Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Adaptive trimming of cubic triangular Bézier patches

A.L. Garcfa, J. Ruiz de Miras, FR. Feito"

Department of Computer Science
University of Jaén
Campus Las Lagunillas
23071 Jaén, SPAIN

Abstract

We present a method to handle cubic trimmed triangular Bézier patches. This scheme makes use of levels of
detail and surface subdivision to achieve a fast and flexible hierarchical data structure that is specially useful to
compute surface intersections in a robust and efficient way. The accuracy of the results can be adjusted by adding
or subtracting elements to the levels of detail hierarchy, and it is also easy to obtain a decomposition of a trimmed

patch into single triangular Bézier patches.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling.

1. Introduction

The surface trimming problem is one of the basic issues in
the field of Solid Modeling. It can be stated as: given a sur-
face patch that intersects with one or more geometric ele-
ments (polygons, surface patches, etc.), determine the inter-
section curves on the patch, divide the patch into two re-
gions, and remove one of them according to a trimming cri-
terion.

It is necessary to develop efficient and robust algorithms
to solve this problem in order to increase the capabilities
of CAD/CAM systems. Many strategies have been studied
to solve this problem [KGMM97, Key00, BKZ01, LLSO01,
FHHSO04], but none of them can be considered the best solu-
tion for all kinds of surfaces and modelling applications.

The first step of a trimming algorithm is the computa-
tion of the trimming curves on the surface. Typically, these
curves are obtained by intersecting the surface with another
geometric element (curve, plane, surface, object). There are
lots of papers concerning this problem [AMY96, CKKK97,
GK97, LJICWO04]; some of them use analytical methods to
obtain an exact solution, while others turn to numerical

T e-mail: {algarcia, demiras, ffeito} @ujaen.es

(© The Eurographics Association 2006.

methods to compute a more or less precise approximation
using different strategies. Once the intersection curves are
known, the trimmed surface is built by merging them with
the original boundaries and cutting off those regions of the
surface that are outside the new boundaries.

Our approach uses surface subdivision as Aziz et
al. [AB90], but their work deals only with computing the
intersection of patches; to get appropriate trimming curves
it is necessary to detect connected components, loops and
self-intersections, and this processing is not considered by
them.

Another interesting work on trimmed surfaces is the one
by Stiirzlinger [Stii98], but that paper is centered on ray-
tracing algorithms; it does not compute the intersection
curve, nor obtains the trimmed surface as a geometric entity
that can be used as a primitive for modeling.

The work of Krishnan [Kri97] and Keyser [Key00] is
very interesting, dealing with trimming of tensor product
Bézier patches as an intermediate step for B-rep genera-
tion of CSG models. Nevertheless, to our knowledge there
is no paper discussing specifically the trimming of triangu-
lar Bézier patches.

We present a somewhat different method to represent and

trim triangular Bézier patches(TBPs){Far86]-The-main-ad
delivered by

www.eg.org

o @’m EUROGRAPHICS

: DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

150 A.L. Garcia, J. Ruiz de Miras, FR. Feito / Adaptive trimming of cubic triangular Bézier patches

vantage of these patches is their simplicity, that has made
them be used for mesh interpolation (see [HBO03], for ex-
ample); scattered data fitting is another research field where
TBPs have proven to be useful [Zei02]. Particularly interest-
ing is the work from Niirnberger et al. [NKZ03], where this
kind of patches is used to construct a Lagrange interpola-
tion of a detailed triangle mesh; the initial mesh is approxi-
mated by a quite small number of patches, making easier the
storage, transmission and visualization of the surface repre-
sented by the initial mesh. TBPs are also used in hardware
based visualization, both by specific hardware implementa-
tion [ATIO1] and use of programmable GPUs [BS05], and
are the chosen surface patches in the mathematical model
to represent free-form solids called the extended simplicial
chain (ESC) model [GRF03,RF99].

This work presents the next step in the development of the
ESC model since, as it is said before, the capability of trim-
ming surfaces is essential in any geometric modeling system.
To achieve this purpose, we have developed an adaptive hier-
archical data structure, using subdivision techniques to com-
pute intersection curves on a patch and then trim the patch
portions that lie outside the desired result.

In the following sections, we present a brief summary of
the basics of TBPs, a description of the data structure, and
how we use it to compute the patch-patch intersection and
patch trimming operation. Finally, we will comment on the
results we have obtained and the future work.

2. Triangular Bézier patches

Triangular Bézier Patches (TBPs) are cited [Far86, BFK84]
as the first extension of the Bézier curves to surfaces, as a
more natural generalization than are tensor product patches.
As with polygons, it is easier to model a surface with trian-
gular elements than with square ones. Even the well-known
GPU manufacturer ATT has developed the TRUFORM tech-
nology that uses this kind of patches (renamed as "Curved
PN-Triangles") as a simple and efficient way to display
smoother and more natural images [ATIO1, VPBMO1].

TBPs are defined by a triangular control point net with
% -(n+1)-(n+2) points (n being the degree of the patch).
Each control point is named b; ks withi >0, j >0, k>0,
and i+ j+k=n.

The parametric domain is triangular, having three param-
eters, u, v and w, that take value from the continuous interval
[0, 1]; the sum u+v+w always equals 1.0.

All this work has been carried out using cubic TBPs as ref-
erence surface patches. Figure 1 shows the control net from
a cubic patch, and its parametric domain.

The surface is calculated using the Bernstein polynomials;
for this kind of patch, these polynomials are given by:

n!

_ : k
il gk

B i (u,v,w) vl ke

b, b b,

030 b021 012 003

Figure 1: Control point net of a cubic TBP and parametric
domain

Figure 2: cubic triangular Bézier patch

Calling A the 3-tuple (i, j,k) and 7 the 3-tuple (u,v,w),
we obtain the expression for a n-degree TBP as:
b'(1)=), by Bj(7);
|A|=n
|A| = n stands for all the 3-tuples (i, j,k) which satisfy that

i+ j+k = n. Figure 2 shows a cubic TBP with its associated
control point net and its base triangle (drawn in red).

Two interesting properties can be inferred from the for-
mulae above [PBP02]. One is every TBP is included in
the convex hull of its control points, and interpolates
bnoo, bono and byp,; the second one is that the edges of a
patch are Bézier curves whose control points are those on
the edges of the control point mesh. These properties will be
useful when using TBPs in the next sections.

Subdivision of TBPs is another important feature that is
intensively used in our work. Seidel [Sei89] describes how to
use the de Casteljau algorithm to compute the control point
net of a subpatch for a given parametric subdomain in a sim-
ple and fast way. Another interesting paper on subdivision
of TBPs is the one by Li et al. [LKL*02], where a method
to compute in advance how many times a TBP should be
subdivided is presented.

3. The levels of detail hierarchy

To develop the intersection and trimming algorithms for
TBPs, we decided to construct a hierarchical data structure

(© The Eurographics Association 2006.

A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches 151

3
1
2 0
0 1 2 3
1.1 /\1.3
0.3 1.2 23 3.3
0.1 1.0 2.1 3.1
0.2\/0.0 22\/20 3.2\/3.0

Figure 3: Parent node and child nodes. Lod = 1

based on the previous work with these patches in the ESC
model [GRF03, GRF04]. Our algorithm to test the inclusion
of a point in a free-form solid represented with the ESC
model uses subdivision of TBPs to compute the intersection
of a ray with a patch, so we decided to store the subdivision
results and use them for inclusion testing, computing inter-
section curves and patch trimming.

Basically, we consider a tree-like structure, with n lev-
els and m nodes stored in each level. Each node at level 1
consist of a subpatch obtained from the original TBP using
subdivision, and the child nodes store subpatches obtained
from the subpatch stored in its respective parent node. Fig-
ure 3 schematically shows this process. Following Vlachos
et al. [VPBMOI1] notation, we will consider the subdivision
level of detail (lod) as the number of evaluation points on
one edge of the domain minus two.

From this point, we will call lod the subdivision level of
detail, and level each level of the structure.

Figure 4 shows a TBP and the triangles obtained by join-
ing the vertices of the subpatches stored in our structure at
levels 1, 2 and 3 using lod=1. As it can be seen, the amount
of subpatches grows very quickly, making unnecesary the
use of many levels or high values of lod. To be precise,
the number of subpatches obtained with n levels and lod=I,
noted ngp is:

nsp = (1+1)""

For example, the leaf nodes of a tree with 3 levels and lod=1
store 64 subpatches.

The data kept in this tree can be used in several frequently
used tasks in solid modeling:

e Visualization: the base triangles of the subpatches gives
us an approximation of the patch. Therefore, drawing the
base triangles at a desired level of the tree allows us to
get a more or less acceptable (depending on the chosen
level) view of the patch. Choosing an upper level of the
tree will produce a less-detailed view that can be drawn

(© The Eurographics Association 2006.

Figure 4: TBP and subdivisions stored at levels 1, 2 and 3
(lod = 1)

152 A.L. Garcia, J. Ruiz de Miras, FR. Feito / Adaptive trimming of cubic triangular Bézier patches

faster (useful when dealing with many TBPs or drawing
models that are placed far away from the camera).

e Polygonization: a polyhedral approximation of a TBP can
be obtained by considering the base triangles of the sub-
patches at one level of the tree. The lower the level, the
more precise the result.

e Point in solid test: our algorithm to test the inclusion of a
point in a solid computes the intersections of a ray with
the surface of the solid. The intersections with a TBP are
computed in an iterative way, dealing first with the sub-
patches at the upper levels of the tree, discarding those
branches whose parents are not intersected by the ray, and
refining the found points of intersection through the lower
levels.

e Surface intersection and trimming: this will be explained
in the next sections

Note that the tree stores not only the triangle data, but also
all the subpatch related information (coordinates of the para-
metric subdomain, control points, bounding box, etc.). This
allows us to precompute the data when loading the model,
therefore speeding up significantly all subsequent operations
without loss of accuracy.

4. Patch-Patch intersection

As stated before, the first step of a surface trimming algo-
rithm is the computation of the trimming curves on the sur-
face. Therefore, we will describe here the steps we have fol-
lowed to determine the intersection of two TBPs.

Algorithm 4.1: TBP_INT(P1, P2, max_level)

comment: Computes the intersection of TBPs P1 and P2

comment: max_level is the level of the trees to be used

if P1.BBox intersects P2.BBox
if (P1.level, P2.level = max_level)
i — TR_INT(P1.base, P2.base)
then p
ADD_SEGMENTS (i)

if (P1.level,P2.level # max_level)
Pm «— TBP with smallest BBox
PM «— TBP with biggest BBox
for each SP € PM .children

do TBP_INT(SP, Pm)

then
then

else if Pl.level = max_level

then { do TBP_INT(P1,SP)
else

do TBP_INT(SP,P2)

else return (No intersection)

for each SP € P2.children

ol {for each SP € Pl.children

Basically, what we do is propagate the intersection com-
putation from the upper levels of the tree to the lower lev-
els, checking at each level if it is necessary to continue the
process by testing the intersection of the bounding boxes
of the subpatches. The intersection is computed at the leaf
nodes by intersecting the base triangles of the subpatches
and adding the resulting segments to a data structure that
keeps the segments order and detects possible loops and self-
intersections. Once all the segments have been added, a post-
process is carried out on the segments to group them in curve
components that can be used as input by the trimming algo-
rithm.

Algorithm 4.1 describes with more detail the intersection
computation process. The algorithm TR_INT consist of a
classic triangle-triangle intersection algorithm [M6197], and
Algorithm 4.2 describes ADD_SEGMENTS.

Algorithm 4.2 describes how a segment from the
TBP_INT algorithm is processed. The Reorder segments in-
struction is called only if the new segment connects two sep-
arated sets of already linked segments in the structure.

Algorithm 4.2: ADD_SEGMENTS(i)

comment: Inserts segment i into the segments structure

if no segments stored
then Add segment i to segments

if i intersects any s € segments
Delete s from segments
p < INTERSECTION(i, 5)
then < {i1,i2} < DIVIDE(i, p)
{s1,s2} < DIVIDE(s, p)
ADD_SEGMENTS(il,i2,s1,52)
else
if 3 s such that links with i
if there are potential loops
then Save i separatedly

else then

Add segment i linked with s
else
Reorder segments

A study of the special cases that may appear when adding
a new segment to the structure shows two different situa-
tions:

- The new segment forms a closed loop with a (sub)set of
previously added segments.

- The new segment forms a Y-like bifurcation with other two
segments (see corners of the trim in figure 7).

Both cases are treated by storing the new segment separately
in a potential_loop_segments structure; the segments from
this structure will be used later to obtain the connected com-
ponents.

(© The Eurographics Association 2006.

A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches 153

Once all the intersection segments have been computed,
the algorithm BUILD_COMPONENTS is run on them to ob-
tain the components of the result. See Algorithm 4.3.

Algorithm 4.3: BUILD_COMPONENTS(segments)

comment: Creates connected components from segments

¢ < NEW_COMPONENT(segments. first)

while segments is not empty

s «— segments.next

if s links with ¢

then Add s to c

do
Save component ¢

else
¢ — NEW_COMPONENT(s)

while potential_loop_segments is not empty
s «— potential_loop_segments.next
for each ¢ € components
if s links with ¢
do Add a copy of stoc
do then if a loop has appeared
then {Cut the new loop

Check components for connectivity and loops

The last step of Algorithm 4.3 consist of checking if there
exist any pair of components that can be linked together. If
so, they are joined as a new component, and if it is closed,
then it is saved. This process is repeated until there is no
more components that can be linked, and then the remaining
components are saved as open components together with the
closed ones saved before.

Note that the BUILD_COMPONENTS algorithm takes ad-
vantage from the fact that the TBPs used are cubic, and
therefore it can be expected that the intersection curves will
never be specially complex. This algorithm has not been
tested with other kind of surfaces so far.

As the intersection is computed through the levels of the
tree, many calculations will be avoided, as there will be no
intersection between the bounding boxes of many pairs of
nodes. Moreover, the choice of the patch with the biggest
bounding box for subdivision maximizes the number of dis-
carded subpatches. Figure 5 shows two TBPs and their com-
puted intersection (in white in the upper picture, and in blue
in the others), drawing only the base triangles of the chosen
subpatches at each level. As it can be seen, the number of
discarded subpatches is significant. The pictures have been
taken using a tree with 4 levels and lod=1.

Figure 6 shows two TBPs intersecting at two different re-
gions. The intersection curve therefore has two separated

(© The Eurographics Association 2006.

Save it as closed component

&

Figure 5: Intersection curve of two TBPs and subdivisions
at levels 1, 2, 3 and 4 used to compute it (lod=1)

components (drawn in white). The figures have been ob-
tained using a tree with 2 levels and lod=3. Our algorithm
correctly detects this situation.

5. Patch trimming

The patch-patch intersection algorithm presented before is
a basic element in the patch trimming algorithm that is go-
ing to be presented now. However, it is just the first step of
a more complex process that also implies things like tesse-
lating triangles or checking point inclusion with respect to a
solid.

It is necessary to establish a binary partition of the space
in order to trim the patch, therefore we have considered
the use of a free-form solid bounded by TBPs. The region
trimmed from the patch in this section is the one placed in-
side of the solid.

Roughly speaking, the trimming process has the following
phases (see figure 7):

a) Compute the intersection curves between the TBP to be
trimmed and each TBP that bounds the free-form solid.

154 A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches

< -

Figure 6: Up: two TBPs with a two component intersec-
tion (in white). Down: the components of the intersection
are drawn on the individual patches

Figure 7: The phases of the patch trimming algorithm

This includes computing the connected components for
each patch-patch intersection. Figure 7.a

b) Combine the components of all the intersections that
have been found. In this phase, all the intersection points
among components are computed, and the components
are cut up into pieces such that no piece contains intersec-
tion points different from its starting and ending points.
The original boundaries of the TBP are also included in
this process, and as a result of this, the set of boundaries
for both inside and outside regions of the patch are ob-
tained. Figure 7.b

c) Tesselate the parametric domain of all the subpatches
stored at the leaf nodes of the levels of detail hierarchy
that are intersected by the pieces computed in phase 2..
As aresult of this, all the elements stored at the hierarchy
are completely inside or completely outside of the trim-
ming solid. Figure 7.c

d) Delete those subpatches stored at the leaf nodes that are
inside of the solid, and propagate the deletion process up
in the hierarchy, so that the nodes whose children have
been completely deleted are deleted too. To determine
which subpatches are inside of the solid, a point in solid
test has to be used [GRF04]. Figure 7.d

e) Erase the boundaries of the inside region of the patch.
Figure 7.e

f) Establish the new boundaries for the trimmed TBP. Fig-
ure 7.f

Pictures at figure 7 have been taken using a tree with 2
levels and lod=3.

The first step of the process in phase b) is carried out
by computing the intersection points among the intersection
curves and the original patch boundaries. As these curves
are piecewise linear, the intersections can be computed eas-
ily. These intersection points are used to cut up into pieces
all the curves, obtaining as a result simple and continuous
pieces that bound the inside and the outside region of the
TBP.

To tesselate the parametric domain of the subpatches in-
tersected by the trimming curves in phase c), we compute the
barycentric coordinates of the intersection points among the
base triangle of each subpatch and the trimming curves, and
use these points as tesselation vertices together with the ver-
tices of the subdomain. The tesselation algorithm does not
differ from any of the classic ones that can be found in the
references [O’R98, Las96].

The deletion process of phase d) makes intensive use of
the hierarchy. First, the process is started from the root node.
At any level, each node tests if it is completely inside or
completely outside of the trimming solid by testing the inclu-
sion of its bounding box (except the leaf nodes; these nodes
use for testing the barycenter of the base triangle of the sub-
patches). If the box is completely inside, the whole branch
that grows from that node is deleted, and the state of the
node changes to “’to be deleted”. If some children of a node

(© The Eurographics Association 2006.

A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches 155

are deleted, that node changes its state to “trimmed”. This
behaviour is partially inspired by the mechanism used with
octrees in polihedral solid modeling, and allows a simple
and fast trimming through all the hierarchy. Algorithm 5.1
describes with more detail this process.

Finally, to erase the boundaries of the inside region of the
patch in phase e), we choose a point on each trimming curve
and test its inclusion in the trimming solid. If the point is
inside, the trimming curve is discarded, otherwise it is ac-
cepted as boundary of the final trimmed patch in phase f).

Algorithm 5.1: TRIM(p,0bj, max_level)

comment: Trim the subpatches of patch p that are inside obj
comment: max_level is the level of the trees to be used

if p.level # max_level
inclusion_value «— INCLUSION(p.BBox,o0b)

if inclusion_value = INSIDE
for each sp € p.children

do DELETE_SUBPATCH_BRANCH(s
then - - (sp)

p.state < to be deleted

then if inclusion_value # OUTSIDE
for each sp € patch.children
TRIM(sp,obj)
if sp.state =to be deleted
else do delete sp
then then { .
p.state «— trimmed
if p.children.amount =0
then p.state < to be deleted
inclusion_value < INCLUSION(p.tr.barycenter,ob)
else if inclusion_value = INSIDE
then patch.state < to be deleted
6. Results

Images obtained in our tests have been shown all over this
paper. We have tested the algorithm with different levels in
the tree and several values of lod, proving to be a robust and
efficient trimming algorithm.

The use of this kind of data structure allows us to select
the detail at which we want the intersection and trimming
operations be done, making it useful for applications like
fast prototyping and visualization of free-form solids, and
allowing us to adapt the accuracy of the results to the de-
sired modeling operation.

(© The Eurographics Association 2006.

Figure 8: A complex trimmed TBP. Up: initial configuration.
Down: the trimmed patch

Figure 8 shows a more complex configuration of patch
trimming, and figure 9 shows another example where there
exist intersections among the trimming curves and the origi-
nal boundaries of the patch. Figure 10 shows the steps of the
trimming process for a "happy patch" sample, where solids
with concavities and convexities are used to perform four
trims on the same TBP. In all these cases, our algorithm has
produced correct results. The three figures have been created
using a tree containing 2 levels and lod=3 for each TBP.

Table 1 shows computation information from figures 8, 9
and 10 as obtained on a Pentium IV 2.4 GHz PC. It shows
the number of TBPs involved in the trimming operation,
the number of calls to the triangle-triangle intersection algo-
rithm, the number of segments bounding the resulting patch
and the time spent in the whole trimming operations; time
spent comprises all the phases indicated in section 5. Fig-
ure 8 was the faster one to be computed, even when figure 9
uses less TBPs; this is due to the fact that there is no inter-
section between the trimming curves in figure 8.

Although the number of triangle-triangle intersection tests
may seem significant, the use of the hierarchy has reduced
it significantly; figure 10, for example, implies more than 30
million tests and more than 70 seconds of computation time
if computed without the benefits of the detail tree.

156 A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches

Figure 10: "Happy patch" example. Upper left: initial configuration. Upper right: boundaries of the trimmed patch. Mid-left:
result of the tesselation phase. Mid-right: trimmed tesselation. Down: final result

Obviously, the time to compute a trimmed patch depends
directly on the number of levels of the tree and the subdivi-
sion lod used at each one, so the user can choose between
getting a more accurate result (by adding more levels and/or
increasing the value of lod) or a faster approach (using less
levels and/or a smaller value of lod).

7. Conclusions

A hierarchical data structure to handle triangular Bézier
patches (TBPs) have been presented, together with algo-
rithms to compute both the patch-patch intersection curves
and patch trimming operation using a free-form solid
bounded by TBPs. The algorithms have been explained in
detail and several pictures of the results obtained with differ-

ent resolutions have been shown, proving the effectiveness
and robustness of the algorithms.

These algorithms are based on the propagation of the op-
erations through the nodes of the hierarchy, avoiding the
evaluation of many operations at the leaf nodes by means
of checking the bounding boxes of their ancestor nodes.

This work is related with previous works by Aziz et
al. [AB90] and Stiirzlinger [Stii98], but including new fea-
tures, as it provides algorithms to obtain valid trimming
curves from the result of patch-patch intersection, and an ef-
fective way to compute the trimmed surface patch defined
by those curves.

The posibility of choosing the resolution parameters both
to create the data structure and to run the algorithms gives us
flexibility in the modeling operations, making it easy to han-

(© The Eurographics Association 2006.

A.L. Gareia, J. Ruiz de Miras, F.R. Feito / Adaptive trimming of cubic triangular Bézier patches 157

Figure Intersected TBPs Triangle-Triangle intersections Segments Time
8 31 502624 303 0.44 sec.
9 13 821392 344 0.67 sec.
10 43 1305920 836 1.20 sec.

Table 1: Computation information from figures 8, 9 and 10 (using a tree with 2 levels and lod=3) for each TBP

Figure 9: A trimmed TBP whith complex trimming curves.
Top: initial configuration. Down: several views of the result

dle TBPs with different accuracy levels, although keeping
coherence and topology of the trimmed patches.

8. Acknowledgements

This work has been partially supported by the Spanish Min-
istry of Education and Science and the European Union
(via ERDF funds) through research project TIN2004-06326-
C03-03

(© The Eurographics Association 2006.

References

[AB90] Aziz N. M., BATA R.: Bezier surface/surface in-
tersection. Computer Graphics and Applications 10, 1
(January 1990), 50-58.

[AMY96] ABDEL-MALEK K., YEH H.-J.: Determining
intersection curves between surfaces of two solids. Com-
puter Aided Design 28, 6-7 (June—July 1996), 539-549.

[ATIO1] ATI TECHNOLOGIES, INC.: Truform white pa-
per, 2001.

[BFK84] BOHM W., FARIN G., KAHMANN J.: A survey
of curve and surface methods in CAGD. Computer Aided
Geometric Design 1 (1984), 1-60.

[BKZ01] BIERMANN H., KRISTJANSSON D., ZORIN D.:
Approximate boolean operations on free-form solids.
In ACM Siggraph (Los Angeles, USA, 2001), ACM,
pp. 185-194.

[BSO5] BOUBEKEUR T., SCHLICK C.: Generic mesh re-
finement on gpu. In Graphics Hardware 2005 (Los Ange-
les, USA, 2005), SIGGRAPH/Eurographics, pp. 99-104.

[CKKK97] CHO N., Kim N., KiMm Y., KANG S.-H.: An
evolutionary method for general surface—surface intersec-
tion problems. Computers & Industrial Engineering 33,
3-4 (December 1997), 573-576.

[Far86] FARIN G.: Triangular Bernstein-Bézier patches.
Computer Aided Geometric Design 3 (1986), 83—-127.

[FHHS04] FAROUKI R., HAN C., HAS J., SEDERBERG
T.: Topologically consistent trimmed surface approxima-
tions based on triangular patches. Computer Aided Geo-
metric Design 21, 5 (May 2004), 459-478.

[GK97] GRANDINE T., KLEIN F.: A new approach to the
surface intersection problem. Computer Aided Geometric
Design 14, 2 (1997), 111-134.

[GRF03] GARcCiA A., RUiz J., FEITO F.: Free-form solid
modelling based on extended simplicial chains using tri-
angular bézier patches. Computers & Graphics 27, 1
(February 2003), 27-39.

[GRF04] GaRrcia A., Ruiz J., FEITO F.: Point in solid
test for free-form solids defined with triangular Bézier
patches. The Visual Computer 20, 5 (July 2004), 298—
313.

[HBO3] HAHMANN S., BONNEAU G.: Polynomial sur-
faces interpolating arbitrary triangulations. Transactions
on Visualization and Computer Graphics 9, 1 (2003), 99—
109.

158 A.L. Garcia, J. Ruiz de Miras, FR. Feito / Adaptive trimming of cubic triangular Bézier patches

[KeyOO] KEYSER J.: Exact Boundary Evaluation for
Curved Solids. PhD thesis, University of North Carolina
at Chapel Hill, 2000.

[KGMM97] KRISHNAN S., GOPI M., MANOCHA D.,
MINE M.: Interactive boundary computation of boolean
combinations of sculptured solids. Computer Graphics
Forum 16, 3 (1997), 67-78. Proceedings of Eurograph-
ics’97.

[Kri97] KRISHNAN S.: Efficient and accurate boundary
evaluation algorithms for boolean combinations of sculp-
tured solids. PhD thesis, University of North Carolina at
Chapel Hill, 1997.

[Las96] LAszLO M. J.: Computational Geometry and
Computer Graphics in C++, 1 ed. Prentice Hall, 1996.

[LICWO04] L1 X., JIANG H., CHEN S., WANG X.: An
efficient surface-surface intersection algorithm based on
geometry characteristics. Computers & Graphics 28, 4
(August 2004), 527-537.

[LKL*02] LI Y.-Q., KE Y.-L., L1 W.-S., PENG Q.-S.,
TAN J.-R.: Termination criterion for subdivision of trian-
gular Bézier patch. Computers & Graphics 26, 1 (Febru-
ary 2002), 67-74.

[LLSO1] LITKE N., LEVIN A., SCHRODER P.: Trimming
for subdivision surfaces. Computer Aided Geometric De-
sign 18,5 (June 2001), 463-481.

[Mo6197] MOLLER T.: A fast triangle-triangle intersection
test. Journal of Graphics Tools 2, 2 (1997), 25-30.

[NKZ03] NURNBERGER G., KOHLMULLER N., ZEIL-
FELDER F.: Construction of cubic 3d spline surfaces
by Lagrange interpolation at selected points. In Curve
and Surface Design. Saint Malo 2002 (2003), Lyche T.,
Mazure M.-L., Schumaker L., (Eds.), Nashboro Press,
pp. 235-245.

[O’R98] O’ROURKE J.: Computational Geometry in C,
2 ed. Cambridge University Press, 1998.

[PBP02] PRAUTZSCH H., BOEHM W., PALUSZNY M.:
Bézier and B-Spline Techniques. Springer Verlag, 2002.

[RF99] Ruiz J., FEITO F.: Mathematical free-form solid
modeling based on extended simplicial chains. In WSCG
’99: VII Conference on Computer Graphics, Visualization
and Interactive Digital Media (Plzen-Bory, Czech Repub-
lic, 1999), pp. 241-248.

[Sei89] SEIDEL H.-P.: A general subdivision theorem for
Bézier triangles. In Mathematical Methods in Computer
Aided Geometric Design, Lyche T., Schumaker L., (Eds.).
Academic Press, Inc., 1989, pp. 573-581.

[Stii98] STURZLINGER W.: Ray-tracing triangular
trimmed free-form surfaces. Transactions on Visualiza-
tion and Computer Graphics 4, 3 (Jul-Sep 1998), 202—
214.

[VPBMO1] VLACHOS A., PETERS J., BoyD C.,

MITCHELL J.: Curved PN triangles. In Symposium on
Interactive 3D Graphics (New York, USA, 2001), ACM,
ACM Press, pp. 159-166.

[Zei02] ZEILFELDER F.: Tutorials on Multiresolution in
Geometric Modelling. Mathematics and Visualization.
Springer Verlag, 2002, ch. Scattered data fitting with bi-
variate splines, pp. 243-286.

(© The Eurographics Association 2006.

