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Abstract

Ascending and descending Morse complexes, defined by the critical points and integral lines of a scalar field f
defined on a manifold domain D, induce a subdivision of D into regions of uniform gradient flow, and thus provide
a compact description of the morphology of f on D. We propose a dimension-independent representation for the
ascending and descending Morse complexes, and we describe a data structure which assumes a discrete represen-
tation of the field as a simplicial mesh, that we call the incidence-based data structure. We present algorithms for
building such data structure for 2D and 3D scalar fields, which make use of a watershed approach to compute the
cells of the Morse decompositions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling—Object Representations

1. Introduction

Representing morphological information extracted from dis-
crete scalar fields is a relevant issue in several application
domains, such as terrain modeling, volume data analysis and
visualization, and time-varying 3D scalar fields. Morse the-
ory offers a natural and intuitive way of analyzing the struc-
ture of a scalar field as well as of compactly representing the
scalar field through a decomposition of its domain D into
meaningful regions associated with the critical points of the
field. The ascending and the descending Morse complexes
are defined by considering the integral lines emanating from,
or converging to the critical points of f , while the Morse-
Smale complex describes the subdivision of D into parts
characterized by a uniform flow of the gradient between two
critical points of f . Computation of an approximation of the
Morse and Morse-Smale complexes has been extensively
studied in the literature in the 2D case, and recently algo-
rithms have been proposed in 3D. The discrete watershed
transform is one of the most popular methods used in image
segmentation for 2D and 3D images and has been applied to
regular Digital Elevation Models (DEMs). Here, we extend
the watershed approach by simulated immersion [VS91] to
compute the ascending and descending Morse complexes

for simplicial meshes, focusing on triangle and tetrahedral
meshes, discretizing the domain of a scalar field. The ap-
proach, however, can be easily extended to higher dimen-
sions and our implementation is already dimension indepen-
dent.

We represent the ascending and descending Morse com-
plexes in arbitrary dimensions as an incidence graph, in
which the nodes represent the cells of the Morse complexes
in a dual fashion and the arcs their mutual incidence rela-
tions. We show how, in the discrete case, the incidence graph
can be effectively combined with a representation of the sim-
plicial decomposition of the underlying domain D. This rep-
resentation, that we call an incidence-based representation
of the Morse complexes, is based on encoding the incidence
relations of the cells of the two complexes, and exploits the
duality between the ascending and descending complexes.
The incidence graph is also a combinatorial description of
the Morse-Smale complex in case the scalar field is a Morse-
Smale function.

Computing the incidence graph from the result of a seg-
mentation produced by a watershed algorithm poses inter-
esting challenges, since we need to extract all incidence re-
lations among the cells by starting from the collections of
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maximal cells (2-cells in 2D and 3-cells in 3D) in both the
ascending and descending Morse complex produced by the
segmentation algorithm. Moreover, we need to ensure the
compatibility of the two complexes so as to represent them in
one data structure, the incidence-based representation. Com-
puting the incidence-based representation is the first step for
implementing simplification operations on the two Morse
complexes in a completely transparent and dimension inde-
pendent fashion.

The remainder of the paper is organized as follows. In
Section 2, we review some basic notions on Morse theory
and Morse complexes. In Section 3, we discuss some related
work. In Section 4, we discuss the watershed approach for
simulated immersion and our generalization to triangle and
tetrahedral meshes decomposing the domain of 2D and 3D
scalar fields. In Section 5, we describe the incidence-based
representation of the Morse complexes, and in Section 6 we
propose an algorithm to compute it in 2D and 3D. Finally,
in Section 7, we draw some concluding remarks and discuss
current and future work.

2. Morse Theory and Morse Complexes

Morse theory studies the relationship between the topology
of a manifold M and the critical points of a scalar (real-
valued) function defined on the manifold (for more details
on Morse theory, see [Mat02, Mil63]). Recall that a closed
n-manifold is a topological space in which every point has
a neighborhood homeomorphic to the space Rn. Let f be
a C2 real-valued function defined over a closed compact n-
manifold M. A point p is a critical point of f if and only
if the gradient ∇ f = ( ∂ f

∂x1
, ..., ∂ f

∂xn
) (in some local coordinate

system around p) of f vanishes at p. Function f is a Morse
function if all its critical points are non-degenerate (i.e. ,the
Hessian matrix Hessp f of the second derivatives of f at p
is non-singular). The number i of negative eigenvalues of
Hessp f is called the index of critical point p, and p is called
an i-saddle. A 0-saddle, or an n-saddle, is also called a min-
imum, or a maximum, respectively. An integral line of f is a
maximal path which is everywhere tangent to the gradient of
f . Each integral line originates at a critical point of f , called
its origin, and converges to a critical point of f , called its
destination.

Integral lines that converge to (originate at) a critical point
p of index i form an i-cell ((n− i)-cell) p called a descend-
ing (ascending) cell, or manifold, of p. The descending and
ascending cells decompose M into descending (stable) and
ascending (unstable) Morse complexes, denoted as Γd and
Γa, respectively. Figure 1 shows a 2D example. In Figure
1 (a), pi are the descending 2-cells corresponding to max-
ima, ri, ci and q are the descending 1-cells corresponding
to 1-saddles and zi are the descending 0-cells correspond-
ing to minima. In Figure 1 (b), p and p′ are the ascending
0-cells corresponding to maxima, ri, ci and q are the ascend-
ing 1-cells corresponding to 1-saddles and zi are the ascend-
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Figure 1: A portion of a descending Morse complex in 2D
(a); the dual ascending Morse complex (b); the correspond-
ing incidence graph (c).

ing 2-cells corresponding to minima. We will denote as p
the descending i-cell of an i-saddle p. A Morse function f
is called a Morse-Smale function if the descending and the
ascending manifolds intersect transversally. If f is a Morse-
Smale function, then complexes Γa and Γd are dual to each
other.

3. Related Work

In this Section, we review related work on morphological
representations of scalar fields based on Morse or Morse-
Smale complexes. Specifically, we concentrate on the com-
putation and on the simplification of Morse and Morse-
Smale complexes.

Several algorithms have been proposed in the literature
for decomposing the domain of a 2D scalar field f into an
approximation of a Morse, or a Morse-Smale, complex. Re-
cently, some algorithms in higher dimensions have been pro-
posed. For a review of the work in this area, see [BFF∗08].

Algorithms for decomposing the domain D of f into an
approximation of a Morse, or of a Morse-Smale complex
in 2D can be classified as boundary-based [BS98, BEHP04,
EHZ01,Pas04,TIKU95], or region-based [CCL03,DDM03,
MDD∗07]. In [EHNP03], an algorithm for extracting the
Morse-Smale complex from a tetrahedral mesh is proposed.
The algorithm, while interesting from a theoretical point of
view, exhibits a large computation overhead, as discussed
in [GNPH07].

Discrete methods rooted in the discrete Morse theory
proposed by Forman [For98] are computationally more ef-
ficient. In [DDM03], a dimension-independent approach
based on region growing has been proposed which imple-
ments the discrete gradient approach and computes the de-
scending and ascending Morse complexes. In [GNPH07], a
region growing method, inspired by the watershed approach,
has been proposed to compute the Morse-Smale complex in
3D. It classifies the vertices of a simplicial complex Σ as in-
terior or boundary vertices of ascending manifolds, and then
assigns the tetrahedra, triangles and edges of Σ spanned by
such vertices to the ascending 3-, 2-, and 1-manifolds, re-
spectively. Descending manifolds are constructed inside as-
cending ones, to preserve the structure of the Morse-Smale
complex. Only the minima are classified using the lower
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link, while other critical points are created in correspondence
to the constructed ascending manifolds. In [GBHP08], a For-
man gradient vector field V is defined, and an approximation
of the Morse-Smale complex is computed by tracing the in-
tegral lines defined by V .

Simplification algorithms have been developed in order
to eliminate less significant features from a Morse-Smale
complex. Simplification is achieved by applying an operator
called cancellation, defined in Morse theory [Mat02]. It can-
cels pairs of critical points in the order usually determined
by the notion of persistence (absolute difference in function
values between the paired critical points) [EHZ01]. In 2D
Morse-Smale complexes, cancellation operator has been in-
vestigated in [BEHP04, EHZ01, TIKU95, Wol04]. Cancel-
lation operator on Morse-Smale and Morse complexes of
a 3D scalar field has been investigated in [GNPH07] and
[ČomićD08], respectively. Unfortunately, the application of
such operators to 1-saddles and 2-saddles increases the num-
ber of cells in the Morse-Smale complex, and the number of
incidences in the two Morse complexes.

4. Computing Morse Complexes through a
Watershed Approach

In this Section, we recall the definition of the watershed
transform which, in the continuous case [Mey94], produces
a segmentation of the domain of a scalar field f into ascend-
ing cells of minima. In the discrete case, the watershed trans-
form has been introduced for segmentation of gray-scale im-
ages into regions of influence of minima, which approximate
those ascending cells. The watershed transform can be mod-
ified in an obvious way to obtain the descending cells related
to maxima. We review the watershed algorithm by simulated
immersion, introduced in [VS91]. We describe how we have
extended this algorithm from images to simplicial meshes.

The idea of simulated immersion can be described in an
intuitive way. Let us consider a terrain and assume to drill
holes in place of local minima. We assume to insert this sur-
face in a pool of water, building dams to prevent water com-
ing from different minima to merge. Then, the watershed of
the terrain is described by these dams, and the catchment
basins of minima are delineated by the dams.

Catchment basins and watershed lines are defined using
the concept of skeleton by influence zones. To understand
the concept of skeleton by influence zones, we can imagine a
set A, and a set B ⊆ A composed of n connected components
B1, ...,Bn. The skeleton by influence zones is the set C of
points in A which are equally close (in the sense of geodesic
distance) to at least two connected components of B. Recall
that the geodesic distance between two points p and q in A
is the length of a minimal path which connects p to q and
stays within A. The influence zone of a component Bi ∈ B
is the set of points in A which are closer to Bi than to any
other connected component B j of B. Note that the skeleton

(a) (b)

(c) (d)

Figure 2: Segmentations provided by watershed algorithm
in the 2D case. (a) Ascending and (b) descending Morse
complexes built from a synthetic function and (c) ascending
and (d) descending Morse complexes built rom real data.

by influence zones C of B within A is the complement of the
union of influence zones of Bi within A.

The method in [VS91] recursively extracts catchment
basins and watershed lines, starting from the minimal value
of the elevation function f and going up. At each level of re-
cursion, new minima are found, or already created catchment
basins are expanded. The expansion process continues until,
at a given level h, a potential catchment basin CBh (related to
level h) contains at least two catchment basins (for example
CBih−1,CB jh−1) already present at level h− 1. This is the
case in which the definition of skeleton by influence zones
comes up: CBh is partitioned into three elements, the two in-
fluence zones of CBih−1 and CB jh−1 and the set of points in
CBh equally distant from CBih−1 and CB jh−1 (skeleton by
influence zones). The influence zones of CBih−1 and CB jh−1
will be part of the final set of catchment basins in the output
of the algorithm. The process stops when the maximal level
is reached. The watershed is defined as the complement of
the set of catchment basins.

We have extended the watershed-by-simulated-immersion
algorithm to simplicial meshes in arbitrary dimensions. The
vertices of the simplicial mesh Σ are sorted in increasing
order with respect to the values of the scalar field f . In
the second phase, the vertices of Σ are processed level by
level in increasing order of elevation values. For each min-
imum m, a catchment basin CBm is constructed iteratively
through a breadth-first traversal of the graph which forms
the 1-skeleton of the simplicial mesh Σ. We first label each
vertex at level h with a neutral label. Then, for each vertex
p, we examine its adjacent vertices in the mesh and, if they
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all belong to the same catchment basin βm, or some of them
are watershed points, then we mark p as belonging to CBm.
If they belong to two or more catchment basins, then p is
marked as a watershed point. Vertices that are not connected
to any previously processed vertex are new minima and get
a new label corresponding to a new catchment basin.

Finally, each maximal simplex (an n-simplex if we con-
sider an n-dimensional simplicial mesh) is assigned to a
basin based on the labels of its vertices. If all vertices of
σ, that are not watershed points, have the same label corre-
sponding to the basin CBm, then we assign σ to βm. Other-
wise, if the vertices belong to different basins corrisponding
to minima mi, then σ is assigned to the basin corrisponding
to the lowest such minumum

Figure 2 illustrates segmentations obtained, in the 2D
case, from a synthetic terrain, built by sampling a func-
tion which is a combination of two planes and 64 Gaussian
surfaces, and from real data, part of a real terrain model,
representing Mount Marcy (courtsey of USGS), formed by
16384 vertices and 32258 triangles. It has 128 minima and
113 maxima. Figure 3 illustrates the results, in the 3D case,
from a syntethic function and from real data sets represent-
ing a component of a nuclear reactor Super Phoenix con-
structed in 1968, opened in 1981 on Reno, and closed after
numerous accidents in 1997 (courtesy of Lawrence Liver-
more National Laboratory). It is composed of 2896 vertices
and 12936 tetrahedra, and has 14 maxima and 9 minima.

We have also compared this approach in 3D with the
region-based algorithm in [DDM03,M.M09] using different
metrics (extended from the ones used from TINs in [Vit10])
and we have obtained more promising results with the wa-
tershed approach described here [Iur10].

5. A Dual Incidence-Based Representation for Morse
Complexes

In this Section, we discuss a dual representation for the as-
cending and descending Morse complexes Γa and Γd , that
we call the incidence-based representation. The underlying
idea is that we can represent both the ascending and the de-
scending complex as a graph by considering the boundary
and co-boundary relations of the cells in the two complexes.
In the discrete case, we consider a representation for the
simplicial mesh which generalizes an indexed data structure
commonly used for triangle and tetrahedral meshes, and we
relate the two representations into the incidence-based data
structure.

We encode manifold simplicial meshes by storing the 0-
simplexes (vertices) and n-simplexes explicitly plus some
topological relations. For every n-simplex σ, we encode the
n+1 vertices of σ and the n+1 n-simplexes which share an
(n−1)-simplex with σ. For every 0-simplex, we also encode
one n-simplex incident in it.

Recall that there is a one-to-one correspondence between

(a) (b)

(c) (d)

Figure 3: Segmentations obtained by watershed algorithm
extended to the 3D case. (a) Ascending and (b) descending
Morse complexes obtained from the synthetic function w =
sin(x)+sin(y)+sin(z) and (c) ascending and (d) descending
Morse complexes obtained from real data.

i-saddles p and i-cells p in the descending complex Γd , and
dual (n − i)-cells in the ascending complexes Γa, 0 ≤ i ≤
n. We exploit this duality to define a representation which
encodes both the ascending and the descending complexes at
the same time, as an incidence graph [Ede87]. The incidence
graph encodes the cells of a complex as nodes, and a subset
of the boundary and co-boundary relations between cells as
arcs. The incidence graph associated with an n-dimensional
descending and ascending Morse complexes Γd and Γa is a
graph G = (N,A), in which

1. the set of nodes N is partitioned into n+ 1 subsets N0,
N1,...,Nn, such that there is a one-to-one correspondence
between nodes in Ni (which we will call i-nodes) and the
i-cells of Γd (and thus the (n− i)-cells of Γa),

2. there is an arc joining an i-node p with an (i+1)-node q
if and only if i-cell p is on the boundary of (i+1)-cell q
in Γd (q is on the boundary of p in Γa),

3. each arc connecting an i-node p to an (i+ 1)-node q is
labeled by the number of times i-cell p (corresponding to
i-node p in Γd) is incident to (i+1)-cell q (corresponding
to (i+1)-node q in Γd)

Attributes are attached to the nodes in N0 and Nn, contain-
ing information about geometry, and function values, while
arcs have no associated (geometric) attributes. The incidence
graph provides also a combinatorial representation of the 1-
skeleton of a Morse-Smale complex. Figure 1 (c) shows a
portion of the incidence graph encoding the connectivity of
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the descending Morse complex in Figure 1 (a), and of the
ascending Morse complex in Figure 1 (b).

We have designed and implemented a data structure based
on combining the incidence graph and the underlying rep-
resentation of the complex discussed above. We associate
with each node representing a minimum the list of the n-
simplexes forming its ascending cell, and with each node
representing a maximum the list of the n-simplexes forming
its descending cell. We call this data structure the incidence-
based representation.

In the incidence-based representation, the incidence graph
G = (N,A) is encoded as three arrays of nodes (one for min-
ima, one for maxima and one for saddles) plus an array of
arcs. Each element of the array of the nodes corresponding to
minima encodes a minimum p and contains: the coordinates
of p, the list of the n-simplexes forming the corresponding
ascending n-cell plus a list of pointers to the arcs incident
in p. The array of the nodes corresponding to the maxima is
dual. Each element of the array of the saddles contains the
lists of all saddles with the same index i, and for each of
them, the list of the arcs incident in it. More precisely, for a
saddle s of index i, there are two lists of arcs, those joining s
to nodes of index i+1 and those joining s to nodes of index
i−1.

Arcs are also stored in an array of lists. The j-th element
of the array contains a list of arcs connecting nodes corre-
sponding to saddles of index j to nodes corresponding to
saddles of index j + 1. Each element of any of such lists
corresponds to an arc a and contains the indexes of the two
nodes in which a is incident plus an integer indicating how
many times the nodes are incident to each other.

The resulting data structure is completely dimension
independent. We have compared the 3D instance of the
incidence-based representation with the data structure pro-
posed in [GNP∗06] for encoding 3D Morse-Smale com-
plexes. This latter encodes the critical points (together with
their geometric location) and, for each critical point p, the
sets of all 3-simplexes and of all 2-simplexes, forming the
(descending or ascending) 3-cell and 2-cell associated with
p. Moreover, all 1-simplexes of Σ, which are the edges
in the Morse-Smale complex, are maintained. In the 3D
instance of the incidence-based representation, we encode
only the 3-simplexes defining the ascending and descend-
ing 3-cells associated with the minima and maxima, respec-
tively, while the geometry of the edges in the Morse-Smale
complex needs to be computed from the boundaries of such
3-cells. We have shown in [Iur10] that the incidence-based
data structure is definitely more compact.

6. Building an Incidence-Based Representation

We have developed algorithms for constructing the inci-
dence graph in 2D and 3D starting from the decomposition

of the simplicial complex Σ into regions associated with min-
ima and maxima, and the information on the geometry of
maxima and minima.

The input of the algorithms consists of the simplicial mesh
Σ over which a scalar function f is defined, encoded in
the data structure described in the previous section. The n-
cells of the descending Morse complex Γd and of the as-
cending Morse complex Γa are expressed as collection of
n-simplexes of Σ, and they are labeled by the indexes of ver-
tices of Σ which are minima and maxima of f .

In the preprocessing step, for each descending region in
Γd , a maximum node is created and inserted in the array of
maximum nodes, and the same is done for each ascending
region in Γa , in which case a minimum node is created. The
index of the corresponding vertex in Σ is also stored for each
extremum. Then, for each n-simplex σ of Σ, we add the index
of σ to the maximum node which represents the region in Γd
containing σ and to the minimum node which represents the
region in Γa containing σ.

The preprocessing step is common to both the 2D and 3D
algorithms, while the other steps are dimension-specific and
are described in the following two subsections.

6.1. Construction of the Incidence Graph in 2D

In the 2D case, after the preprocessing step, we perform two
steps: (i) creation of the nodes corresponding to saddles, and
(ii) creation of the arcs of the incidence graph.

To create the saddle nodes, we need to generate the 1-
cells either of the ascending or of the descending complex.
Each 1-cell is a chain of edges of the triangle mesh. We work
on the ascending complex Γa. We initialize a queue Q of
triangles with an arbitrary triangle, and we label all triangles
as non-visited. We repeat the following process while Q is
not empty:

• extract the first triangle t from Q;
• for each triangle ti adjacent to t,

– insert ti in Q
– if t and ti have not been visited, let m1 and m2 be the

nodes representing ascending regions containing t and
ti, respectively

– if m1 is different from m2, check if there is a node s
representing the saddle separating the ascending re-
gions. If there is such a node, add edge ei common to
triangles t and ti to it. Otherwise, create a new node s
and add to it edge ei, as well as a reference to adjacent
nodes m1 and m2.

• if one of the triangles adjacent to t is missing

– consider node m1 modeling the ascending region con-
taining t

– create a node which will model the adjacency between
m1 and the node modeling the boundary

c© The Eurographics Association 2010.

107
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Figure 4: Illustration of creation of saddle nodes in 2D.

– otherwise, if such a node exists, add to it a reference to
the edge of t which is on the boundary

• mark t as visited

At this point, all 1-cells which form the boundaries be-
tween 2-cells in Γa have been found. We examine the end-
points of the 1-cells. A 1-cell with more than two end-points
is subdivided into 1-cells, creating new saddle nodes corre-
sponding to the new 1-cells. Each saddle node is connected
to two nodes corresponding to maxima, and to the 2-cells
separated by the corresponding 1-cell. If the 1-cell is on the
boundary, and there is a minimum on 1-cell, that minimum
is cancelled in order to maintain the duality in the incidence
graph.

Figure 4 illustrates how the algorithm creates saddle
nodes. Let us consider triangle t0. By looking at its adjacent
triangles we find three different cases. Triangle t2 belongs to
the same 2-cell as t0, so no saddle node has been created.
Triangle t1 belongs to a different 2-cell than t0 and thus sad-
dle node A is created with two references to minimum nodes
m1 and m3. The last adjacent triangle is missing, and thus
we create saddle node B to model the adjacency between m1
and the boundary.

Next, we create the arcs between saddle nodes and nodes
corresponding to maxima

• if a 1-cell has two different end-points corresponding to
maxima, the corresponding nodes are connected in the in-
cidence graph.

• if one of the end-points of a 1-cell belongs to the bound-
ary, then an arc is created between a virtual maximum and
the node corresponding to the other end-point of the 1-cell

• if the end-points of a 1-cell do not correspond to maxima,
we check for each of the end-points if all triangles incident
in it belong to the same descending 2-cell. If this is the
case, we create a maximum at the end-point. Otherwise,
we delete the saddle node, since we regard it is as an error
of segmentation algorithm.

• If a 1-cell has no end-points, it circumscribes one of the
2-cells in Γa. In this case, we add a dummy maximum
on the 1-cell, thus creating a loop, to maintain topological
consistency.

If there is some maximum p not connected to any sad-
dle, then that maximum must be inside some 2-cell in Γa.

In this case, a 1-saddle is created by looking at the 2-cells
corresponding to p and at its adjacent 2-cells in Γd .

6.2. Construction of the Incidence Graph in 3D

The construction of the incidence graph requires, after the
preprocessing, other three steps, namely, (i) generation of the
nodes corresponding to 1-saddles and 2-saddles, (ii) genera-
tion of the arcs between 1-saddles and minima and 2-saddles
and maxima and (iii) generation of the arcs joining 1- and 2-
saddles.

The first two steps directly generalize the 2D algorithm.
Nodes corresponding to 1-saddles and 2-saddles are con-
structed in a similar way as we construct saddle nodes in the
2D case. 1-saddles are generated by considering the trian-
gulated surfaces separating 3-cells in the ascending Morse
complex (recall that 3-cells correspond to minima), while
2-saddles are generated by considering the triangulated sur-
faces separating 3-cells in the descending Morse complex
(which correspond to maxima). This is simply a generaliza-
tion of the algorithm we have seen before in the 2D case: the
difference is that here we consider tetrahedra instead of tri-
angles, and that we look for triangles separating the 3-cells
of the Morse complexes instead of edges separating the 2-
cells.

Again, the algorithm for connecting 1-saddle nodes to
minimum nodes and 2-saddle nodes to maximum nodes is
a simple extension of the algorithm for computing the arcs
between saddle and extrema in the 2D case.

The third step consists of generating the arcs connecting
the nodes corresponding to 1-saddles to those corresponding
to 2-saddles. We work first on the ascending complex Γa. For
each 2-cell s1 in Γa (which corresponds to a 1-saddle), we
consider the set Ms of maxima connected to s1, which corre-
spond to the vertices of 2-cell s1. Then, if there is more than
one maximum in Ms and the 2-cell s1 is not on the boundary
of the domain, we check, for each pair of maxima m1 and m2
in Ms, if there exists in the descending complex Γd a 2-cell
s2 ( i.e., a 2-saddle) between the 3-cells corresponding to m1
and m2. If s2 exists, then we connect in the incidence graph
the two nodes corresponding to 1-saddle s1 and 2-saddle s2.

Otherwise, if the 2-cell s1 is on the boundary, we consider
the minimum p associated with the only 3-cell bounded by
s1 and the set of edges in the tetrahedral mesh Σ incident
into vertex p. For each of such edges e, we consider the set
of tetrahedra T incident in e and, for each tetrahedron t in
T , we find the 3-cell in the descending complex Γd contain-
ing t. We select only the edges e′ incident in p such that T ′

contains tetrahedra belonging to different 3-cells. We denote
the set of such 3-cells C′. We replace node s1 in the graph
with nodes q corresponding to the selected edges. Nodes q
are connected to the same minimum node to which s1 was
connected. For each 1-saddle node q, we consider all pairs
of maxima corresponding to the 3-cells in C′ and, for each of
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such pairs m1 and m2, we connect node q in the graph with
the node corresponding to the 2-saddle s′ connected to both
nodes m1 and m2.

At this point, there may remain some maxima on the
boundary of an ascending 2-cell which are not detected by
the previous procedure. Thus, we scan the 2-cells in the de-
scending complex corresponding to 2-saddles, and for each
2-cell corresponding to a 2-saddle not connected to any 1-
saddle we repeat the procedure used for boundary 2-cells
corresponding to 1-saddles. In this way we can process the
boundary without introducing artificial critical points (like
virtual extrema) and we maintain the duality of the com-
plexes and ensure the correctness of the incidence graph as
their common representation.

7. Concluding Remarks

We have described a compact and dimension-independent
representation, the incidence-based data structure, for both
the ascending and descending Morse complexes of a scalar
field f based on exploiting the duality of the two complexes.
We have proposed an algorithm for computing the incidence
graph for Morse complexes of 2D and 3D scalar fields based
on a watershed algorithm that we have developed for con-
structing the maximal cells of the descending and ascending
complexes.

The next step in our research is to develop a simplifica-
tion algorithm for Morse complexes in arbitrary dimensions.
We have defined dimension-independent simplification op-
erators called removal and contraction [ČD09]. The removal
and contraction operators have a dual effect on the descend-
ing and the ascending Morse complexes. The effect of a con-
traction on Γd (Γa) is the same as the effect of a removal
on Γa (Γd). The effect of a removal rem(p,q, p′) on the de-
scending Morse complex Γd is as follows: i-cell q is deleted
and (i+1)-cell p is merged into (i+1)-cell p′. A contraction
con(p,q, p′) on the descending Morse complex Γd deletes i-
cell q and merges (i− 1)-cell p into (i− 1)-cell p′ in Γd :
i-cell q is contracted, and each i-cell in the co-boundary of p
is extended to include a copy of i-cell q.

These operators form a minimal basis of operators for
simplifying Morse complexes in arbitrary dimensions. Un-
like the operators for the 3D case defined in [GNPH07],
these operators never increase the number of cells in the
complexes. Also the operators in [GNPH07] can be ex-
pressed as macro-operators in terms of our operators.

We have implemented the simplification operators on the
incidence-based data structure in a completely dimension-
independent way, since the incidence graph is dimension
independent. We have experimented with Morse complexes
for 2D and 3D scalar fields. An example of the application
of simplification operators to 2D and 3D Morse complexes
is shown in Figure 5.

(a) (b)

(c) (d)

Figure 5: A Morse complex before (a) and after (b) a re-
moval operator in the 2D case. The removal operator in the
3D case (c) and (d).
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