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Abstract
We consider the background to describing strong scattering in terms of diffusive processes based on the diffusion
equation. Intermediate strength scattering is then considered in terms of a fractional diffusion equation which
is studied using results from fractional calculus. This approach is justified in terms of the generalization of a
random walk model with no statistical bias in the phase to a random walk that has a phase bias and is thus, only
‘partially’ or ‘fractionally’ diffusive. A Green’s function solution to the fractional diffusion equation is studied
and a result derived that provides a model for an incoherent image generated by light scattering from a tenuous
random medium. Applications include image enhancement of star fields and other cosmological bodies imaged
through interstellar dust clouds. An example of this application is given.

Categories and Subject Descriptors (according to ACM CCS): I.4.5 [Reconstruction]: Transform Methods

1. Introduction

A conventional approach to modelling light scattering in ran-
dom media is to consider the scatterer to be a stochastic
function with a characteristic Probability Density Function
(PDF) under the weak scattering approximation [Bla06]. In
the far field, the scattering amplitude is then given by the
Fourier transform of the scattering function and the intensity
of the scattered field (i.e. the measurable quantity, at optical
frequencies and above) is determined by the Fourier trans-
form of the autocorrelation of the scattering function. The
inverse scattering problem is then reduced to estimating the
correlation function by Fourier inversion and then solving
the phase reconstruction problem to recover the scattering
function from its autocorrelation function.

Multiple scattering processes are often modelled using a
statistical approach [Mar06]. The aim is to develop a model
of the PDF for the scattered field itself rather than for the
scattering function. This involves concepts traditionally as-
sociated with the kinetic theory of gases in which the random
motion of particles undergoing elastic collisions and follow-
ing ‘random walks’ is ‘replaced’ with the random scatter-
ing of an electric field, for example, from multiple scattering
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sites. The total contribution of the multiple scattering pro-
cess after N scattering interactions is given by [Fie09]

E =
N

∑
j=1

a j exp(iθ j)

where the amplitude a j, the phase θ j and N are independent
random variables. While this approach provides physically
informative models for the PDF that can be used for the sta-
tistical characterisation of an image and image segmentation
(using a moving ‘window’) to locate statistically significant
features, it does not directly help in the development of al-
gorithms for image restoration and reconstruction [BM86].
On the other hand, random walk models provide the physical
basis for diffusion processes in general. This is the essential
‘link’ to modelling multiple scattering processes in terms of
solutions to the diffusion equation for the intensity of light.

In certain circumstances, multiple scattering may only in-
volve a small number of interactions. This occurs when light
interacts with tenuous media, for example, and is considered
to be one of the most difficult scenarios to model accurately.
Diffusion processes are not applicable in such cases. In this
paper, we study an approach to solving this problem using
the fractional diffusion equation.
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2. Optical Scattering

Analysis of scattering from a random medium ideally re-
quires a model for the physical behaviour of the random
variable(s) that is derived from basic principles. This in-
volves modelling the scattered field in terms of its interaction
with an ensemble of ‘scattering sites’ based on an assumed
stochastic process. If the density of these scattering sites is
low enough so that multiple scattering is minimal, then we
can apply the weak scattering approximation to develop a
model for the intensity of a wavefield interacting with a ran-
dom (weak) scatterer.

In the far field, the (weak) scattered field (i.e. the scat-
tering amplitude) is given by the Fourier transform of the
scattering function. If this function is known a priori, then
the scattering amplitude can be determined. This is an ex-
ample of a deterministic model. If the scattering function
is stochastic (i.e. a randomly distributed scatterer) such that
it can only be quantified in terms of a PDF then we can
simulate the scattered field by designing a random number
generator that outputs deviates that conform to this distri-
bution. The Fourier transform of this stochastic field then
provides the scattering amplitude. Thus, given a three di-
mensional optical Helmholtz scattering function of compact
support γ(r), r ∈V, r = x̂x+ ŷy+ ẑz with Pr[γ(r)] known
a priori, the scattering amplitude A is given by [Bla06]

A(N̂,k) = k2
∫
V

exp(−ikN̂ · r)γ(r)d3r

where N̂ = n̂s− n̂i and γ(r) is a stochastic function whose
deviates conform to the PDF Pr[γ(r)]. Here, n̂i and n̂s de-
note the direction of the incident and scattered fields respec-
tively and γ(r) = εr(r)− 1 where εr ≥ 1 is the relative per-
mittivity (a real function), a result that is based on applica-
tion of a scalar electromagnetic scattering model for a non-
conductive dielectric.

The intensity of the scattering amplitude is given by

I(N̂,k) =| A(N̂,k) |2= A(N̂,k)A∗(N̂,k)

= k4
∫
V

exp(−ikN̂ · r)γ(r)d3r
∫
V

exp(ikN̂ · r′)γ(r′)d3r′.

Using the autocorrelation theorem, we have

I(N̂,k) = k4
∫
V

exp(−ikN̂ · r)Γ(r)d3r

where Γ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ(r′+ r)d3r′.

This result allows us to evaluate the intensity of the scattered
amplitude by computing the Fourier transform of the auto-
correlation function of the scattering function which is taken

to be composed of a number of scatterers distributed at ran-
dom throughout V . This requires the autocorrelation func-
tion to be defined for a particular type of random medium.
Thus, a random medium can be characterized via its auto-
correlation function by measuring the scattered intensity and
inverse Fourier transforming the result.

From the autocorrelation theorem, the characteristics of
the autocorrelation function can be formulated by consider-
ing its expected spectral properties since

Γ(r)⇐⇒| γ̃(k) |2

where γ̃ is the Fourier transform of γ, k is the spatial fre-
quency vector and⇐⇒ denotes the transformation from real
space r to Fourier space k. Hence, in order to evaluate the
most likely form of the autocorrelation function we can con-
sider the properties of the power spectrum of the scattering
function. If this function is ‘white’ noise, for example (i.e.
its Power Spectral Density Function or PSDF is a constant),
then the autocorrelation function is a delta function whose
Fourier transform is a constant. However, in practice, we
can expect that few scattering functions have a PSDF char-
acterized by white noise, rather, the PSDF will tend to decay
as the frequency increases. For example, we can consider a
model for the PSDF based on the Gaussian function

| γ̃(k) |2= γ̃
2
0 exp

(
− k2

k2
0

)
,

where γ̃0 = γ̃(0), k =| k | and k0 is the standard deviation
which is a measure of the correlation length. This form
yields an autocorrelation function which is of the same type,
i.e. a Gaussian function. If the geometry of the scattering
function is self-affine, then we can model the scattering func-
tion as a random scattering fractal whose PSDF is character-
ized by (for a Topological Dimension of 3 and Fractal Di-
mension denoted by DF ) [TBA97]

| γ̃(k) |2∼ 1
k11−2DF

where 3 < DF < 4, the autocorrelation function being char-
acterized by [TBA97]

Γ(r)∼ 1
rDF−2.5 .

Other issues in determining the nature of the autocorrelation
function are related to the physical conditions imposed on
the stochastic characteristics of the scatterer.

The method discussed above can be used to model the
weak scattered intensity from a random medium which re-
quires an estimate of the autocorrelation of the scattering
function to be known. However, this approach assumes that
the density of scattering sites from which the scatterer is
composed is low so that the weak scattering approximation
is valid. When the density of scattering sites increases and
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multiple scattering is present, the problem become progres-
sively intractable. One approach to overcoming this problem
is to resort to a purely stochastic approach which involves
developing a statistical model, not for the scattering func-
tion, but for the scattered field itself [Fie09]. Another ap-
proach is to model the problem in terms of the diffusion of
light which is the approach considered here.

3. Optical Diffusion

When light is scattered by one localized centre, the single or
‘weak’ scattering approximation can be used, i.e. the Born
approximation [Bla06]. However, when these centres are
grouped together, multiple light scattering occurs. The ran-
domness of multiple interactions tends to be averaged out by
the large number of scattering events that occur leading to a
deterministic distribution of intensity. This is exemplified by
a light beam propagating through thick fog, for example. In
this sense, multiple scattering is highly analogous to diffu-
sion, and the terms multiple scattering and diffusion are in-
terchangeable in many contexts. Optical elements designed
to produce multiple scattering are thus known as diffusers.
The diffusion equation can then be used to model such sys-
tems in the same way as it is used to model temperature dis-
tributions or particle concentrations, for example, and any
system that is the result of a large ensemble of particles or
waves undergoing random elastic collisions or scattering in-
teractions respectively.

Suppose we consider the three-dimensional diffusion of
light to be based on a three-dimensional random walk. Each
scattering event is taken to be a point of the random walk in
which a ray of light changes its direction randomly (any di-
rection between 0 and 4π radians). The light field is taken to
be composed of a complex of rays, each of which propagates
through the diffuser in a way that is incoherent and uncorre-
lated in time. If this is the case, then the propagation of light
can be considered to be analogous to a process of (classical)
diffusion. Instead of modelling the process in terms of the
three-dimensional inhomogeneous wave equation (for the a
spatially variable wavespeed c(r) with PDF Pr[c(r)])(

∇2− 1
c2(r)

∂
2

∂t2

)
u(r, t) = 0

with light intensity given by I =| u |2, we consider the inten-
sity to be given by the solution of the homogeneous diffusion
equation (

∇2− 1
D

∂

∂t

)
I(r, t) = 0

with initial condition I(r, t) = I0(r) at t = 0. This model
assumes that the diffusivity D is constant throughout the
diffuser which is equivalent to a random scattering model
(based on a solution to the wave equation) in which Pr[c(r)]
is constant throughout the diffuser, i.e. stationary statistics.

In multiple wave scattering theory, we consider a wave-
front travelling through space and scattering from multi-
ple interaction sites, each of which changes the direction of
propagation in an entirely random way with no directional
bias over 4π radian. The mean free path is taken to be the
average number of wavelengths required for the wavefront
to propagate from one interaction to another as described
by the free space Green’s function. After scattering from
many sites, the wavefront can be considered to have diffused
through the ‘diffuser’. Here, the mean free path is a measure
of the density of scattering sites, which in turn, is a measure
of the diffusivity of the medium D. As D→∞, the medium
becomes increasingly tenuous.

4. Optical Diffusion Equation

Consider the three-dimensional homogeneous time depen-
dent wave equation

∇2u− 1
c2

0

∂
2

∂t2 u = 0

where c0 is taken to be a constant (light speed). Let

u(x,y,z, t) = φ(x,y,z, t)exp(iωt)

where it is assumed that field φ varies significantly slowly in
time compared with exp(iωt) and note that

u∗(x,y,z, t) = φ
∗(x,y,z, t)exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2
φ,

and

∂
2

∂t2 u = exp(iωt)

(
∂

2

∂t2 φ+2iω
∂φ

∂t
−ω

2
φ

)

' exp(iωt)
(

2iω
∂φ

∂t
−ω

2
φ

)
when ∣∣∣∣∣∂2

φ

∂t2

∣∣∣∣∣<< 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ .
Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik
c0

∂φ

∂t

where k = ω/c0. However, since u∗ is also a solution,

(∇2 + k2)φ∗ =−2ik
c0

∂φ
∗

∂t

and thus,

φ
∗∇2

φ−φ∇2
φ
∗ =

2ik
c0

(
φ
∗ ∂φ

∂t
+φ

∂φ
∗

∂t

)
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which can be written in the form

∇2I−2∇· (φ∇φ
∗) =

2ik
c0

∂I
∂t

where I = φφ
∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t)exp(ikn̂ · r)

where n̂ is a unit vector and A is the amplitude function.
Differentiating, and noting that I = A2, we obtain

n̂ ·∇A =
2
c0

∂A
∂t

or (
∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x,y,z, t) =

2
c0

∂

∂t
A(x,y,z, t)

which is the unconditional continuity equation for the am-
plitude A of a wavefield

u(r, t) = A(r, t)exp[i(kn̂ · r+ωt)]

where A varies slowly with time.

The equation

∇2I−2∇· (φ∇φ
∗) =

2ik
c0

∂I
∂t

is valid for k = k0− iκ (i.e. ω = ω0− iκc0) and so, by equat-
ing the real and imaginary parts, we have

D∇2I +2Re[∇· (φ∇φ
∗)] =

∂I
∂t

and

Im[∇· (φ∇φ
∗)] =− k0

c0

∂I
∂t

respectively where D = c0/2κ, so that under the condition

Re[∇· (φ∇φ
∗)] = 0

we obtain

D∇2I =
∂I
∂t

.

This is the diffusion equation for the intensity of light I. The
condition required to obtain this result can be justified by
applying a boundary condition on the surface S of a volume
V over which the equation is taken to conform. Using the
divergence theorem

Re
∫
V

∇· (φ∇φ
∗)d3r = Re

∮
S

φ∇φ
∗ · n̂d2r

=
∮
S

(φr∇φr +φi∇φi) · n̂d2r

and if

φr(r, t)∇φr(r, t) =−φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈V.

This boundary condition can be written as

∇φr

∇φi
=−tanθ

where θ is the phase of the field φ which implies that the
amplitude A of φ is constant on the boundary (i.e. A(r, t) =
A0, r ∈ S, ∀t), since

∇A0 cosθ(r, t)
∇A0 sinθ(r, t)

=− A0 sinθ(r, t)∇θ(r, t)
A0 cosθ(r, t)∇θ(r, t)

=−tanθ(r, t), r ∈ S.

4.1. Diffused Image Equation

Suppose we record the intensity I of a light field in the xy-
plane for a fixed value of z. Then for z = z0 say,

I(x,y, t)≡ I(x,y,z0, t)

so that
∂

∂t
I(x,y, t) = D∇2I(x,y, t).

Let this two-dimensional diffusion equation be subject to the
initial condition

I(x,y,0) = I0(x,y).

Then, at any time T > 0, it can be assumed that light diffu-
sion is responsible for generating image I and that as time
increases, the image becomes progressively more diffused,
the solution being given by, for the infinite domain and ig-
noring scaling [EBY00]

I(x,y,T ) = exp

[
−

(
x2 + y2

4DT

)]
⊗2 I0(x,y)

where⊗2 denotes the two-dimensional convolution integral.

4.2. Inverse Solution

If we record an image at a time t = T then by Taylor expand-
ing I at t = 0 we can write

I(x,y,0) = I(x,y,T )+
∞
∑
n=1

(−1)n

n!
T n
[

∂
n

∂tn I(x,y, t)
]

t=T
.

From the diffusion equation

∂
2I

∂t2 = D∇2 ∂I
∂t

= D2∇4I

∂
3I

∂t3 = D∇2 ∂
2I

∂t2 = D3∇6I

so that, by induction, we can write[
∂

n

∂tn I(x,y, t)
]

t=T
= Dn∇2nI(x,y,T ).
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Substituting this result into the series for I(x,y,0)≡ I0(x,y),
we get

I0(x,y) = I(x,y,T )

+
∞
∑
n=1

(−1)n

n!
(DT )n∇2nI(x,y,T )

The ‘high emphasis filter’ [BM86] is then obtained when
DT << 1, i.e.

I0(x,y)∼ I(x,y,T )−DT∇2I(x,y,T ).

For DT = 1 the FIR filter corresponding to this result is given
by  0 −1 0

−1 5 −1
0 −1 0


Higher order FIR filters can be obtained on a term-by-term
basis. For I0 = I−∇2I + 1

2∇
4I the FIR filter is

1
2


0 0 1 0 0
0 2 −10 2 0
1 −10 30 −10 1
0 2 −10 2 0
0 0 1 0 0


and for I0 = I−∇2I + 1

2∇
4I− 1

6∇
6I the FIR filter is

1
6



0 0 0 −1 0 0 0
0 0 −3 15 −3 0 0
0 −3 24 −87 24 −3 0
−1 15 −87 202 −87 15 −1
0 −3 24 −87 24 −3 0
0 0 −3 15 −3 0 0
0 0 0 −1 0 0 0


5. Hurst Processes and Fractional Diffusion

The diffusion equation models a macroscopic field which is
the result of an ensemble of incoherent random walks char-
acterised by a

√
t scaling law. Hurst processes, describe ran-

dom walks that have a directional bias and are characterised
by the scaling law tH , H ∈ (0.5,1] [Hur44], [TBA97].
As the value of H approaches 1, the processes become in-
creasingly persistent. In terms of the multiple scattering of
light from a random medium, increasing persistence relates
to multiple scattering from fewer sites so that the light path
has a greater directional bias. We consider the characterisa-
tion of this by generalizing the diffusion operator

∇2−σ
∂

∂t
to the fractional form [Hil95b], [Hil95a]

∇2−σ
q ∂

q

∂tq

where q ∈ [1,2] and Dq = 1/σ
q is the fractional diffusivity.

Fractional diffusive processes can therefore be interpreted

as intermediate between diffusive processes proper (random
phase walks with H = 0.5; diffusive processes with q = 1)
and ‘propagative process’ (coherent phase walks for H = 1;
propagative processes with q = 2). It should be noted that
the fractional diffusion operator given above is the result of
a phenomenology. It is a generalisation of a well known dif-
ferential operator to fractional form which follows from a
physical analysis of a fully incoherent random process and
its generalisation to fractional, just as the Hurst exponent H
is a generalisation of the

√
t scaling law. The solution to frac-

tional partial differential equations of this type requires ap-
plication of the fractional calculus (e.g. [OS74], [MR93],
[DE75], [SKM93] and [Kir94]) which is considered in the
following section.

6. Fractionally Diffused Imaging Equation

Consider the two-dimensional fractional diffusion equation
for the intensity I(x,y, t) of light in the image plane located
at z given by

∇2I(r, t)−σ
q ∂

q

∂tq I(r, t) = I0(r, t)

where r = x̂x + ŷy, r ≡| r | and I0(r, t) is now a (two-
dimensional) source function. Using the Fourier based oper-
ator for a fractional derivative, we can transform this equa-
tion into the form

(∇2 +Ω
2
q)Ĩ(r,ω) = Ĩ0(r,ω)

where

Ĩ(r,ω) =
∞∫
−∞

I(r, t)exp(−iωt)dt,

Ĩ0(r,ω) =
∞∫
−∞

I0(r, t)exp(−iωt)dt

and

Ω
2
q =−iωσ, Ωq =±i(iωσ)q/2.

The Green’s function solution for this equation (in the infi-
nite domain) is

Ĩ(r,ω) = g(r,ω)⊗2 Ĩ0(r,ω)

where g is the ‘outgoing’ Green function given by (for
|Ωqr |>> 1 and ignoring scaling) [EBY00]

g(r,ω)' exp(iΩqr)√
Ωqr

.

For Ωq = i(iωσ)q/2, Fourier inversion, yields the time de-
pendent Green’s function (obtained by writing the exponen-
tial function in its series form).

G(r, t) =
1√
r

1
σq/4t1−q/4

−
√

rσ
q/4

δ
q/4(t)

c© The Eurographics Association 2009.

237



J. M. Blackledge / Diffusion and Fractional Diffusion Based Image Processing

+
∞
∑
n=1

(−1)n+1

(n+1)!
r(2n+1)/2

σ
3nq/4

δ
3nq/4(t) (1)

the solution for I(r, t) being given by

I(r, t) = G(r, t)⊗2⊗t I0(r, t)

where ⊗t denotes the convolution integral over time t. Sim-
plification of this infinite sum representation for G can be
addressed be considering suitable asymptotics, the most sig-
nificant of which (for arbitrary values of r) is the case when
the (fractional) diffusivity D is large. In particular, we note
that as σ→ 0,

G(r, t) =
1

√
rσq/4t1−q/4

.

Thus, for I0(r, t) = I0(x,y)δ(t) we can consider a solution to
the two-dimensional fractional diffusion equation (for a ten-
uous medium when D→∞) of the form (ignoring scaling)

I(x,y) =
1

(x2 + y2)
1
4
⊗2 I0(x,y).

7. Deconvolution

In the presence of additive noise n(x,y), the deconvolution
problem is as follows: Given that

I(x,y) = p(x,y)⊗2 I0(x,y)+n(x,y)

where Pr[n(x,y)] is known (ideally), find an estimate for
I0. This is a common problem in optics (digital image pro-
cessing) known as the deconvolution problem whose solu-
tion is fundamental to image restoration and reconstruction
[BM86], [BB98]. In terms of the material presented in this
paper, there are two Point Spread Functions (PSF) p(x,y)
that have been considered: For full diffusion (strong scatter-
ing)

p(x,y) = exp

[
−

(
x2 + y2

4DT

)]
and for fractional diffusion (intermediate scattering in a ten-
uous medium with large diffusivity)

p(x,y) =
1

(x2 + y2)
1
4
.

We note that (ignoring scaling)

exp

[
−

(
x2 + y2

4DT

)]
↔ exp[−4DT (k2

x + k2
y)]

and [TBA97]

1

(x2 + y2)
1
4
↔ 1

(k2
x + k2

y)
3
4

where↔ denotes transformation from real space to Fourier
space. In the latter case, the filter is a ‘fractal filter’ and
thus, if I0 is characterised by white noise, then the output
I is a Mandelbrot surface with a fractal dimension of 2.5

[TBA97]. In the absence of noise, the inverse solution for I0
can be written in the form

I0(x,y) =∇
3
2 I(x,y),

a result that is based on the application of the fractional
Laplacian or Riesz operator [TBA97]

∇q↔ (k2
x + k2

y)
q
2 .

There are a range of approaches to solving the one-
dimensional and two-dimensional deconvolution problem in
practice (i.e. with additive noise) leading to the classification
of different ‘inverse filters’ (e.g. [BM86], [BB98]). If a pri-
ori information on the statistics of the noise function n and
the object function I0 is available, then Bayesian estimation
methods are preferable in the design of filters whose per-
formance then depends on statistical parameters such as the
standard deviation. In some cases, an estimate of Pr[n(x,y)]
can be obtained by taking an image (or a number of images
to obtain a statistically significant result) with zero input,
i.e. with I0 = 0. This provides a method of validating an
idealised PDF through data fitting and, thus, determination
of the statistical parameters from which a theoretical PDF
is composed. In cases when experimental determinism is
not practically possible, statistical models must be utilized
[Fie09]. However, with regard to incoherent imaging sys-
tems, the noise function tends to be Gaussian distributed - a
result of the noise being a linear combination of many dif-
ferent independent noise sources which combine to produce
Gaussian noise (a consequence of the Central Limit Theo-
rem).

Using Bayes rule, the aim is to find an estimate for I0 such
that

∂

∂I0
lnPr[n(x,y)]+

∂

∂I0
lnPr[I0(x,y)] = 0.

Consider the following models for the PDFs: (i) A Gaussian
distribution for the noise (ignoring scaling and where σ

2
n is

the standard deviation of n)

Pr[n(x,y)] =

exp
(
− 1

σ2
n

∫ ∫
[(I(x,y)− p(x,y)⊗2 I0(x,y)]

2dxdy
)

.

(ii) A Gaussian distribution for the object function (ignoring
scaling and where σ

2
I0

is the standard deviation of I0)

Pr[I0(x,y)] = exp

(
− 1

σ2
I0

∫ ∫
I2
0 (x,y)dxdy

)
.

Differentiating, these statistical models yield the equation

I(x,y)�2 p(x,y)

=
σ

2
n

σ2
I0

I0(x,y)+ [p(x,y)⊗2 I0(x,y)]�2 p(x,y)
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where �2 denotes the two-dimensional correlation integral.
In Fourier space, this equation becomes

Ĩ(kx,ky)P∗(kx,ky)

=
σ

2
n

σ2
I0

Ĩ0(kx,ky)+ | P(kx,ky) |2 I0(kx,ky).

The Bayesian a Posteriori filter F(kx,ky) (for Gaussian
statistics) is then given by

F(kx,ky) =
P∗(kx,ky)

| P(kx,ky) |2 +σ2
n/σ2

I0

where σn/σI0 defines the Signal-to-Noise Ratio of I(x,y)
and Ĩ0(kx,ky) = F(kx,ky)Ĩ(kx,ky). The reconstruction for I0
is then given by

I0(x,y) =

1
(2π)2

∫ ∫
F(kx,ky)Ĩ(kx,ky)exp(ikxx)exp(ikyy)dkxdky

(2)

Given P(kx,ky), the performance of this filter depends on
the value of Σ = σ

2
n/σ

2
I0

. In general, as Σ→ 0 the reconstruc-
tion sharpens but at the expense of ’ringing’. Thus, an opti-
mum value of Σ is obtained by computing I0 over a range
of values of Σ and, for each reconstruction, computing the
ratio of the number of zero crossings Zc to the sum of the
magnitude of a digital gradient ∑ | DI0[i, j] |, i.e.

R =
Zc

∑ | DI0[i, j] | .

This ratio is based on the principle that an optimum recon-
struction is one which provides a sharp image with minimal
ringing, i.e. a reconstruction for which R is a minimum. This
principle has been applied in the example results given in
the following section. Note that the Fourier based approach
to image restoration relies on the ability to implement the
convolution and correlation theorems. This requires that the
data has been recorded by an (optical) imaging system that
is isoplanatic (i.e. the PSF is stationary).

8. Example Applications

We consider examples of image reconstruction based on
equation (2) for fully diffusive and fractional diffusive mod-
els using the optimization procedure discussed above and the
following ’digital Laplacian’

DI0[i, j] =

 0 1 0
1 −4 1
0 1 0

 .

8.1. Diffusion

Figure 1 shows the application of equation (2) where (ignor-
ing scaling and with σ = 4DT )

P(kx,ky) = exp[−σ(k2
x + k2

y)]

In this example, the diffusion of the object has been gener-
ated by turbulence of the earths atmosphere through which
light from the object has been fully diffused. In this case,
the reconstruction depends on the value of both σ and Σ and
an optimization scheme based on computing I0[i, j;σ,Σ] for
minR.

Figure 1: Diffusion based deconvolution (below) of an im-
age of Saturn observed by a ground based telescope with
light diffused by the atmosphere (above).

8.2. Fractional Diffusion

Fractional diffusion models apply to scattering processes
that occur in a tenuous and extremely rarefied medium. In
applied optics, one of the most common examples of this
phenomenon occurs in astronomy and the processes associ-
ated with light scattering from cosmic dust which is com-
posed of particles which are a few molecules to the order of
10−4 metres in size. Cosmic dust is defined in terms of its
astronomical location including intergalactic dust, interstel-
lar dust, interplanetary dust and circumplanetary dust (such
as in a planetary ring). In our own Solar System, interplan-
etary dust is generated from sources such as comet dust, as-
teroidal dust, dust from the Kuiper belt and interstellar dust
passing through our solar system. This dust is responsible
for zodiacal light which is produced by sunlight reflecting
off dust particles. Cosmic dust can be categorised in terms
of different types of nebulae associated with different physi-
cal causes and processes. These include: diffuse nebulae, in-
frared reflection nebula, supernova remnants and molecular
clouds, for example. However, in a more general sense, cos-
mic dust often characterises the interstellar medium which is
the gas and dust that pervade interstellar space. This medium
consists of an extremely dilute (by terrestrial standards) mix-
ture of ions, atoms, molecules, and larger dust grains, con-
sisting of about 99% gas and 1% dust by mass. Densities
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range from a few thousand to a few hundred million par-
ticles per cubic meter with an average value in the Milky
Way Galaxy, for example, of a million particles per cubic
meter. In comparison with the scattering of light from earth-
based random media, for example, the interstellar medium is
highly diffuse and therefore ideal for applying light scatter-
ing models based on fractional diffusion when D→∞.

Figure 2 shows the application of equation (2) with

P(kx,ky) =
1

(k2
x + k2

y)0.75

for an optical image obtained by the Hubble Space Telescope
(part of the constellation of Perseus observed through an in-
terstellar dust cloud that covers nearly 4 degrees on the sky
and observed approximately 1,000 light-years away).

Figure 2: Fractional diffusion based deconvolution (right)
of a dust clouded star field (left) in the constellation of Pe-
gasus.

9. Conclusions

The use of fully diffusive processes for modelling strong
scattering provides a result that is applicable in solving the
inverse (multiple) scattering problem. This requires the for-
mulation of a deconvolution algorithm for a Gaussian PSF.
We have extended this approach to model intermediate scat-
tering by generalizing the diffusion equation to fractional
form (

∇2− 1
Dq

∂
q

∂tq

)
I(x,y, t) = I0(x,y)δ(t)

for a fractional diffusivity D. An asymptotic solution has
been considered based on the condition D → ∞ which
yields a characteristic Optical Transfer Function of the form
(k2

x + k2
y)−0.75. This filter is the transfer function associated

with an optical system involving the intermediate strength
scattering of light in a tenuous medium and is equivalent to
a self-affine filter with fractal dimension 2.5. The inverse
(deconvolution) problem has been considered in terms of
Bayesian estimation which has been applied to example im-
ages associated with fully diffusive and partially diffusive
processes. It is noted that unlike the Gaussian PSF associ-
ated with fully diffusive processes, the PSF derived for frac-
tional diffusion is not dependent on time (other than scaling)
and the diffusivity D. This is because the result is based on

D→∞ and it is therefore of value to study non-asymptotic
solutions based on including higher order terms in equation
(1). On the other hand, the asymptotic solution considered,
means that application of the optimization procedure used to
compute the filter F(kx,ky) is reduced to a single-parameter
problem, i.e. the computation of I0[i, j;Σ].
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