
Eurographics Italian Chapter Conference (2010)
E. Puppo, A. Brogni, and L. De Floriani (Editors)

Two examples of GPGPU acceleration
of memory-intensive algorithms

Stefano Marras1,4, Claudio Mura1,2, Enrico Gobbetti3, Riccardo Scateni1, Roberto Scopigno4

1University of Cagliari, Dept. of Mathematics and Computer Science - Italy
2Sardegna Ricerche DistrICT LAB - Italy

3CRS4 - Center for Advanced Studies, Research and Development in Sardinia - Italy
4ISTI-CNR, Visual Computing Lab. - Italy

Abstract
The advent of GPGPU technologies has allowed for sensible speed-ups in many high-dimension, memory-intensive
computational problems. In this paper we demonstrate the effectiveness of such techniques by describing two
applications of GPGPU computing to two different subfields of computer graphics, namely computer vision and
mesh processing. In the first case, CUDA technology is employed to accelerate the computation of approximation
of motion between two images, known also as optical flow. As for mesh processing, we exploit the massively-
parallel architecture of CUDA devices to accelerate the face clustering procedure that is employed in many recent
mesh segmentation algorithms. In both cases, the results obtained so far are presented and thoroughly discussed,
along with the expected future development of the work.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The interest for GPGPU techniques has been growing
steadily since their introduction: with the exponential growth
of graphics hardware capabilities, more and more re-
searchers coming from diverse backgrounds are becoming
interested in exploiting the computing power of the GPU
to accelerate their applications. Fields as different as image
processing and network optimization, data mining and com-
putational finance all benefit from the ever-growing horse-
power of graphics processors.

In computer vision, CUDA has been mainly used for
image segmentation, feature detection, video segmentation,
SIFT computation and Bayesian Optical Flow; there is also
a large collection of classic algorithms, under the name
of OpenVIDIA, revised using CUDA programming model
[nCb].

To the best of the authors’ knowledge, GPGPU technolo-
gies have been scarcely employed in the field of mesh seg-
mentation and shape analysis. However, most of the recent
works in this research area imply heavy computations, which
lead to compute times that are far from interactivity. Due to

this drawback, a large number of algorithms that are concep-
tually valid and correct are unusable in practice. In particu-
lar, a whole class of algorithms, based on operations on the
dual graph of a mesh, could achieve significant speed-ups if
adequately implemented on GPU architectures. We therefore
employ CUDA technology to accelerate the face clustering
stage, which is at the basis of many successful segmenta-
tion algorithms, and show that relevant improvements can
be achieved over CPU timings.

The rest of the paper is structured as follows: in the fol-
lowing section, we provide an overview of CUDA technol-
ogy, highlighting the potentialities of its highly-parallel pro-
gramming model; we then describe our GPU method for
computing the optical flow using the block matching tech-
nique, focusing on the algorithmic structure of our solution
and on its mapping to the CUDA architecture; the next sec-
tion discusses our CUDA-based approach to face clustering
in triangle meshes and describes the corresponding imple-
mentation; finally, we present the current results of our work,
both in terms of timings and of visual output, and discuss po-
tential extensions.

© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/049-056

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/049-056

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

2. Overview of CUDA

In recent years, GPU architectures have been continuously
evolving. Modern graphics devices are able to deliver an in-
credible computing power, and have become flexible enough
to support computations that are not directly linked to tradi-
tional graphics calculations.

In 2007, NVidia has introduced CUDA (Compute Uni-
fied Device Architecture), an innovative architecture for
GPGPU that allows for an almost complete abstraction from
the graphics pipeline details. The key success of CUDA
lies in its high-level programming model: computations are
expressed as special functions (called kernels) written in
CUDA C, an adaptation of the C programming language that
includes both extensions and restrictions to the original syn-
tax and semantics. Each kernel is executed in parallel by
N CUDA threads; threads are organized in 1D, 2D or 3D
blocks, which are further structured into a 1D or 2D grid.
Each thread is given an unique ID inside a block, and each
block has an ID inside a grid. The indexing scheme adopted
allows to map the computations expressed by a kernel to a
specific subset of the input data, thus implementing a paral-
lelism of type SIMD (Single Instructions Multiple Data).

CUDA blocks are distributed among a set of Streaming
Multiprocessors (SM), which are composed of an array of
Scalar Processors (SP); scalar processors are the fundamen-
tal computing cores that execute CUDA threads. Threads in
a block are executed on the same SM and can cooperate by
means of a limited amount of on-chip, low-latency shared
memory, which is typically used as a programmer-managed
cache for a larger yet slower global memory. For memory-
intensive applications it is fundamental to reduce the latency
coming from global memory accesses. Special patterns must
be followed when reading/writing data from this memory
area: one of the most common strategies is coalescing of
multiple accesses into fewer memory transactions, but other
approaches (such as the use of texture memory) are possible.

CUDA applications can be executed on a large set of dif-
ferent devices: although each GPU has its own specific fea-
tures (which define the so-called compute capabilities), the
execution scales transparently and only minor modifications
are required to achieve compatibility with older devices.

3. Computing Optical Flow using CUDA

3.1. Optical Flow

One of the problems faced in the processing of a sequence
of 2 or more images is the computation of the so-called
optical flow. OF is the approximation of image motion
defined as the projection of velocities 3D surface points
onto the imaging plane of a visual sensor [BB95]. The esti-
mation of image motion has a large number of applications:
for example, it can be used in other to perform motion
segmentation, compute stereo disparity between images, or

estimate 3D scene properties.
More formally, given an image intensity function I0(u,w)
at time t0, and another image I1(u,w) at time t1, our aim is
to find v ≡ (δu, δw), that is, the displacement of the local
image region x after time δt = t1 − t0. As stated by Horn
and Schunck [HS81], we can assume that the intensity is
approximatively constant under motion for at least a short
duration; from this assumption, it is possible to derive the
equation known as optical flow constraint equation:

∇Iv + It = 0

where ∇I(Iu, Iw) is the spatial intensity gradient, It is the
temporal gradient and v = (u,w) is the image velocity. One
of the main consequences of the equation is that flow can’t
be estimated if the problem is ill-posed (e.g. there is not
enough information), and it’s possible to compute only one
component of motion in the direction of the local gradient
of image intensity.
There’s a large number of techniques, performing local
or global operations in order to compute the flow on the
entire image. Most of those techniques are expensive in
terms of time and space. In our work, we try to minimize
the time-consumption of the algorithm by choosing local
algorithms; we developed two different algorithms, both
using the CUDA programming model. First, we present an
implementation of the algorithm known as block matching;
then, we propose and implementation of the classic Lucas-
Kanade method. The work here presented can be considered
as still “in progress”, since some of the main issues are not
completely addressed.

3.2. Block Matching Algorithm

Most of the algorithms for the estimation of the optical flow
need a sequence of different images; typically, frames from
a single video are used. Since, in our work, we work only
on pairs of images of the same scene, we choose to imple-
ment a simple block matching algorithm. Block matching
is a technique widely used for stereo matching and object
tracking [GKcC03]; it detects the motion between two im-
ages in a block-wise sense. The blocks are usually defined
by dividing the first image (or frame) into non-overlapping
square parts; each block from the first frame is then matched
to a block of the second image. Matching a block means
finding the vector v = (u,w) that shifts the block from the
first image into the corresponding block in the second im-
age.
The ideal algorithm performs this way:

0. for each block B, select a set of possible shifts

1. for each possible shift δvi, shift the block in order to
locate a block Bi, same size of B, in the second image

© The Eurographics Association 2010.

50

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

2. compute difference/similarity between B and Bi

3. select block Bk that maximize similarity/minimize differ-
ence and couple block B with the correspondent vector
δvk

In the ideal case, B and Bk will be two blocks having ex-
actly the same pixel values; of course, since algorithm usu-
ally performs on images caught in the real world, there are
problems related to noise, lighting conditions, changes of the
shape of the objects in respect to observer point of view and
so on. Also, some blocks could not contain enough infor-
mation in order to perform a good matching (for example,
blocks with flat or poor texture), so we must be able to evalu-
ate the reliability of the matching defining some quality mea-
sure.
In order to find the best matching, we must choose a mea-
sure to use. We can measure difference between two squared
blocks using SAD (sum of absolute differences) between
their correspondent pixels, and choosing the block that min-
imize SAD. SAD has the drawback of being too sensitive to
noise, so it’s not the best choice for our purpose. SSD (sum
of squared differences) and NCC (normalized cross corre-
lation) are better solutions; we focus in particular on NCC,
since its formulation can be modified in order to adapting it
to CUDA programming model.
Cross Correlation between two continuous functions f and
g is defined as

(f ·g)(t) =
∫

f (τ)g(t + τ)dτ

It is a measure of similarity between two functions, with
maximum value for functions that are strictly related (or
even the same function). Its discrete counterpart is defined
as

(f ∗g)[n] =
∑∞

m=−∞ f [n]g[n + m]

Since we work on images, we use a measure that is strictly
correlated with the discrete CC, but we also need to consider
that images is subject to noise and artifacts; then, formula to
compute cross-correlation between block B0 and B1 is:

NCC(B0,B1) =

1
n−1 ∗

∑
(x,y∈B0,B1)dist(B0(x,y)−B0)

σB0
∗

dist(B1(x,y)−B1)
σB1

This formulation, named Normalized Cross Correlation,
perform an operation of normalization of both blocks,
and then compute correlation in a range [0.0,1.0]. In the
formula, n is the number of pixels of block B0 (we assume
that B0 and B1 are blocks of equal size), while σ is the
standard deviation computed using the values of pixels in
the block. This measure is quite robust, and value of NCC
can also be used as quality measure: matching near to
zero are not reliable, since it means that is not possible to
evaluate correctly the motion of the block (poor texture).
This techniques can be easily extended to the multi-scale
approach in order to deal with large displacement [BBM09];
the two reference images are subsampled with lower

resolution, then block matching is applied to image with
lowest resolution. Results are then propagated to the higher
levels, where they are used to initialize the search for the
best matching block.

Regarding the implementation issues, we try to reduce
time and space consumption using CUDA architecture,
when possible. First of all, lots of useful functions related
to image processing, such as Gaussian filtering, resampling,
rescaling, spatial convolution etc. have been reimplemented
using CUDA; since most of the operations are related to a
single pixel, they can be performed in parallel. We carry on
the device memory a part of the image (or, if the image is not
too large, the entire image), and then each kernel works only
on one pixel (and, eventually, its neighborhood) without in-
terfering with the other kernels; final results are then copied
on the host memory. Secondly, CUDA can be used in or-
der to delegate part of the computation of the NCC between
blocks. As matter of fact, we can split the formula of NCC
into two parts: we can compute dist(B(x,y)−B)/σB over the
entire block B. Obviously, also mean and variance of each
block can be pre-computed using CUDA; values can be then
stored in buffers and copied in memory when needed. For
each block B, value of NCC coefficient at pixel (x,y) can be
computed only once; we can compute these values and then
store it in buffers (e.g. linear arrays). Having one buffer for
each block, we can compute NCC as the sum of the prod-
ucts of the elements of the arrays; in this way, we simplify
the computation of NCC in terms of time-consuming, but
we need more memory in order to store the results of partial
computations. The operation of searching the best matching
is leaved to CPU, since it’s not possible to avoid branches
that affects performance of CUDA architecture. Anyhow, it
is possible to achieve a speed-up of this phase by using the
CUDA Data Parallel Primitives Library (CuDPP) [nCa].
In order to run the algorithm on a different number of
GPGPU, it is possible to select the quantity of data that can
be carried on the GPU memory during each operation. Flow
between two images can be computed in a single iterations,
if all the data needed can be carried on the GPU, or in a
number of iterations, using a piecewise-like approach.

3.3. Lucas Kanade Algorithm

One of the first and most used algorithms for the compu-
tation of the optical flow is the well-know Lucas Kanade
algorithm [LK81]. It’s a simple, local method which use a
local constant model for the velocity v. The velocity is com-
puted as a weighted least squares solution to the optical flow
constraint equation. The displacement 4 = (u,v) of pixel p
between two different frames I0 and I1 can be written as:[

u
v

]
= (AT A)−1AT b,

with:

© The Eurographics Association 2010.

51

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

A =

Ix0 Iy0

Ix1 Iy1

. .

. .

. .

Ixn−1 Iyn−1

, b =

It0
It1
.

.

.

Itn−1

A is the matrix made by the values of spatial derivatives,

obtained as a combination of the spatial derivatives of both
I0 and I1, while b is an array containing the temporal deriva-
tives obtained as difference between the values of the same
pixel in the two images. The values of derivatives are com-
puted using only a local subset of the pixels of the image,
centered in pixel p; n is the number of pixels involved in the
process. The previous formulation can be simplified, and 4
can be obtained as:[

u
v

]
=

(∑n
i=0 I2

xi

∑n
i=0 Ixi Iyi∑n

i=0 Ixi Iyi

∑n
i=0 I2

yi

)−1 (∑n
i=0 Ixi Iti∑n
i=0 Iyi Iti

)
An implementation based on CUDA programming model

is straightforward. Three different kernels compute spatial
and temporal derivatives of the images, storing them in the
global memory, while the fourth (and most important) ker-
nel reads data from global memory and use them in order to
compute the displacement for the pixel p using the formu-
lation previously written. The main advantage of this imple-
mentation is that the displacement of each pixel is computed
in parallel with the other ones. We developed a pyramidal
implementation in the same way we developed for block
matching algorithm; also, thanks to the huge time saving, we
can perform a number of iterative refinement steps consist-
ing in executing the algorithm and warping the destination
image with the last computed flow iteratively. A similar im-
plementation has been proposed in [?]; we add the support
for large-resolution image and other additional features like
alpha mask that allows the user to select only the regions of
interest in the computation.

4. Face clustering for mesh segmentation

Given a 3D boundary mesh M, a segmentation of M is a
partition of the set S of its elements (typically, faces) into k
disjoint, connected sets S 1,S 2, . . . ,S k. The partition is per-
formed according to a specific criterion, which is largely de-
pendent on the domain of application. A wide set of different
segmentation techniques have been proposed by the research
in the last years; among them, an important group of algo-
rithms computes the desired partition by performing opera-
tions on the dual graph of the mesh.

The method considered in this paper employs an iter-
ative fuzzy clustering procedure, following the approach
described in [KT03]. This strategy can be easily general-
ized to fit a whole class of segmentation algorithms (see
also [LZHM06], [LHMR08]).

The procedure is based on the following steps:

0. compute the distances between all pairs of faces in the
mesh

1. compute a (new) set of centroid faces
2. for each face, compute the degree of membership to each

cluster
3. if stop condition is met, exit; otherwise, go back to 1

Since step 0 is the most compute-intensive, we focus on
that stage and describe our method to accelerate its execu-
tion using a GPU-friendly procedure. We have developed a
preliminary implementation of the remaining phases both in
CPU and in GPU, under CUDA; however, since a perfor-
mance optimization of the work done is still in progress, we
only provide the final results obtained, without providing a
detailed description.

4.1. APSP algorithm on the GPU

The distances evaluation procedure operates on the dual
graph of the input mesh. As a preliminary step, the dis-
tance between adjacent faces in the mesh is evaluated, and
the values obtained define the costs of the dual arcs. Several
definitions of distance can be employed, which makes the
method flexible and adaptable to specific applications and
requirements. We have chosen to employ a definition based
on the geodesic and angular distance between adjacent faces,
largely derived from the one employed in [KT03] and ex-
pressed by the following formula:

Dist(fi, f j) = α
Distang(fi, f j)
AVG(Distang)

+ (1−α)
Distgeod(fi, f j)
AVG(Distgeod)

where fi and f j are adjacent faces and α is a user-defined
parameter.

The distances between adjacent faces are then propagated
on the whole graph using an all-pairs shortest paths algo-
rithm (APSP), which finds the minimum distance path be-
tween each pair of nodes of the dual graph.

In spite of being only a preprocessing operation, the
distance computation dominates the execution time of the
whole process. Throughout this section, we shall denote by
N the number of nodes in the dual graph of the processed
mesh (that is, the number of faces of the mesh itself). Since
the dual graph is undirected and sparse (each node has ex-
actly three adjacent nodes) the best known algorithm for
the APSP is the repeated Dijkstra, yielding a O(N2logN)
time complexity. The efficiency of this algorithm lies in
the selective distance update operation: when the shortest-
path distance to a node v has been permanently defined,
only the distance estimates for its neighbors are updated.
If the implementation employs a heap-based data structure
for storing the nodes in intermediate steps, the update re-
quires 3·O(logN) = O(logN) time. However, when the graph
is dense, the update operation takes O(N) time: in such cases,
the Floyd-Warshall algorithm is normally employed, leading
to a time complexity of O(N3).

© The Eurographics Association 2010.

52

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

Though theoretically not optimal for undirected, sparse
graphs, Floyd-Warshall algorithm exhibits a regular memory
access pattern. The procedure operates on a N ×N matrix;
at the beginning of the process, the generic cell δi j has the
following value:

d0
i j =

0 if i = j
ci j if i , j∧ (i, j) ∈ E
∞ if i , j∧ (i, j) < E

where E is the set of edges of the input (dual) graph.

The procedure can be optimized for parallel execution on
CUDA by partitioning the above matrix into squared tiles of
size B, as done in [KK08]. Assuming that NmodB = 0, the
matrix is partitioned into (N/B)× (N/B) tiles; if N is not a
multiple of B, a padding can be added to the matrix so that
this condition is met. This partitioning allows for a parallel
processing of multiple tiles; however, the tiles cannot be pro-
cessed in parallel altogether, since data dependencies must
be respected and correctly handled.

Figure 1: Block dependencies in the tiled Floyd-Warshall
algorithm: in stage 1 (top, left) the red block is self-
dependent; in stage 2 (top, right), the green block depends
upon itself and upon the primary block (shown in red);
in stage 3 (bottom) the green block depends upon the two
blocks shown in blue.

This tiled Floyd-Warshall algorithm executes N/B itera-
tions, one for every block in the diagonal of the partitioned
matrix. At the generic iteration k, three stages are performed
sequentially: in stage 1, the tile in position k in the diago-
nal is processed (primary block); in stage 2, the blocks in
the same row or column as the primary block are handled;
finally, in stage 3 the remaining tiles are computed. Each pri-
mary block is self-dependent, and can be handled by simply
computing the Floyd-Warshall algorithm as if the tile was an
entire adjacency matrix. The blocks processed in stage 2 de-
pend upon themselves and upon the primary block. Finally,
each tile processed in stage 3 depends upon two tiles: the
tile sharing row index with the primary block and the col-
umn index with the current block; the tile sharing the row
index with the current block and the column index with the
primary block. Figure 1 provides an immediate description
of the tile dependencies.

The above procedure, described in detail in [KK08], com-
putes the APSP for generic directed graphs. Note that the
dual graph of a mesh is undirected, which means that only
the lower (or upper) triangular part of the distance matrix

Figure 2: Block dependencies in the tiled Floyd-Warshall
algorithm adapted for undirected graphs: no changes are
required in stage 1 (top, left) and 2 (top, right); in stage 3
(bottom), the block crossed out is fetched from the lower tri-
angular part of the matrix.

must be computed. Stated differently, only the values [i, j]
with i ≥ j need to be computed. Such remarks can be trans-
posed to the tile-based partitioning of the distance matrix: if
(r,c) is the index of a generic block in the tiled matrix, only
the blocks with r ≥ c need to be computed. In fact, the upper
triangular part of each primary block need not be computed;
however, it is convenient to perform en extra k ·Ω(B2/2) op-
erations in order to maintain a regular structure in the pro-
cessing and allow for more efficient implementation.

The tiled Floyd-Warshall algorithm can be adapted to pro-
cess only the required blocks: only minor changes are re-
quired to the staged execution described above. Assuming
the upper triangular part of the matrix is discarded, only the
lower blocks must be computed. Since primary blocks are
self-dependent, no changes are needed in stage 1. In stage
2, only the tiles on the same column as the primary block
are to be computed. Stage 3 requires the most critical adap-
tation: one of the dependency tiles is always located above
the diagonal: since we only want to process the lower trian-
gular blocks, it is useful to express all computations in terms
of such data. Due to the symmetry in the distance matrix, a
generic block (r,c) is structurally identical to the transposed
symmetric block, that is, to the transpose of the block (c,r).
As a result, the discarded dependency block can always be
obtained from the lower part of the matrix. Please note that
this peculiar approach allows to reduce by a factor of 2 the
amount of processing required in stage 2, while the number
of tiles handled in stage 3 is reduced by more than a half.
Also, the memory footprint required is equal to O(N2/2),
thus improving over the spatial complexity of the original
method.

4.2. Implementation

The algorithm can be implemented by mapping each B×B
tile of the partitioned matrix to an equally-sized CUDA
block, with a CUDA thread processing a single value in the
tile. For the directed case, the mapping is simple. In stage 1,
a CUDA grid containing a single block is created. In stage 2,
a bi-dimensional grid of size 2× (B−1) is launched, with the
blocks in the first row processing the tiles sharing the row
with the primary block and the second row processing tiles

© The Eurographics Association 2010.

53

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

in the same column as the primary block. For sake of clar-
ity, let (r,c) be the index of a CUDA block inside the grid:
then, for r = 0, the block handles the tile having index (k,ct)
inside the partitioned matrix, where k is the position of the
current primary block in the diagonal and ct is given by the
following formula:

ct = c + min
(

c + 1
k + 1

,1
)

Stated differently, ct is computed so as to skip the column
of the primary block. For CUDA blocks with r = 1 a similar
argument holds: the block (r,c) computes the tile (rt,k), with
rt defined as

rt = c + min
(

c + 1
k + 1

,1
)

Finally, stage 3 is performed by launching a grid of size
(B− 1)× (B− 1). A correspondence is established with in-
dices in the CUDA grid and tiles in the distance matrix, fol-
lowing the approach employed for stage 2.

At each step, the dependence tiles are loaded into shared
memory, so as to avoid the latency coming from global mem-
ory accesses. Moreover, our implementation achieves fully
coalesced accesses to global memory, since threads in a
block row load adjacent positions in the distance matrix and
a proper memory layout (based on float data type) allows
for the required alignment.

The implementation of our undirected, tiled APSP is de-
rived from the one described above, but includes some ma-
jor modifications to handle only the tiles of interest. First of
all, a proper memory layout is required for the tiled distance
matrix: we have chosen to store tiles sequentially, ensuring
that all elements in the tile are stored at adjacent positions.
This solution allows to fulfill the alignment conditions re-
quired for memory coalescing. Sub-blocks are stored in z-
order and each of them is conceptually assigned a sequential,
one-dimensional index.

As done in the implementation of the standard, directed
tiled algorithm, a CUDA grid is launched for each of the
three stages and the dependence tiles are loaded into shared
memory. The first stage is straightforward. For stage 2,
a 1× N/B grid of blocks is created, and a correspondence
between indices in the grid and tiles in the distance matrix is
computed, having care to skip the row of the primary block.

For stage 3, a one-dimensional CUDA grid is created. The
first issue is related to the indexing scheme adopted: the 1D
index of each CUDA block is first converted into the 2D
index of the block in the full, tiled distance matrix; then,
such index is converted to the conceptual index of the tile
in the z-ordered memory layout. However, the most signifi-
cant problem is the loading of the two dependency tiles: as
shown in the previous paragraph, one of them is positioned
in the upper triangular part of the matrix, and is therefore
obtained by transposing the symmetric tile. This transpose

operation is performed directly when loading the tile from
global memory: the threads in a row of the block load a row
of values in the processed tile and store them directly in the
first column of a B×B tile in shared memory. With this sim-
ple strategy the coalescing is maintained and no extra over-
head is required for the transposition.

The APSP implementation forms the core of a more com-
plete application that performs the other support operations,
including the mesh loading, the dual graph construction, the
proper face clustering and the face coloring. A dynamic-
loadable plug-in for MeshLab [CCC∗08] has been devel-
oped, so as to take advantage of its well-structured and ef-
ficient framework for mesh processing; moreover, MeshLab
provides an intuitive and effective GUI, which makes the us-
age of the application immediate and effective.

5. Results

5.1. Optical Flow

In this section, we present some of the results ob-
tained using the Middlebury evaluation datasets (
http://vision.middlebury.edu/flow/eval/) for
the estimation of image motion. Tests were performed using
a Intel Quad Core, equipped with a GeForce GTX 260
(CUDA Device 1.3 capability). Each image consists of four
parts: the two original frames, the optical flow and a quality
measure. Quality is color-coded in the sense that white
represents zones with high level of confidence, and black
represents zones with low confidence. For each image, we
focus on issues that has to be completely solved.

Figure 3: Army evaluation dataset. In this image, is possi-
ble to see that, while the main structure of the flow has been
caught by the algorithm, there’s noise along the edges of
the image; also, some discontinuities are visible, as result of
some local minima, especially in the wheel part of the im-
age. Runtime is about 2ms for 5-levels Gaussian pyramid of
images for block matching (on the bottom-left) and 0.788 ms
for 3-levels Gaussian pyramid of images for Lucas-Kanade
(bottom-right); original images size is 584×388 pixels.

© The Eurographics Association 2010.

54

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

Figure 4: Schefflera evaluation dataset. Here results are
good, especially for the Lucas-Kanade algorithm; only
Gaussian noise affects some part of the image. Noise could
be removed using a Gaussian or a bilateral filter, combined
with quality measure. Runtime is about 3ms for 5-levels
Gaussian pyramid of images for block matching and about
0.6 ms for 3-levels Gaussian pyramid of images for Lucas-
Kanade; original images size is 640×480 pixels.

5.2. Face clustering

As stated in section 4, the output of the distance computa-
tion is employed in a fuzzy clustering stage, which assigns
each face a degree of membership to each cluster. Member-
ship values can be visualized on the mesh in a color-coded
fashion: each cluster is assigned a color, and each face is
given the color of the cluster corresponding to the highest
membership value.

Figure 6 shows the color-coded output of the clustering:
the color results from linear interpolation between the spe-
cific cluster color and white, so that whiter shades are as-
signed to the faces of uncertain attribution.

Figure 5: Urban evaluation dataset. Here, both flows need
lots of improvement, since there’s a large quantity of noise.
Runtime is about 3ms for 5-levels gaussian pyramid of im-
ages for block matching and about 0.6 ms for 3-levels Gaus-
sian pyramid of images for Lucas-Kanade; original images
size is 640×480 pixels.

Since this work mainly focuses on the GPU acceleration
of the APSP, the most interesting considerations arise from
the analysis of execution times. In particular, CPU and GPU
implementations have been compared and the speed-up ob-
tained is evaluated. Four implementations have been com-
pared: on the CPU side, the repeated Dijkstra algorithm
has been implemented, providing both a single-thread and
a multi-thread version; on the GPU side, the standard tiled
Floyd-Warshall has been implemented, together with the
version adapted for undirected graphs.

The chart in figure 7 describes the execution times for the
four versions of the APSP stage implemented. The tests have
been performed on a machine equipped with an Intel i7 960
and with an NVidia GeForce GTX 480 (Fermi generation):
this configuration is up-to-date with respect to both the CPU
and the GPU, allowing for a fair comparison between the two
architectures. The best GPU version manages to achieve a
speed-up ranging from 12x to 17x over the standard, single-
core CPU implementation, while the speed-up referred to the
multi-core CPU version is 3x.

6. Conclusions and future works

6.1. Optical Flow

As it can be seen from the images, we still need some im-
provement to the final results. Particularly, a post-processing
refinement step, based on some kind of Gaussian filter,

Figure 6: Color-coded results of the fuzzy face clustering
algorithm implemented: pure colors are used in the neigh-
borhood of the centroids, while pale shades correspond to
uncertain regions.

© The Eurographics Association 2010.

55

S. Marras, C. Mura, E. Gobbetti, R. Scateni, and R. Scopigno / Two examples of GPGPU acceleration of memory-intensive algorithm

Figure 7: Timings of the four version of the APSP algorithm
implemented: in blue, the CPU Single-thread Repeated Di-
jkstra; in red, the CPU Multi-thread Repeated Dijkstra; in
yellow, the tiled GPU Floyd-Warshall version; in green, the
tiled, undirected GPU Floyd-Warshall.

weighted using flow quality, has to be implemented in order
to remove the noise in the flow. Moreover, some discontinu-
ities are still present, since we are operating locally without
any constraint on global smoothness (such as in [Sch85]).
Adding some kind of constraint will improve the global
quality and usability of our flow. Finally, basic NCC formu-
lation provides results that are better than the ones obtained
using SSD or SAD measure, but it can be probably improved
including in the measure also a term related to spatial deriva-
tives of the images. Nevertheless, results obtained so far are
encouraging, and we are confident to achieve better results,
both timewise and in terms of quality of the output, in the
next future.

6.2. Face clustering

The analysis of the timing results shows that segmentation
algorithms based on face clustering can significantly bene-
fit from GPGPU techniques. Moreover, GPU architectures
are evolving at a faster rate than those for CPU, and it is
likely that, in the near future, the gap existing between the
two technologies will become wider. As a result, the conve-
nience of GPU-based methods is expected to become even
higher, justifying the effort put in the study of GPGPU tech-
nologies.

Among the possible future extensions to this work, the
most interesting one is the design and implementation of

a full-scale, GPU-accelerated segmentation algorithm. The
proper clustering stage, which has not been described in this
paper and is object of active work at the moment of writ-
ing, is a step that can largely benefit from the use of GPGPU
techniques; moreover, many methods (as the one by Katz
and Tal described in [KT03]) employ minimum-cut to refine
the borders between clusters, and some recent research work
on CUDA-based cuts could be adapted to fit the segmenta-
tion purposes.

References
[BB95] Beauchemin S. S., Barron J. L.: The computation of op-

tical flow. ACM Comput. Surv. 27, 3 (1995), 433–466.

[BBM09] Brox T., Bregler C., Malik J.: Large displacement
optical flow. In Proc. of IEEE Conference on Computer Vision
and Pattern Recognition (Los Alamitos, CA, USA, 2009), IEEE
Computer Society, pp. 41–48.

[CCC∗08] Cignoni P., Callieri M., Corsini M., Dellepiane M.,
Ganovelli F., Ranzuglia G.: Meshlab: an open-source mesh pro-
cessing tool. In Sixth Eurographics Italian Chapter Conference
(2008), pp. 129–136.

[GKcC03] Gyaourova A., Kamath C., ching Cheung S.: Block
Matching for object tracking. Tech. rep., LLNL, UCRL-TR-
200271, 2003.

[HS81] Horn B. K. P., Schunck B. G.: Determining optical flow.
Artifical Intelligence 17 (1981), 185–203.

[KK08] Katz G. J., Kider Jr J. T.: All-pairs shortest-paths for
large graphs on the gpu. In GH ’08: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-
ware (Aire-la-Ville, Switzerland, Switzerland, 2008), Eurograph-
ics Association, pp. 47–55.

[KT03] Katz S., Tal A.: Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM TOG 22, 3 (2003), 954–961.

[LHMR08] Lai Y.-K., Hu S.-M., Martin R. R., Rosin P. L.: Fast
mesh segmentation using random walks. In SPM ’08: Proceed-
ings of the 2008 ACM symposium on Solid and physical modeling
(New York, NY, USA, 2008), ACM, pp. 183–191.

[LK81] Lucas B. D., Kanade T.: An iterative image registration
technique with an application to stereo vision (ijcai). In Pro-
ceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI ’81) (April 1981), pp. 674–679.

[LZHM06] Lai Y.-K., Zhou Q.-Y., Hu S.-M., Martin R. R.: Fea-
ture sensitive mesh segmentation. In SPM ’06: Proceedings of
the 2006 ACM symposium on Solid and physical modeling (New
York, NY, USA, 2006), ACM, pp. 17–25.

[nCa] nVidia Corporation: CUDA data parallel primitives li-
brary.

[nCb] nVidia Corporation: OpenVIDIA.

[Sch85] Schunck B.: Image flow: Fundamentals and future re-
search. In CVPR85 (1985), pp. 560–571.

© The Eurographics Association 2010.

56

