EG UK Theory and Practice of Computer Graphics (2013)
Silvester Czanner and Wen Tang (Editors)

GPU Simulation of Finite Element Facial Soft-Tissue Models

Mark Warburton and Steve Maddock

Department of Computer Science, The University of Sheffield, UK

Abstract

Physically-based animation techniques enable more realistic and accurate animation to be created. We present a
GPU-based finite element (FE) simulation and interactive visualisation system for efficiently producing realistic-
looking animations of facial movement, including expressive wrinkles. It is optimised for simulating multi-layered
voxel-based models using the total Lagrangian explicit dynamic (TLED) FE method. The flexibility of our system
enables detailed animations of gross and fine-scale soft-tissue movement to be easily produced with different
muscle structures and material parameters. While we focus on the forehead, the system can be used to animate

any multi-material soft body.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

Facial modelling and animation is one of the most challeng-
ing areas of computer graphics. Currently, most facial ani-
mation requires recorded performance-capture data or mod-
els to be manipulated by artists. However, using a physically-
based approach, the effects of muscle contractions can be
propagated through the facial soft tissue to automatically de-
form the model in a more realistic and anatomical manner.

Physics-based soft-tissue simulation approaches often fo-
cus on either efficiently producing realistic-looking anima-
tions for computer graphics applications using the mass-
spring (MS) method [TW90, KHSO1], or simulating mod-
els with high physical accuracy for studying soft-tissue be-
haviour [BJTMO08,KSYO08] or surgical simulation [KRG*02,
ZHDO06] using the accurate but complex finite element (FE)
method. Various FE software packages are currently avail-
able, some of which are specialised for complex biologi-
cal applications, such as CMISS. Such complex systems are
geared towards accurately simulating small areas of soft tis-
sue, whereas FE solvers for computer graphics applications
are normally used to simulate less complex models of larger
areas, for example, without simulating wrinkles [SNFO5].
Using GPU computing architectures, complex FE simula-
tions are now possible in real time [CTA*08].

By modelling more physics-based behaviour than current
computer graphics approaches, the aim of this work is to
develop an optimised GPU-based FE simulation and visu-

(© The Eurographics Association 2013.

—~ Aponeurosis

(Encloses Volume)

Muscle Surfaces
(Enclose Volume)

Skin Surface
Skull Surface

Skin and Connective
Tissue Volume

Figure 1: Surfaces and volumes of a forehead soft-tissue
model. The volume between the skull and skin surfaces is
discretised and simulated.

alisation system for efficiently producing realistic-looking
animations of facial soft tissue, including animation of ex-
pressive wrinkles, focussing on the forehead (see Figure 1).
This involves simulating multi-layered forehead soft-tissue
models with complex boundary conditions under the influ-
ence of muscle contraction using the accurate non-linear to-
tal Lagrangian explicit dynamic (TLED) FE method. Our
system is optimised for simulating voxel-based models, for
which there are various model creation and simulation ad-
vantages [WM12], and can be used to animate any inhomo-
geneous soft body (not just soft tissue).

This paper focusses on the CUDA-based implementation
and optimisation of our simulation process, the theory of

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

DOI: 10.2312/LocalChapterEvents. TPCG.TPCG13.001-008

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents.TPCG.TPCG13.001-008

2 M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models

which has been previously presented [WM13b]. The follow-
ing sections discuss related work, followed by an overview
of our physically-based animation approach, and an intro-
duction to CUDA. Implementation details of the simulation
system are then presented, finishing with example anima-
tions.

2. Related Work
2.1. Physically-Based Facial and Soft-Tissue Animation

Physically-based facial animation systems for computer
graphics applications normally consist of muscle and skin
models, sometimes along with a skull model and wrinkle
models. Contraction of vector-based [LTW95] or volumet-
ric muscles [KHSO1] requires a contraction magnitude (e.g.
based on a Hill-type model [RP07]) and direction (e.g. based
on a fibre field [SNFO05]). For simulating the physics of fa-
cial soft tissue, efficient and stable physics engines [Fral2],
and the MS method [TW90] are popular for computer graph-
ics applications, although heuristic functions are required
for incompressibility and volume preservation of MS el-
ements [KHSO1]. The more accurate but computationally
complex FE method can also be used [SNF05], although this
is mainly used with scientific [BJTMOS] or surgical applica-
tions [KRG™*02,ZHDO6] that require high accuracy.

For computer graphics applications, skin wrinkles are
usually layered onto a mesh using texture-mapping tech-
niques [RBMOS8], which are computationally efficient and
suitable for fine wrinkles, or by using a heuristic function to
modify the geometry of the mesh [BBA™07,MC10] for more
realistic looking wrinkles on a high-resolution mesh. These
can also be layered onto a physics-based model [ZSTO5].
Multi-layered FE models of small areas of soft tissue have
been developed for accurate simulation of expressive or ag-
ing wrinkles [KSYO08], some of which simulate factors such
as anisotropy and viscoelasticity [FMO8]. Due to its effi-
ciency, the CPU- and GPU-based TLED algorithms have
been used for various non-linear FE soft-tissue simulations
of biological organs [MJLW07,CTA*08].

2.2. Finite Element Solvers

Various FE packages are currently available, and are used
widely in science and engineering fields. Most solvers per-
form FE analysis in three stages: preprocessing (setting up
the simulation), computation of the entire simulation, and
postprocessing (visualising and analysing the simulation),
and are therefore unsuitable for interactive scenarios. Com-
mercial software, such as Abaqus, LS-DYNA and ANSYS,
contain a number of solvers and can often be used to solve a
wide range of problems; however, they are not geared to-
wards complex biological applications, for example, with
complex material models and muscle contraction.

Various packages have been implemented specifically for

simulation of skin and soft tissue, such as CMISS and
FEBio, and muscle contraction models can be integrated
into such software [HMSHO9]. For greatly increased com-
putational performance, such GPU-based solvers have also
been developed, and one such solver has been implemented
into the SOFA framework for interactive soft-tissue simu-
lation [CTA*08], although muscle contraction was not in-
cluded. FE solvers have been developed for computer graph-
ics applications, although these are normally used to simu-
late less complex models without wrinkles [SNFO5].

Our GPU-based system includes a muscle contraction
model, and can handle complex boundary conditions to sim-
ulate soft-tissue sliding. While most existing commercial
and specialised FE systems consider only a single material
per element, our system is optimised for simulation of com-
plex, multi-layer voxel-based soft-tissue models, for which
there are various model creation, performance and stabil-
ity advantages [WM12], and elements of such models may
overlap multiple materials and muscles. Our system can be
used both interactively, and entire simulations can also be
saved to file for later visualisation. Also, rather than sim-
ulating models of small areas, we simulate detailed FE fa-
cial models, but with enough detail, such as skin layers, to
simulate fine details like wrinkles (unlike current such mod-
els [SNF05,BJTMOS]). As well as computer graphics appli-
cations, due to the detail and accuracy of the simulations,
our animation approach and simulation system could also be
useful in other fields, such as biomechanics and surgery.

3. Overview of our Physically-Based Animation
Approach

Figure 2 shows an overview of our entire animation ap-
proach, which involves three major stages:

1. Creating the surface mesh for an object
2. Creating a suitable simulation model
3. Simulating and visualising the model over time

The surface mesh can be created using any 3D modelling
software. The next stage involves using our model creation
system to automatically discretise the volumes enclosed by
this mesh into a collection of nodes that are connected to
form volumetric elements, and compute FE model param-
eters to produce a simulation model [WM13a]. These pa-
rameters include skin layers and element material composi-
tion, muscle fibre directions, and boundary conditions. We
use non-conforming (voxel-based) hexahedral models, with
bound surface meshes for visual purposes. These models can
then be simulated and visualised using a GPU-based FE sim-
ulation and visualisation system [WM13b], the implementa-
tion of which is the focus of this paper.

4. Model Simulation

The full details of our simulation process have been previ-
ously presented [WM13b]. A brief summary is presented

(© The Eurographics Association 2013.

M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models 3

1. Surface Mesh Creation Skull/Bone _—

(Sliding Surface)
Skin Side
(Rigid Surface)

Muscle

Outer Skin
Surface*

S Other

Skin Sides
Cut View

Labels identify the different surfaces

* Semi-transparent render

2. Simulation Model Creation

Rigid

Elements
‘Nodesls LN

Skin Layers-

Muscle Fibre Directions

3. Model Simulation and Visualisation

Deformed
Surface Mesh

Figure 2: An overview of our physically-based animation
approach. The GPU implementation of the simulation and
visualisation process is the focus of this paper.

(© The Eurographics Association 2013.

here before we concentrate on the GPU implementation us-
ing CUDA. We use the non-linear TLED formulation of the
FE method with reduced-integration 8-node hexahedral el-
ements (with a single Gauss integration point) [MJLWO07],
which have efficiency and accuracy advantages for sim-
ulating soft tissue. Starting with the principle of virtual
work, and using a lumped mass approximation with mass-
proportional Rayleigh damping, the uncoupled equation of
motion can be derived:

M+ Cla+k("u)'u="r (1)

where 'u is the displacements vector, M is the mass matrix,
C is the damping matrix, k("u) is the stiffness matrix, and ‘r
is the vector of external forces. Element nodal force contri-
butions, ’f, are calculated as:

t=k("u)'u :A IB] 03d%v)
|4

where {B] is the strain-displacement matrix, 8 is the sec-
ond Piola-Kirchhoff stress vector, and V is the element vol-
ume. As we use non-conforming models, the stress vector is
a weighted sum of those calculated for each material the el-
ement overlaps. A stiffness-based technique adds hourglass
forces to element nodal forces based on element deforma-
tion to reduce hourglass effects that occur with reduced-
integration elements [JWMO8]. To advance simulations, the
central difference time-integration method is used.

To enable active muscle stresses to be generated dur-
ing simulations, a muscle contraction model has been im-
plemented, which considers both active and transversely
isotropic passive stresses in the fibre directions. Weighted
stresses are calculated for each muscle overlapping a non-
conforming element. To constrain models, rigid (fixed) and
sliding nodal constraints can be set. Rigid nodes are sim-
ply fixed with zero displacement throughout simulations.
Sliding nodes maintain a fixed distance away from the non-
conforming surface they are bound by, and can be used to
model the sliding of superficial facial soft-tissue layers over
the stiff deep layers and skull [WMSHI10], which is often
neglected [SNF05, BITMOS].

5. CUDA

GPUs are specialised for compute-intensive, highly-parallel
computation, consisting of a number of streaming multipro-
cessors (SMs) that execute in parallel. Each core of an SM
executes the same instruction on a different thread (SIMT
paradigm). Using CUDA, threads for GPU kernel execution
are organised into equally-sized blocks, which are organised
into a grid [NVI12]. Each block is executed on an SM in
groups of 32 threads, called warps. Depending on memory
requirements, various blocks can reside on an SM, and an
SM can quickly switch between warps to hide the latency of
MEemory accesses.

Normally, most data on the GPU resides in high-latency

4 M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models

global memory. Each SM has faster shared memory for shar-
ing data between block threads. For local data, threads are
allocated extremely fast registers, although, if exceeded, this
spills into a section of global memory. With the Fermi archi-
tecture, the L1 and L2 cache can increase the efficiency of
global memory accesses.

For optimal performance, it is important to balance mem-
ory requirements of a block with the ability to hide memory
latency. Efficient access patterns should be used to achieve
global memory coalescing and avoid shared memory bank
conflicts. Also, branch divergence within a warp should be
minimised, as this causes each branch to be executed in a se-
rial fashion, with some threads idle during each branch exe-
cution. Similarly, uneven loops within a warp will result in
idle threads waiting for the longest loop to complete.

6. GPU Implementation of our Simulation Process

The TLED FE formulation we use is inherently parallel,
making it suitable for GPU implementation, and enables
some variables to be precomputed. Algorithm 1 shows the
process to compute a timestep using our simulation system,
which has been implemented using C++ with CUDA C API
version 4.2 for use with the Fermi architecture.

6.1. Memory and Data Structures

During a CPU precomputation stage, all simulation val-
ues that relate only to the initial configuration, such as
shape function derivatives and unscaled hourglass ma-
trices, are precomputed. All simulation values are then
copied to the GPU, where they remain throughout simula-
tions to reduce the amount of slow CPU-GPU data trans-
fer. All simulation variables are stored in global memory,
which, with the L1 cache and lenient coalescing require-
ments, is now normally preferred over texture memory.
Data is stored using the structure of arrays pattern (e.g.
[[u1s-estn], [V1s-esvn], [W1, ..., wn]]) Where possible, rather
than array of structures (e.g. [[u1,v1,Wi],..., [Un, Vi, wn]]),
with each row of the arrays aligned to a memory block. This
increases spatial locality of the cached accesses between
consecutive warp threads, and enables memory coalescing.

Figure 3 shows the main classes used to organise simula-
tion data based on functionality (e.g. to reduce branch diver-
gence and uneven loops). While all nodes of our FE mod-
els share the same functionality, element-related computa-
tion varies based on element type, material behaviour, and
whether active muscle stresses are generated. Figure 4 shows
an example of how elements are grouped to reflect this. Sim-
ilarly, with the surface mesh, the processing of primitives
varies depending on the type of primitive, and how these are
rendered.

Contractile components are created to generate muscle
stresses, and one component is created for each muscle that

Algorithm 1: The GPU-based process to compute a
timestep. The major kernels have been identified.

// Element nodal force contributions:

1 foreach element collection, M do
2 if active stresses generated for M then
3 kernel: foreach element in M do
4 foreach integration point do
5 ‘ Calculate deformation values;
6 foreach contractile component collection, A do
7 kernel: foreach contractile component in A do
8 foreach integration point do
9 ‘ Calculate muscle stresses;
10 foreach element collection, M do
11 kernel: foreach element in M, m do
12 foreach integration point, i do
13 if active stresses generated with M then
14 ‘ Read deformation and stress values;
15 else
16 Calculate deformation values and
initialise stress;
17 foreach material overlapping m do
18 ‘ Calculate material stresses;
19 Calculate internal nodal forces at i;
20 Add nodal force contributions for m;
21 if hourglass control enabled with M then
22 kernel: foreach element in M do
23 ‘ Calculate hourglass forces;

// Nodal displacements:
24 kernel: foreach node, n do
25 if n not rigid then
26 ‘ Calculate nodal displacements;
27 foreach sliding constraint, C do
28 foreach surface in C do

29 kernel: foreach sliding node in C do

30 ‘ Perform broad-phase collision detection;
31 kernel: foreach sliding node in C do

32 ‘ Compute closest surface point;

33 kernel: foreach sliding node in C do

34 ‘ Update nodal displacements;

overlaps an element. As shown by Figure 4, while con-
tractile components exhibit identical functionality, these are
grouped by the element collection they reference, the values
of which they modify. Within a collection, contractile com-
ponents are ordered firstly by the muscle, and then by the
element they reference, enabling several consecutive warp
threads to access the same muscle data and spatially local
element data.

6.2. Timestep Computation

As shown by Algorithm 1, the main simulation system ker-
nels can be grouped into two major procedures: computa-

(© The Eurographics Association 2013.

M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models 5

ContractCompCoI ElemColHG ‘ ‘ ElemColMat
lo 1
MuscleCol EIemCoI ActiveStress
1
NodeCol FEModel ElemCoIVIS
SlideSurfCol Interactor V|suaI|ser ‘

N

PosBindCol —— Model

PosCol

FE Model

. Surface Mesh

Visualisation
Figure 3: The relationships between the main classes used

with our simulation system. Where not given, the multiplici-
ties equal 1.

Element Collections

Skin Muscle Skin and Muscle
(material model A, (material model B, (material models A and B,
no muscle stress) muscle stress) muscle stress)

Contractile Component Collections

Muscle 1

Muscle 2

Figure 4: Element and contractile component groupings for
a voxel-based model with 2 muscles and 2 material models,
showing the element and contractile component orderings
within these groups. Note this is a 2D illustration of a 3D
process.

(© The Eurographics Association 2013.

tion of element nodal force contributions, and computation
of nodal displacements. Various other kernels are also used
within a timestep, for example, to initialise element stresses
and internal nodal forces.

6.2.1. Element Nodal Force Contributions

First, muscle stresses are computed by launching a kernel
for each contractile component collection. Additions of the
stress values are performed atomically as there may be mul-
tiple contractile components per element. The element nodal
force contributions kernel can then be launched for each el-
ement collection. For collections that overlap muscles, val-
ues relating to the deformation of elements that are used in
the muscle and material stress computations, such as the de-
formation gradients, are computed in a separate kernel, and
stored before the computation of muscle stresses. For other
collections, these values are computed and used only in the
element nodal force contributions kernel, which uses a func-
tion pointer to the relevant GPU function to compute or read
such values.

As well as obvious optimisations with efficient stor-
age and computations using symmetric matrices like the
right Cauchy-Green deformation tensors, when computing,
for example, a deformation gradient, {X;;, efficient global
memory accesses can be achieved by computing matrix mul-
tiplications in stages such that element and nodal values are
only accessed once:

ui
@ oN, oN, oN,
tX@ _ | a a a
0 Y tZia 80x1 aOXQ aOX3 (3)
0Xij = Z X ; J)

where a is the node number and 7 is the number of nodes.

For each material model used by a non-conforming ele-
ment collection, a weight and average parameters are com-
puted for each element. A pointer to the relevant GPU func-
tion that calculates material stresses is also stored, which en-
ables easy integration of material types without modifying
the element nodal force contributions kernel. The weighted
combination of stresses calculated for each material model
is added to any current (e.g. muscle) stresses. As this ker-
nel makes use of many variables, to minimise both register
spilling and multiple same-location global memory accesses,
shared memory is used for temporary storage of the stress
vectors being used by each thread in a block, and these are
organised using the same structure of arrays pattern that is
used for global memory storage.

When computing forces at an integration point, instead
of computing the large strain-displacement matrix for the
whole element, which would increase register spilling, rows,
r, of the force vector can be constructed independently:

=/ 0Bl s’V ®)
oy

6 M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models

Element nodal force contributions are computed using Gaus-
sian quadrature with the forces computed at each integration
point, and additions of these to the internal nodal forces are
performed atomically, as nodes are usually attached to mul-
tiple elements. Hourglass forces can then be computed for
each necessary element collection.

6.2.2. Nodal Displacements

A kernel is launched to update the unfixed nodal displace-
ments for each node independently, using the central dif-
ference time-integration scheme, and boundary conditions
are then applied to update these according to boundary con-
straints. For sliding constraints (see Section 4), computa-
tion of the distance and direction of a node to the closest
bound surface point is required. A GPU-based semi-brute-
force broad-phase collision detection algorithm with regular
spatial subdivision has been implemented to prune the num-
ber of polygons to be tested [AGA12], using which nodes
are represented as AABBs with lengths of 2 x dj;, where
dy is the fixed distance for node ¢. For a particular sliding
constraint, there may be several sliding surfaces, for which
primitive and collision data is precomputed as these surfaces
don’t move.

After performing broad-phase collision detection, a kernel
is executed for each surface to compute the closest surface
point to each sliding node based on the broad-phase colli-
sions, followed by a kernel to update the displacements for
each sliding node based on these values. The former has a
loop with a variable number of iterations per thread depend-
ing on the number of broad-phase collisions per surface.
This could be avoided if the kernel launched a thread for
each collision, rather than the group of collisions between
a node and a surface, although race conditions could occur
when comparing and overwriting the closest surface posi-
tions when there are multiple collisions per surface.

6.3. Visualisation, Output and Interaction

Before rendering a frame, kernels are executed to update
nodal positions using the rest positions and displacements,
and calculate the new positions and normals of any bound
vertices. These updates, and outputting graphics frame data
to screen is done after computation of a number of timesteps.
These output intervals depend on the desired frame rate if the
simulation runs in real time, or the desired simulation time
between frames otherwise. Simulation data at such intervals
can also be saved to file for later playback and analysis in
real time. During playback, simulation data is updated using
values read from the file, requiring no modifications to the
visualisation component to visualise this data, and enabling
simulations to be continued after all frames have been read.

CUDA-OpenGL interoperability enables necessary simu-
lation data on the GPU to be directly read by OpenGL. A ver-
tex buffer object (VBO) is created for an FE model, which

b b+1 b+2 b+3 ... b+31 b+32 b+33
2 2 2 2
0 1 0 1 0 1[0 1
2 2 2 2
0 1|0 1|0 1 0 1
a a+l a+2 a+3 - a+3l a+32

Row a, node 0 value: Row b, node 2 value:
Thread: 1 2 3 32 1 2 31 32

| b

1x128B 2x128B

a |an [an2 a+31 b+l b+31

mz|

Memory: mz‘

Figure 5: An example of efficient global memory accesses of
nodal values during a kernel that loops over elements, when
using a voxel-based model with ordered node numbering.
Each warp thread is accessing a 4B nodal value in cached
global memory. Note this is a 2D illustration of a 3D process.

consists of all nodal positions, followed by all nodal colours,
both of which are memory aligned for efficient writes us-
ing CUDA, and in an appropriate array of structures format
for rendering. Two copies of nodal positions are therefore
maintained, one of which as structures of arrays for effi-
cient access using CUDA that is used to update data for the
VBO. To visualise a vector, such as stresses, the magnitude
is clamped and converted to a colour, which is written di-
rectly to the VBO. As the visualisation component is uncou-
pled from the simulation process, it can be easily extended to
visualise other variables. A precomputed static index buffer
object (IBO) contains a group of node indices to render each
element in a collection. A similar approach is used for ren-
dering a surface mesh.

After computation of a timestep, any updates to simula-
tion parameters, such as muscle contraction parameters, are
computed on the CPU, and copied from host (main) mem-
ory to the GPU. Additional boundary conditions are also set;
for example, our system supports user interaction, whereby
external forces are applied to a group of nodes. For effi-
ciency, all memory copies during simulations are done via
page-locked host memory.

6.4. Optimisation for Voxel-Based Models

Our system has been optimised for use with voxel-based
models. For example, only a single set of the various ele-
ment values, such as a single set of shape function deriva-
tives (12 values) and one unscaled hourglass stiffness matrix
(64 values), needs to be stored, rather than a set for each el-
ement. While greatly reducing memory usage, this also en-
ables more efficient memory accesses as the same set of val-
ues are accessed by each thread, reducing the required num-
ber of slow global GPU memory accesses.

Elements and element nodes can also be easily efficiently

(© The Eurographics Association 2013.

M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models 7

-~

Frontalis contraction 0.125 >0.25

Higher muscle stress
references

No procerus or Fgrrugator . sz
supercilli L 0125 >025

Figure 6: Variations of a forehead model under contractions
of the frontalis. Insets show the stresses, where red indicates
high, and blue indicates low stress.

numbered, which not only means that only 4 node indices
per element need to be stored, from which the other 4 in-
dices can be deduced, but the more efficient data storage
of nodal values can also improve memory coalescing and
global memory cache hits, for example, during the element
nodal force computations, as shown by Figure 5. Using such
an approach to access element nodal values during a kernel
that loops over elements, in the worst case scenario (when
none of the neighbouring elements are connected in series),
just 2 x 128B memory accesses per warp are required, as
opposed to potentially 32 x 128B (when none of the nodal
values are in the same memory block) with unordered and
inefficient node organisation. However, this value increases
at sections where consecutive elements don’t belong to the
same element collection.

7. Results

Figure 6 shows example animations using a forehead model
(generated using the surface mesh in Figure 1 with our model
creation system [WM13a]), while Figure 2 contains an ex-
ample animation of a simpler soft-tissue-block model. Ta-
bles 1 and 2 show the material properties that were used
(based on those reported in literature [KSYO08]), and some
model statistics. Muscle parameters were estimated based
on literature [RPO7] and from testing. Each muscle was
assigned stress references of SMPa, and an optimal fibre
stretch of 1 (rest length). An estimated mass-proportional
damping scale factor of 2Ns/m was used, and external forces

(© The Eurographics Association 2013.

Layer p* E (MPa) v Depth
(kg/ m3) (mm)

SC 11,000 48 0.49 0.02

D 11,000 0.0814 0.49 1.8

H 11,000 0.034 0.49 Remains

M 11,000 0.5 0.49 ~1

T 11,000 24 0.49 ~1

Table 1: The neo-Hookean material properties used for the
animation examples. Key: p: Density, E: Young’s Modulus,
v: Poisson Ratio, SC: Stratum Corneum, D: Dermis, H: Hy-
podermis, M: Muscle, T: Tendon. *Includes mass scaling.

Detail Face Skin Armadillo
Block

Nodes 629,178 146,410 19,698

Elements 503,530 129,600 15,107

Timestep (ms) 0.005 0.005 0.15

Timestep Computa- 6.83 1.48 0.14

tion Time (ms)

Table 2: Statistics of the examples, using an NVIDIA GTX
680 GPU.

that have little visual effect on the animations, such as grav-
ity, were neglected. Mass and time scaling were used to in-
crease stability and improve performance [WM13b]. Figure
7 shows an example of a more generic multi-material object.

Using a simplified version of our GPU-based simulation
system, early tests showed performance increases of over
130x with models of up to 250,000 4-node tetrahedral el-
ements compared with our CPU-based solver. This made the
implementation of the full system on the GPU an obvious
choice. Using our current GPU-based system, optimisations

Animated
Surface

Simulation
Model

Material Stiffness (kPa

.
0 125 25

Figure 7: Animation of a multi-material Stanford Armadillo
under gravity. With the material stiffness, red indicates high,
and blue indicates low stiffness.

8 M. Warburton & S. Maddock / GPU Simulation of Finite Element Facial Soft-Tissue Models

when using voxel-based models have led to performance in-
creases, even of almost 2x with low resolution models con-
taining around 3,000 elements, compared with using a con-
forming hexahedral model [WM12].

Despite the performance advantages, the soft-tissue simu-
lations aren’t real time due to the required model complexity
to capture the necessary detail for wrinkle simulation, such
as skin layers. One computational bottleneck is the process-
ing of sliding constraints, which contributed to over 40%
of the timestep computation time with the forehead simu-
lations, containing 118,276 sliding nodes. This procedure
could be further optimised to even out the workload between
threads (see Section 6.2.2). However, real-time frame rates
can be achieved using lower-resolution models for simulat-
ing gross deformation, like the multi-material Armadillo.

8. Conclusion

This work has presented a GPU-based FE simulation and vi-
sualisation system for efficiently producing realistic-looking
animations of facial movement, including animation of ex-
pressive wrinkles. Focussing on the forehead, this involves
simulating multi-layered voxel-based soft-tissue models
with complex boundary conditions under the influence of
muscle contraction using an optimised GPU-based non-
linear TLED FE solver. Simulations can be visualised dur-
ing computation, and can be interacted with. Animation ex-
amples have demonstrated the ability of our system to pro-
duce animation of realistic large and fine-scale soft-tissue
behaviour, and the flexibility to deform different soft-bodies.
For improved performance, future work will focus on ex-
tending our system to support running simulations using
multiple GPUs.

References

[AGA12] AVRIL Q., GOURANTON V., ARNALDI B.: Fast Colli-
sion Culling in Large-Scale Environments Using GPU Mapping
Function. In Proc. EGPGV (2012), pp. 71-80. 6

[BBA*07] BICKEL B., BOTSCH M., ANGST R., MATUSIK W.,
OTADUY M., PFISTER H., GROSS M.: Multi-Scale Capture of
Facial Geometry and Motion. ACM Trans. Graph. 26, 3 (2007).
2

[BJTMO8] BARBARINO G., JABAREEN M., TRZEWIK J.,
Mazza E.: Physically Based Finite Element Model of the Face.
In Proc. ISBMS (2008), pp. 1-10. 1,2, 3

[CTA*08] CoMAS O., TAYLOR Z. A., ALLARD J., OURSELIN
S., COTIN S., PASSENGER J.: Efficient nonlinear FEM for soft
tissue modelling and its GPU implementation within the open
source framework SOFA. In Proc. ISBMS (2008), pp. 28-39. 1,
2

[FMO8] FLYNN C., MCCORMACK B. A. O.: Finite element
modelling of forearm skin wrinkling. Skin Res. Technol. 14, 3
(2008), 261-269. 2

[Fral2] FRATARCANGELI M.: Position-based facial animation
synthesis. Comput. Animat. Virtual Worlds 23, 3-4 (2012), 457—
466. 2

[HMSHO09] HUNG A., MITHRARATNE K., SAGAR M., HUNTER
P.: Multilayer Soft Tissue Continuum Model: Towards Realis-
tic Simulation of Facial Expressions. In Proc. WASET (2009),
pp. 134-138. 2

[JWMO08] JOLDES G. R., WITTEK A., MILLER K.: An efficient
hourglass control implementation for the uniform strain hexahe-
dron using the Total Lagrangian formulation. Commun. Numer.
Methods Eng. 24, 11 (2008), 1315-1323. 3

[KHSO01] KAHLER K., HABER J., SEIDEL H.-P.: Geometry-
based Muscle Modeling for Facial Animation. In Proc. GI
(2001), pp. 37-46. 1,2

[KRG*02] KocH R. M., ROTH S. H. M., GRoss M. H., ZiM-
MERMANN A. P., SAILER H. F.: A Framework for Facial
Surgery Simulation. In Proc. SCCG (2002), pp. 33-42. 1,2

[KSY08] KUWAZURU O., SAOTHONG J., YOSHIKAWA N.: Me-
chanical approach to aging and wrinkling of human facial skin
based on the multistage buckling theory. Med. Eng. & Phys. 30,
4(2008), 516-522. 1,2, 7

[LTW95] LEE Y., TERZOPOULOS D., WATERS K.: Realistic
Modeling for Facial Animation. In Proc. SIGGRAPH (1995),
pp. 55-62. 2

[MC10] MULLER M., CHENTANEZ N.: Wrinkle Meshes. In
Proc. SCA (2010), pp. 85-92. 2

[MJILWO07] MILLER K., JOLDES G., LANCE D., WITTEK A.:
Total Lagrangian explicit dynamics finite element algorithm for
computing soft tissue deformation. Commun. Numer. Methods
Eng. 23,2 (2007), 121-134. 2,3

[NVI12] NVIDIA CORPORATION: NVIDIA CUDA C Program-
ming Guide Version 4.2,2012. 3

[RBMO08] REIs C.D. G., BAGATELO H., MARTINO J. M.: Real-
time Simulation of Wrinkles. In Proc. WSCG (2008), pp. 109—
116. 2

[RPO7] ROHRLE O., PULLAN A. J.: Three-dimensional finite
element modelling of muscle forces during mastication. J.
Biomech. 40, 15 (2007), 3363-3372. 2,7

[SNF05] SIFAKIS E., NEVEROV 1., FEDKIW R.: Automatic De-
termination of Facial Muscle Activations from Sparse Motion
Capture Marker Data. ACM Trans. Graph. 24, 3 (2005), 417—
425.1,2,3

[TW90] TERZOPOULOS D., WATERS K.: Physically-Based Fa-
cial Modeling, Analysis, and Animation. J. Vis. Comput. Animat.
1,2 (1990), 73-80. 1,2

[WM12] WARBURTON M., MADDOCK S.: Creating Animatable
Non-Conforming Hexahedral Finite Element Facial Soft-Tissue
Models for GPU Simulation. In Proc. WSCG (2012), pp. 317-
325.1,2,8

[WM13a] WARBURTON M., MADDOCK S.: Creating Finite El-
ement Models of Facial Soft Tissue. In Proc. WSCG (2013). 2,
7

[WM13b] WARBURTON M., MADDOCK S.: Physically-Based
Forehead Animation including Wrinkles. In Proc. CASA (2013).
2,7

[WMSHI10] WU T., MITHRARATNE K., SAGAR M., HUNTER
P. J.: Characterizing Facial Tissue Sliding Using Ultrasonogra-
phy. In Proc. WCB (2010), pp. 1566-1569. 3

[ZHDO06] ZAcHOW S., HEGE H.-C., DEUFLHARD P.:
Computer-Assisted Planning in Cranio-Maxillofacial Surgery. J.
Comp. Inf. Technol. 14, 1 (2006), 53—-64. 1,2

[ZST05] ZHANG Y., SIM T., TAN C. L.: Simulating Wrinkles in
Facial Expressions on an Anatomy-Based Face. In Proc. ICCS
(2005), pp. 207-215. 2

(© The Eurographics Association 2013.

