρ2~u) = ∇·

[

ρ1
ρ
(

D+ τξΨ2G2,2Ψ′

2
)

∇ρ2

−
ρ2
ρ
(

D+ τξΨ1G1,1Ψ′

1
)

∇ρ1

]

(27)

If the relative densities approach limits, ρ1/ρ → 1 and
ρ2/ρ → 0, and we also have G2,2 = 0, we get

∂ρ2
∂t +∇· (ρ2~u) = D∇2ρ2 (28)

Thus temperature is both advected and diffused.

3.3.2. Phase Transition
For the same two components, assume Gσ1,σ2 = 0, except
for G1,1, so V = G1,1Ψ2

1(ρ1). From (19) we have

p = v2
(

1−d
2

)

(ρ1 +ρ2)+G1,1Ψ2
1(ρ1) (29)

If G1,1 is negative and Ψ1 is increasing and bounded, there
can be a range (of ρ1) over which d p/dρ1 is negative, which
signals a phase transition.

[Sha97] suggests Ψ1(ρ1) = ρ10(1− e−ρ1/ρ10 ). With this
choice of Ψ1, we can solve d p/dρ1 = 0 for interval bounds:

ρ1 = −ρ10 ln









1±
√

1+
v2(1−d)
G1,1ρ10

2









(30)

To normalize this, we take

G1,1 = −v2
(

1−d
ρ10

)

(1+ρ20 −ρ2) (31)

where ρ2 ≤ ρ20 . The value ρ10 represents maximum effec-
tive water vapor density (bound on Ψ1), and ρ20 represents
maximum temperature at which a phase transition can take
place. We then have d p/dρ2 > 0, and the interval over which
d p/dρ1 is negative increases as temperature (ρ2) decreases.

3.3.3. Latent Heat
Positive values of G1,2 = G2,1 can be shown to effect an in-
crease/decrease in temperature during the phase transitions

of condensation/evaporation that typically accompany en-
trainment (mixing). Consider a local region wherein the ve-
locity field is divergence-free (∇·~u = 0), there is negligible
spatial thermal gradient (∇ρ2 = 0), and yet there is a sharp
spatial transition in water density from vapor to condensed
water. Again assuming G2,2 = 0, we could reduce (26) to

∂ρ2
∂t = τξ∇·

[

Ψ2(ρ2)G1,2Ψ′

1(ρ1)∇ρ1
]

(32)

Thus, if G1,2 is positive, we should see an accompanying
local increase in temperature.

4. Rendering
Rendering is a four-stage pipeline: water density generation,
percolation, lighting, and ray-casting. We use a lattice with
1283 nodes, which offers a relatively high resolution without
exorbitant memory requirements. For this lattice, each stage
of the pipeline can be executed in less than one minute on
commodity hardware.

4.1. Water Density Generation
We use the transient solution of the model of section 3 to
generate macroscopic cloud structure. For the parameters,
initial conditions, and boundary conditions we have chosen
(below), interesting cloud structures begin to emerge after
approximately 10 iterations of (1).

Initial conditions are designed to force the rapid emer-
gence of a convective cloud. The lattice cube is filled with
vapor density and a linear temperature gradient is applied in
the vertical direction. The initial distribution of vapor density
is centered on silos, which are cylinders with hemi-spherical
caps that are placed inside the cube with bases on the cube
floor. The intent is to simulate a snapshot of a convective
bubble [RY89]. Each silo is filled with vapor density that
is uniformly distributed over [0.99ρ10 ,1.01ρ10 ]. Outside the
silo, but inside the cube, the density falls off linearly with
distance from the central axis or the center of the hemi-
sphere.

The effective density, Ψ1(ρ1), and component G1,1 are as
specified in section (3.3.2) with model parameters ρ10 = 1.0,
ρ20 = 0.505, d = 0.1, λ = 1.0, τ = 1.0, and (hence) v = 1.0.
The fixed temperature at the top of the cube is 0.495. Re-
laxation times are ξ1 = 1.01, ξ2 = 2.00. Smaller values than
these lead to instability, and larger values delay emergence
of interesting structure.

We also take Ψ2(ρ2) = ρ2, G1,2 = G2,1 = 0.5, G2,2 = 0.0,
and g1(ρ2) = 0.01(ρ2 −0.5), which represents the net effect
of gravity and buoyancy. This expression follows from the
so-called Boussinesq approximation of density, common in
studying natural convection [Sha97]. It is given by ρ/ρ0 =
1+β(T −T0), where ρ0 and T0 are density and temperature
at a reference point, and β is the constant thermal expansion
coefficient.
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Boundary conditions are toroidal, except in the vertical
direction, where we fix temperature at the top and bottom
of the cube to the initial values. We also fix the component
velocities at the top and bottom, ~u1 = ~u2 = 0, by equalizing
directional densities. This adds significantly to the stability
of the system.

4.2. Percolation
Although we use a relatively high resolution and simulate
a full Navier-Stokes equation, our model is not immune to
the damping effects of finite grid simulation as described
by [FSJ01], for which the vorticity confinement correction
was devised. We prefer an alternative approach to restoring
fine detail to the flow. We regard the output of the water den-
sity model as macroscopic cloud structure and use it as a col-
lection of masks for humidity seeding the input to the perco-
lation model of [NR92]. Because the Nagel-Rascke model
is bit-oriented, we first expand the original 1283 grid by a
factor of K in each dimension. The binary output is then av-
eraged over each cube of edge dimension K to provide a real
density with resolution 1/K3 at each of the original 1283

sites. In all the examples shown, we used K = 5.

The water density model carries a condensate threshold
of ρ10 , and so sites with densities less than ρ10 − ε1 are not
seeded, i.e., all corresponding K3 sites are marked “off”. For
sites with densities greater than ρ10 + ε2, all corresponding
K3 sites are marked “on”. A linear scaling is used for sites
with densities in between. With the parameters of section
4.1, we use ε1 = 0.00025 and ε2 = 0.0002.

4.3. Lighting
We use the model of [GRWS04], but we observe that the
4D density arrays used there (3 spatial indices, i, j,k, and 1
directional, m) can be folded into a 2D, RGBA float texture

(i, j,k,m) → ((k%(E/4))∗E + i, j ∗M +m)[k/(E/4)]

where edge size E = 128 and M = 19. The model can then
be executed as a collection of fragment programs on a GPU,
for which we witness more than a 60-fold reduction in exe-
cution time compared to the results reported in [GRWS04].
We can also use NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) library and encode the model directly.

4.4. Ray-casting
Here we use a conventional, volumetric compositing ap-
proach to visualization of lighted volume densities, which
amounts to integration along rays cast from the viewer’s eye
through image pixels into the volume density.

5. Results
The cloud images shown in Figure 1 were generated from
stochastically identical initial conditions, described in sec-

tion 4.1, with four silos of varying radii. The only difference
between the two images was the single random seed sup-
plied to the model. Obviously, the initial conditions exert a
strong influence on the final cloud structure. In Figure 2 we
show images obtained from a grid of dimension 256×1282

with eight silos. Again, the only difference between the two
images of Figure 2 is the initial random seed supplied to the
model. Note that the effects are approximately additive. The
four silos used in Figure 1 appear on the left in Figure 2.

Similarly, all of the clouds in Figure 3 are synthetic, as
is the cloud of Figure 4. Cloud shadows in Figure 3 were
generated by using backward (ground to sun) orthographic
projections of the lighted clouds to create 2D textures and
then compositing these into the scene photo.

Execution times are reasonable for each stage of the
pipeline. The data structures are ideal for parallel updates.
The water density generation, percolation, lighting, and ray-
casting stages can all be mapped to fragment programs for
execution on a GPU. We used CUDA on an NVIDIA G80
Quadro for all stages. For the clouds of Figure 1, the lighting
stage averaged 18 seconds. The percolation stage averaged
40 seconds. Unlike lighting and percolation, which require
steady-state solution, the water density generation is a tran-
sient solution, for which the number of iterations is some-
what arbitrary. The images of Figure 1 required 0.26 seconds
per iteration. We find interesting structure emerges within 10
- 20 iterations. Ray-casting (640×480) required 3 seconds.

A short, animated fly-through of one our clouds may be
seen at http://www.fx.clemson.edu/~jesteel/cloud_
circle.mov.

6. Conclusions
We have provided a new technique for rendering convective
clouds. We use two models, one for generating the distribu-
tion of water density and the other for photon transport. The
two models share a common structure in that they are both
based on a lattice-Boltzmann formulation, and this structure
allows convenient parallel execution. The principal contribu-
tion here is the water density model, which yields high qual-
ity images in reasonable execution time. The model also pro-
vides a stronger physical basis than other techniques in that
its limiting case satisfies a full, multi-component Navier-
Stokes equation, it offers both advection and diffusion of
thermal energy, and it naturally models the phase transitions
of condensation and evaporation.

We have focused exclusively on convective clouds.
Whether our water model will be of value in rendering
clouds formed by other processes, e.g., stratus clouds, re-
mains an open question.
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Figure 1: Synthetic clouds generated from a 1283 grid with 4 silos of varying radii.

Figure 2: Synthetic clouds generated from a 256×1282 grid with 8 silos of varying radii.

Figure 3: View from Rich Mountain, Brevard, NC
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Figure 4: Echo Canyon, north of Abiquiu, NM
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