CEIG - Spanish Computer Graphics Conference (2012)
Isabel Navazo and Gustavo Patow (Editors)

A procedural modeling system for the creation of huge models

Francisco Cubero, Albert Mas, Gustavo Patow

ViRVIG-UdG
Universiy of Girona, Spain

Abstract

This paper presents a new general purpose procedural geometrical modeling system. It is focused on providing
Sfexibility, modularity and scalability. Furthermore, it is taylored to manage huge geometric models, with millions
of polygons. An out-of-core memory management system assures that any scene size can be generated during
the modeling evolution. This generation is performed by a set of rules and operations on geometrical objects,

organized as a directed acyclic graph.

1.3.6 [Computer Graphics]: Computer Graphics—Languages 1.3.5 [Computer Graphics]: Computer Graphics—
Computational Geometry and Object Modeling 1.3.5 [Computer Graphics]: Computer Graphics—Three-

Dimensional Graphics and Realism

1. Introduction

One of the main challenges in computer graphics and in-
teractive applications is content creation, which is a task
that requires realistic and detailed geometry. At the same
time, there is an increasing need to develop interactive user-
friendly editing tools allowing a broader range of public to
generate new content. The current approach to 3D modeling
is to manually create 3D geometry using tools like Autodesk
Maya or 3ds Max. This process is time consuming, tedious
and repetitive, but gives to the artist full control of the final
3D model.

On the other hand, in computer graphics, procedural mod-
eling tools allow to define large sets of geometrical data
with just a few rules. These rules define, with a small set
of parameters, how the geometry has to be constructed au-
tomatically. Some examples are the works that simulate
plants [PL90], urban environments [PM01, MWH*06], and
even automatic image-based maze generation [XK07]. The
main advantage of those methods is that one does not have
to store huge geometrical models, only their definitions.
Then, these complex models can be generated each time
we need them, and only needing the ruleset that defines the
model/scene.This is often called as geometric explosion, re-
ferring to the fact that a small input can produce a large
output. On the other hand, because in general the generated
models can be huge, we need a relevant amount of computer

(© The Eurographics Association 2012.

DOI: 10.2312/LocalChapterEvents/CEIG/CEIG12/123-132

resources to handle them, which in some cases can be pro-
hibitive.

In this paper we propose a new visual procedural mod-
eling system, mainly focusing on flexibility, modularity and
scalability. The language is defined as a complete set of geo-
metrical primitives and operations, and is capable to manage
huge geometrical model sets. Also, it is defined in a way
such that it allows to control the modeling process much in
the same way than classical computer programming, with
branching, loops and encapsulation. In addition, a visual lan-
guage tool is presented, which enables the user to work in
terms of a purely visual language. As a result, the system
we present allows a designer to disintegrate complex ap-
plications into modular components. By interactively con-
necting simple components (the nodes), users construct a
complete procedural modeling application that matches their
own needs. In our system, the flow of data is controlled by
wiring nodes among themselves. As a result, we replace the
usual text-based input system with a visually-driven mecha-
nism that is independent of the geometry complexity gener-
ated.

2. Previous Work

Procedural modeling is a kind of methodology to construct
geometrical models from a set of rules which represent
commands and their combinations. Some examples can be
found in the works by Deussen et al. [DHL*98] and Palu-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG12/123-132

124 Cubero F, Mas A., Patow G. / Procedural modeling for huge models

bicki et al. [PHL*09], where they presented a language to
model plants and trees. In the field of urban modeling, the
works presented by Parish and Muller [PMO01] and Muller et
al. [MWH™06], define a language for the generation of build-
ings. The main drawback of these methods appears during
the design of complex rule combinations to generate accu-
rate models, as its text-based paradigm makes it difficult to
edit and modify.

One of the most basic approaches for of procedural mod-
eling is the Generative Modeling Language (GML) [Hav09],
which contains the basic geometric-level commands, and
provides a text-based language to combine them to construct
new and complex rules. GML is a rich language with a large
degree of flexibility. However, in spite of the creator’s ef-
forts, it remains a complex system for the non-expert user.

Historically, procedural modelers are related with visual
languages. ConMan [Hae88] was the first visual language
attempt for computer graphics modeling.It presented a sim-
ple set of linked nodes to define the process pipeline. Later,
in [LD99] was presented a node tree structure. In [GKO07]
there was presented the Plab system, that defines a node
graph structure. Since these languages allowed permit the
full geometrical design, they have limitations for huge mod-
els. The main idea of these methods can be found in current
modeler softwares, such as Maya or Houdini. More recently,
Esri’s CityEngine [Esr12], Epic Games’ UDK [Epil2] and
Patow [Pat12] simultaneously introduced very similar visual
languages for these shape grammars, where each node is a
command and the connection between two nodes represents
the flux of geometry between them.

To solve the hardware limitations for huge models, we can
consider out-of-core techniques. In [SJCC*02] is presented
a survey of this king of methods. In addition, in [CGG*04]
is proposed a method to visualize out-of-core models.

Among other approaches for procedural modeling, Pey-
tavie et al [PGMGO09] presented a tiling method for gener-
ating piles of rocks without any computationally demanding
physically-based simulation. Kelly and Wonka [KW11] pro-
posed a generalization of the classic concept of an extrusion
where a set of profiles are used to extrude a floor-plan to gen-
erate whole building structures, plus an anchoring system to
locate assets like doors, windows or other elements. Talton et
al. [TLL*11] proposed a Markov Chain Monte Carlo system
to generate the variations on a given ruleset to achieve a de-
sired target. Their applications included all king of procedu-
ral modeling techniques, from plants and trees (L-systems)
to buildings (CGA Shapes) to whole cities (random blocks).
Lin et al. [LCOZ"11] presented an algorithm for interac-
tive structure-preserving retargeting of irregular 3D archi-
tecture models, taking into account their semantics and ex-
pected geometric interrelations such as alignments and ad-
jacency. The algorithm performs automatic replication and
scaling of these elements while preserving their structures
by decomposing the input model into a set of sequences,

each of which is a 1D structure that is relatively straight-
forward to retarget. As the sequences are retargeted in turn,
they progressively constrain the retargeting of the remain-
ing sequences. Musialski et al. [MWW12] proposed a novel
interactive framework for modeling building facades from
images, exploiting partial symmetries across the facade at
any level of detail. Their workflow mixes manual interac-
tion with automatic splitting and grouping operations based
on unsupervised cluster analysis. Ceylan et al. [CML*12]
presented a framework for image-based 3D reconstruction
of urban buildings based on symmetry priors: Starting from
image-level edges, they generate a sparse and approximate
set of consistent 3D lines, which are then used to simul-
taneously detect symmetric line arrangements while refin-
ing the estimated 3D model. Merrell et al. [MSK10] pre-
sented a method for automated generation of building lay-
outs for computer graphics applications. In their approach,
given a set of high-level requirements, an architectural pro-
gram is synthesized using a Bayesian network trained on
real-world data. The architectural program is realized in
a set of floor plans, obtained through stochastic optimiza-
tion. The floor plans are used to construct a complete three-
dimensional building with internal structure. Krecklau and
Kobbelt [KK11] presented a system for the easy generation
of interconnected structures such as bridges or roller coasters
where a functional interaction between rigid and deformable
parts of an object is needed. Their approach mainly relies on
the top-down decomposition principle of shape grammars to
create an arbitrarily complex but well structured layout. In
their work, Benes et al. [BSMM11] present guided proce-
dural modeling, an approach that allows a high level of top-
down control by breaking the system into smaller building
blocks that communicate. In their work, the user creates a
set of guides that define a region in which a specific proce-
dural model operates. These guides are connected by a set
of links that serve for message passing between the proce-
dural models attached to each guide. In this approach, local
control is introduced by the building blocks themselves, but
further control is left to the the detailed level of procedural
systems. However, none of these works deal with procedural
techniques for visually creating huge models as we do here,
and these approaches can be easily incorporated in a system
like ours.

3. Overview

This work presents a new procedural modeling system de-
fined with a two layers structure: Procedural Abstraction
Layer (PAL) and Geometrical Abstraction Layer (GAL). The
PAL defines a set of rules for the automatic geometry gener-
ation. These rules are represented by a directed acyclic graph
that represents the full scene. The graph nodes perform oper-
ations such geometry creation and transformation. The GAL
layer is responsible of managing the geometrical data. Also
it implements the interface to create and edit the visual lan-
guage and the out-of-core management system. This out-of-

(© The Eurographics Association 2012.

Cubero F, Mas A., Patow G. / Procedural modeling for huge models 125

core system is capable to manage the geometry data memory
requirements, using main or secondary memory in function
of the current geometrical scene and the current hardware
memory storage. The PAL interacts only with the GAL, that
creates an interface to the classical 3D View API systems,
such as OpenGL or DirectX (see Figure 1). Hence the PAL
becomes platform independent, and only a new GAL inter-
face would be required for new environments.

PAL

—
~~

GAL

! 1
A I

OpenGL | DirectX
M !
N
Hardware

Figure 1: PAL and GAL system.

4. Procedural Abstraction Layer (PAL)

The PAL directed acyclic graph represents the scene using
the graph nodes and the connections between them to define
rules for the procedural modeling. The graph nodes define
the rule operators that generate or modify the geometry. The
graph connections define how and where the rules are ap-
plied. This kind of graph allows the representation of the full
scene and the geometry data flow. The flow is controlled us-
ing geometry generation nodes or branching control nodes
The system permits to query and visualize the data at any
part of the graph. Note the importance of the acyclic prop-
erty, so the data flow locks must be avoided.

4.1. Nodes and connections

In general, PAL nodes perform operations on their input geo-
metric data flow. Each operator receives an incoming geome-
try flux, processes it, and provides at its outputs the resulting
processed geometry. This processing that occurs inside each
node is controlled by the user through the node parameter
interface. Also, the user controls the geometry flow between
the nodes, and has complete control of the operations applied
to every bit of geometry. This way, the user is able to config-
ure the whole production process in arbitrary ways, resulting
in a procedural model, which can get arbitrarily complex.
These capabilities go far beyond a mere scene description
language, actually presenting all the constructive elements
of a full general-purpose procedural engine.

These operations are performed on an incoming geome-
try flux from one or more nodes, except for the case of so
called generator ones. Then, the result is stored and sent

(© The Eurographics Association 2012.

(Nodea) (NodeB) (Nodec)

H

| e—

Node X

- 0
-Node D J L -Node F

Figure 2: PAL node example. It gathers three data flows and
generates to geometric data sets that are sent by two different
output channels.

to other downstream nodes. The process of receiving and
sending the data is controlled by the node input and output
channels (see Figure 2). For every node, there is only one in-
put channel that gathers the incoming geometry from one or
more nodes, creating a unique data flow. However, an imple-
mentation with differentiated input channels is also feasible,
although we discarded it in our current implementation to
simplify ease of use. On the other hand, ever node can be
multiple output channels to create one or more data flows.
The rationale is that there exist operations that, for instance,
divide the geometry flux according to a user-provided crite-
ria, assigning each output channel to each of the resulting ge-
ometry sets. The connections between nodes are represented
by unidirectional data pipes, that define the connection be-
tween one output channel of a node and one input channel
of a downstream node.

The connections management system controls the require-
ment that the graph must be acyclic. This is verified each
time a new node is inserted or any connection is modified.
Moreover, system controls consistency, which implies con-
trolling when and where the geometry data has to be regener-
ated. When a node parameter is modified an invalidation sig-
nal is created. This signal is spread to the output connected
nodes, becoming invalidated nodes. The signal is spread in
cascade way, and it stops at the final nodes (see Figure 3).
Then, when a node recieves a geometry request, by example
to be displayed, this geometry has to be regenerated, spread-
ing an update petition to the input nodes. The spread stops
in those nodes that are valid (see Figure 4).

126 Cubero F, Mas A., Patow G. / Procedural modeling for huge models

Figure 3: Invalidation propagation example. A change in
node B produces a signal invalidation spread on nodes D,
Eand F.

Node A Node B]

e validated

Node D
Villdaied

Z
)

Figure 4: Geometry request propagation example. Nodes A,
B and C are valid and do not need to recompute anything.
Node F receives a geometry request, and as it is an invalid
node, the request is propagated to its input invalidated nodes
(orange).

4.2. Geometry generation and transformation

There are two main node types for generating and trans-
forming the geometry. The generator nodes are used to gen-
erate the basic geometry, that is the beginning of the data
flow. They have only one output channel and no input chan-
nel. There are generator nodes for basic shapes, such as
spheres or prisms, and generator nodes that import exter-
nal geometrical data for more complex shapes. The transfor-
mation nodes perform basic geometrical transformations on
the input geometry, such as translation, rotation, scale and
shear. The output channel returns the transformed geome-
try. In addition there are other transformation nodes that per-

form more complex operations, such as nodes that change
the mesh subdivision level or that performs torsions.

4.3. Data flow control

There are three kind of nodes to control the data flow: group-
ing, branching and looping nodes. The grouping nodes en-
capsulate a directed acyclic subgraph into only one node (see
Figure 5). The subgraph data flow input and outputs match
with the grouping node input and output channels.

v

(NodeD) (NodeB) {_JH

H
(oce €)

Figure 5: Grouping node example.

The branching nodes are useful to control the data flow
with selections or filtering. The selector nodes select one of
the input channel sources and export the geometry by only
one output channel. The filtering nodes gather the input data
flow and export those geometry that validate a condition. In
Figure 6 there is a simple example of branching, where the
geometry is translated in two ways from X axis. In addition,
there are the opposite branching nodes, the sumatory nodes,
that join two or more geometries in only one data flow.

|

T

Transform X+ 1] [Transform X-=1

5 \{

Figure 6: Branching example.

Finally, the iterator nodes group a data flow segment into
a loop controlled by a fixed number of iterations or by a con-
dition. These nodes modify the geometry, or accumulate the

(© The Eurographics Association 2012.

Cubero F, Mas A., Patow G. / Procedural modeling for huge models 127

changes using a sumatory node, for each loop. In Figure 7
there is an example of an iterator node that accumulates the
results for each loop, creating a mesh of objects.

Figure 7: Iterator node example. For each loop a new bunny
is translated to the next grid vertex placement.

4.4. Bypassing data

The PAL node process the input data, stores the results and
send them to the output channels. The data storing for each
node implies a poor performance in computing time and
memory storage, specially on sumatory and transformation
nodes. A clear example of this is the subgraph located into
an iterator node. In these cases, we need to bypass the data
between nodes. There are two nodes that bypass the data,
named Complex Storer and Transform Storer.

The Complex Storer node stores internal references to the
stored geometry of the nodes connected to the input chan-
nels. If the node becomes invalidated and receives a geom-
etry request signal, it queries to the referenced nodes about
the geometry. This is very usefull on accumulation opera-
tions, such are sumatory or iteration nodes.

The Transform Storer node is a Complex Storer node that
stores a transformation matrix. It is used to replace the basic
transformation nodes. When it receives a geometry request
signal, the stored geometry in the referenced node is updated
with the transformation matrix, bypassing the data to the out-
put channel. In addition, the Transform Storer node joins the
transformation matrix into only one when there are multiple
sequential basic transformations.

5. Geometry Abstraction Layer (GAL)

The GAL system manages the geometry creation, modifica-
tion and storage without considering the overall data flow.
GAL system defines an interface between the procedural
data and the geometric data, making them independent and
scalable.

The geometry data structure (see Figure 8) is based on
a list of triangles. To manage other data, such as normal
vectors, colors, numerical values, transformation matrices or
any kind of data, both triangles and vertices have associated
lists of attributes. Each attribute is defined by an identifier,
that is composed by a label, the vertex or triangle identifier,

(© The Eurographics Association 2012.

Triangles T=<V,V, V> Vertices
. ‘ T T ‘ vV |V ‘ ‘ Vv

N-1 0 1

Pt

k

.‘v

Vertices attributes
. ‘ B B

kR-1

v Triangles attributes v

ij Q-1 kL

Au_=<label, value, i, j> BM=<label, value, k, [>

Figure 8: Geometry data structure.

and the attribute value. There are no limitation on size lists
or on attributes data types.

GAL only offers geometry data creation and query oper-
ations. Because of GAL is independent of PAL, we do not
have to worry about any complex operation with the geome-

try.

5.1. Memory management

The GAL system defines an interface to control the mem-
ory management. Basically, we try to store objects in main
memory as much as possible. Thus, when a new object is
created, the interface choose where it has to be stored, se-
lecting the main or the secondary memory, depending on the
current free main memory and the estimated object size. The
selection method calculates

Mf — em(S)
M;

where My is the current free main memory, M; is the total
main memory, e, is the estimated memory size of object
S, and M, is the estimated percentage of free main mem-
ory available after storing the object S. If M, < f;,, where t;,
is a user threshold that means the main memory percentage
that must remains free, the object is stored in main memory.
Otherwise, the object is stored in secondary memory.

=M,

This out-of-core method uses from 2% upto 2128 bits of
memory addressment per vertices and triangles, that means
we can manage really huge geometrical models, about the
order from 10" to 1077 triangles respectively. Due system
limitations about maximum filesizes, the storage uses a se-
quence of files, creating an index system to get access to any
vertex or triangle with independence of what internal file is
stored. The vertices list is stored in a sequence of fixed size
files (see Figure 9). This size is used by the index system to
access the vertices. The triangles list is stored in the same
way than vertices.

The triangles attribute values lists are stored together in
one file sequence without indexing (see Figure 10), because
the attribute values are variable in size. To get access to the
attribute values, another indexed file sequence is stored. It

128 Cubero F, Mas A., Patow G. / Procedural modeling for huge models

[GAL Vertices Storing vy V.l }

|
N

‘ File v, ‘ Filev, Filev, Filev,

Twet

oo

[Vn"vp-w] [\/P"VZP-T] [ViP"V(\+1)Pr1] [Vﬁm/ph)p“VMq]

Figure 9: Vertices list storing structure.

contains for each attribute the identifier, the file identifier
where the attribute value is stored and the value location and
size in bytes. The same considerations have been done for
the vertices attribute values lists.

GAL Triangles Atrributes Storing [A, - AQ_1]
=7 File a0 Filea, |a—oif
[Aid ..Aid]
N : . A
~7 Filea A
| ‘ Filea |e—|
[Aidip..Aid o]
<7 File a [ol A
> File a, |«—
[Aid o oer-Aid]

Aid=<A, a, size>

Figure 10: Triangles attributes lists storing structure.

5.2. Visual language

Over the years researches have realized that text-based ap-
proaches are not the most practical way to cope with the
inherent complexity of procedural models. This resulted in
several proposals for its replacement by visual languages
since the pioneering work by Haeberli [Hae88], followed
by the works by Deussen et al. [DHL*98] and Palubicki
et al. [PHL*09], and more recently the works by Gengster
and Klein [GKO7] Patow [Pat12], but the latter being spe-
cific for bulding design. We have developed a visual tool to
provide an edition system for the designer, where the user

can edit the operations graph, create or destroy nodes, con-
nect nodes among themselves, and adjust their local param-
eters. This can be seen at Figure 11, where the user can edit
the node graph (right) and interactively preview the results of
the changes (left). The user design the model in a graph view,
where the designer can edit the graph, create new nodes and
define connections. The changes are shown interactively in
a 3D view, that uses any kind of 3D View API, such as
OpenGL or DirectX. The 3D view updates are controlled
by a visibility flag that is stored in each node. When a node
has the visibility flag activated, all the internal stored geom-
etry becomes visible. This means when 3D view needs to be
refreshed, by an edition of the graph by example, the visible
nodes send their respective update signals to the invalidated
nodes, regenerating the geometry data only on those nodes
that is needed, avoiding the regeneration of the full scene.
Since the graph view is enough to design the model, the 3D
view do not has interactive edition tools. Finally, some inter-
faces are provided to edit GAL information, such as vertices
values, colors and other data types.

Figure 11: Visual language editor. At right, the graph edi-
tion view. At top left, the 3D view. At bottom, the interface to
modify the geometry data.

6. Application case: Urban Modeling

To demonstrate the capabilities of the method we have
adapted it to perform a city building procedural modeler. To
achieve it we have created new PAL nodes to control the
building specific generation. These nodes control the build-
ing base size, the openings and their windows, the number
of levels, the facades and the roof. We use a database with
a set of predefined objects for complex geometries, such as
the windows library (see Figure 12).

We have designed a simple method to generate automati-
cally the city. This method generates each building in a ran-
dom way starting from a simple prism-like primitive, but
other starting shapes can be easily used. The parameters such
are levels, window types, roof types and building shapes are
chosen stochastically. The levels are chosen randomly giv-
ing more priority to those buildings with a medium level size

(© The Eurographics Association 2012.

Cubero F, Mas A., Patow G. / Procedural modeling for huge models 129

Figure 12: Pre-generated windows geometry library.

to get more realistic skylines. The building shapes are cho-
sen from a set of predefined blocks with different building
shapes and placements (see Figure 13).

Figure 13: Pattern set for the building block configurations.

7. Results

The results presented here are compared using main memory
or the out-of-core method. The tests have been processed us-
ing an Intel Core2 Quad at 2.4GHz, 8MB of cache memory
and 4GB of DDR3 main memory. The out-of-core results
have been tested with a 1.5TB SATA2 hard disk, with 64MB
of cache memory and 7500 rpm. The system has been im-
plemented using Python, so it is multi-platform and the new
nodes can be implemented in an easy way.

To test the building generation, we have designed a simple
building shape. Then, the computing time has been evalu-
ated using main memory and out-of-core management, com-
paring the same building with different levels and windows.
One can see that the computing time increases linearly with
the geometry size. Also, the main memory is faster than the
out-of-core management. Although, in some cases the main
memory is not enough to process huge geometries. In Fig-
ure 14 there is a computing time graph in function of number
of building levels and window type. Note the building with
fourth window type cannot be processed in main memory
for more than 3 levels due his size.

In Figure 15 you can observe some examples of this test-
ing buildings.

(© The Eurographics Association 2012.

Figure 15: Examples of test buildings, designed to test the
system on a plausible technical basis (no to get realistic
buildings). At left, a building with 11 levels using the sec-
ond type windows (see Figure 12), requiring 618000 trian-
gles. At right, a building with 8 levels, third type windows,
requiring 105100 triangles.

In Figure 16 there are some examples of the buildings
combinations as seen in the Figure 13.

Figure 16: Examples of random building blocks generation.
The models sizes are, from top left to right bottom, 789, 596,
583 and 322 thousand triangles size.

Figure 17: Two neighborhoods of our final city. Left: 12
blocks, Right: 17 blocks.

130 Cubero F, Mas A., Patow G. / Procedural modeling for huge models

i
Figure 18: Closer view of automatically generated city with
about 61 million triangles.

\

Reference Block Build Vertices Triangles Mem Time
Fig.16-left-top 1 4 538K 583K 52.1 0d 1:11
Fig.16-right-top 1 4 697K 789K 63.2 0d 1:26

Fig.16-left-bottom 1 6 560K 596K 582 0d 1:19
Fig.16-right-bottom 1 3 283K 323K 219 0d 0:30
Fig. 17-left 12 38 4468K 4135K 418 0d 6:22
Fig. 17-right 17 68 8039K 7594K 760 0d 8:43
Fig 19 130 467 57066K 61637K 5104 4d 20:22

Table 1: Figures for some examples. From left to right,
model name/reference, number of blocks, buildings, vertices,
triangles, storage (in MB) and time (days hours:minutes).

Finally, we have combined a set of building blocks to con-
struct a regular city. In Figure 18 and Figure 19 there are two
views of the final generated city. It has 467 buildings orga-
nized into 130 blocks. The total model size is 61 million of
triangles and about SGB memory requirements. Obviously,
this model cannot be managed only using the main memory,
and the out-of-core system allows us to achieve this kind of
huge geometrical models.

In Figure 17 we can see views of two neighborhoods of
12 and 17 blocks respectively.

8. Discussion

As shown in the previous section, the proposed procedural
modeling editor is capable to manage huge scenes. The out-
of-core management system allows to work with geometric
models that would be impossible to manage only using the
main memory. The relation between the computational times
using main or secondary memory is lineal and has a rea-
sonable difference. Moreover, the visual editor and the pre-
sented results demonstrate that is relatively easy to model
complex and huge scenes with just a few nodes.

The main drawback is the overall computational time. The
main reason is the chosen development language, Python,
because it is an interpreted language. On the other hand,
Python provides platform independence and scalability, so it
is easy to develop new nodes. A suitable improvement would
be to parallelize the system, with concurrence or with a com-
puters cluster.

- 222t
He |

Figure 19: Aerial view of the same city seen in Figure 18.

9. Conclusions and Future Work

‘We have presented a new general purpose procedural mod-
eler. The system is flexible, modular and scalable, and it is
capable to manage huge scenes composed by millions of
polygons. The procedural modeler is defined with a set of
rules and geometric objects, organized in a directed acyclic
graph. This graph controls the geometric data flow, where
the nodes create and transform the geometry, and perform
branching and looping to automatically produce complex
models. The graph edition, that is the scene edition, is per-
formed with a visual language tool.

We consider, as future work, the creation of new node
types and new interfaces for other 3D view APIs. Also, dif-
ferent strategies to decide between whether to store an ob-

(© The Eurographics Association 2012.

Cubero F, Mas A., Patow G. / Procedural modeling for huge models 131

ject in main or secondary memory (e.g. LRU or other tech-
niques), should be analyzed. Of course, this implies a whole
loading/unloading mechanism to be thought of and imple-
mented. In addition, we are interested into parallelize the
system in two ways. First, applying concurrence, trying to
manage the processes that transform the geometry data in
efficient threads. Second, creating a communication system
to manage a computers cluster, partitioning the tasks into
different computers and avoiding the processing bottlenecks.
Another interesting optimization is to incorporate techniques
as instancing to avoid having duplicated geometry, but this
would require a slightly different management system with
elements that can be geometric objects and elements that can
be just references (plus a transformation matrix) to other el-
ements.

10. Acknowledgments

We want to thank the anonymous reviewers for their use-
ful comments. This work was partially funded by grant
TIN2010-20590-C02-02 from Ministerio de Ciencia e Inno-
vacién, Spain.

References

[BSMM11] BENES B., STaAvA O., MECH R., MILLER G.:
Guided procedural modeling. Comput. Graph. Forum 30, 2
(2011), 325-334. 2

[CGG*04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. ACM Trans. Graph. 23 (August
2004), 796-803. 2

[CML*12] CEYLAN D., MITRA N.J., L1 H., WEISE T., PAULY
M.: Factored facade acquisition using symmetric line arrange-
ments. Computer Graphics Forum (Proc. EG’12) 31, 1 (May
2012). 2

[DHL*98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
MECH R., PHARR M., PRUSINKIEWICZ P.: Realistic model-
ing and rendering of plant ecosystems. In Proceedings of the
25th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1998), SIGGRAPH ’98, ACM,
pp. 275-286. 2, 6

[Epil2] EPICGAMES:
http://udk.com. 2

[Esr12] ESRI: Cityengine, 2012.
http://www.esril.com/software/cityengine/index.html. 2

[GKO7] GANSTER B., KLEIN R.: An integrated framework for
procedural modeling. In Spring Conference on Computer Graph-
ics 2007 (SCCG 2007) (Apr. 2007), Sbert M., (Ed.), Comenius
University, Bratislava, pp. 150-157. 2,6

Unreal development kit (udk), 2012.

[Hae88] HAEBERLI P. E.: Conman: a visual programming lan-
guage for interactive graphics. SIGGRAPH Comput. Graph. 22
(June 1988), 103-111. 2,6

[Hav09] HAVEMANN S.: Generative Mesh Modeling. PhD thesis,
TU Braunschweig, 2009. URL: http://deposit.ddb.de/
cgi-bin/dokserv?idn=977813207. 2

[KK11] KRECKLAU L., KOBBELT L.: Procedural modeling of
interconnected structures. Comput. Graph. Forum 30, 2 (2011),
335-344. 2

(© The Eurographics Association 2012.

[KWI11] KELLY T., WONKA P.: Interactive architectural model-
ing with procedural extrusions. ACM Trans. Graph. 30, 2 (Apr.
2011), 14:1-14:15. 2

[LCOZ*11] LiIN J., COHEN-OR D., ZHANG H., LiANG C.,
SHARF A., DEUSSEN O., CHEN B.: Structure-preserving re-
targeting of irregular 3d architecture. ACM Trans. Graph. 30, 6
(Dec. 2011), 183:1-183:10. 2

[LD99] LINTERMANN B., DEUSSEN O.: Interactive modeling of
plants. IEEE Comput. Graph. Appl. 19, 1 (1999), 56-65. doi:
http://dx.doi.org/10.1109/38.736469. 2

[MSK10] MERRELL P., SCHKUFZA E., KOLTUN V.: Computer-
generated residential building layouts. ACM Trans. Graph. 29, 6
(Dec. 2010), 181:1-181:12. 2

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooL L.: Procedural modeling of buildings. ACM Trans.
Graph. 25 (July 2006), 614-623. 1,2

[MWW12] MUSIALSKI P., WIMMER M., WONKA P.: Interac-
tive Coherence-Based Facade Modeling. Computer Graphics Fo-
rum (Proceedings of EUROGRAPHICS 2012) 31, 2 (May 2012),
661-670. URL: http://www.cg.tuwien.ac.at/~pm/
Facade2012/index.html. 2

[Pat12] PATOW G.: User-friendly graph editing for procedural
modeling of buildings. IEEE Computer Graphics and Applica-
tions 32 (2012), 66-75. 2,6

[PGMGO09] PEYTAVIE A., GALIN E., MERILLOU S., GROS-
JEAN J.: Procedural Generation of Rock Piles Using Aperi-
odic Tiling. Computer Graphics Forum (Proceedings of Pacific
Graphics) 28, 7 (2009), 1801-1810. 2

[PHL*09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS
A., LANE B., MECH R., PRUSINKIEWICZ P.: Self-organizing
tree models for image synthesis. ACM Trans. Graph. 28 (July
2009), 58:1-58:10. 2, 6

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic
beauty of plants. Springer-Verlag New York, Inc., New York, NY,
USA, 1990. 1

[PMO1] PARISH Y. I. H., MULLER P.: Procedural modeling of
cities. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2001),
SIGGRAPH 01, ACM, pp. 301-308. 1,2

[SjCC*02] SILVA C., JEN CHIANG Y., CORRAEA W., EL-SANA
J., LINDSTROM P.: Out-of-core algorithms for scientific visual-
ization and computer graphics. In In VisualizationdAZ02 Course
Notes (2002). 2

[TLL*11] TALTONJ. O., LOU Y., LESSER S., DUKE J., MECH
R., KOLTUN V.: Metropolis procedural modeling. ACM Trans.
Graph. 30,2 (Apr. 2011), 11:1-11:14. 2

[XKO07] XulJ., KAPLAN C. S.: Image-guided maze construction.
ACM Trans. Graph. 26 (July 2007). URL: http://doi.acm.
org/10.1145/1276377.1276414, doi:http://doi.
acm.org/10.1145/1276377.1276414. 1

http://deposit.ddb.de/cgi-bin/dokserv?idn=977813207
http://deposit.ddb.de/cgi-bin/dokserv?idn=977813207
http://dx.doi.org/http://dx.doi.org/10.1109/38.736469
http://dx.doi.org/http://dx.doi.org/10.1109/38.736469
http://www.cg.tuwien.ac.at/~pm/Facade2012/index.html
http://www.cg.tuwien.ac.at/~pm/Facade2012/index.html
http://doi.acm.org/10.1145/1276377.1276414
http://doi.acm.org/10.1145/1276377.1276414
http://dx.doi.org/http://doi.acm.org/10.1145/1276377.1276414
http://dx.doi.org/http://doi.acm.org/10.1145/1276377.1276414

132 Cubero F, Mas A., Patow G. / Procedural modeling for huge models

3500
3000 /
2500
—indow 0
2000
= emm—=window 1
o
-E m—=window 2
1500, em—=window 3
w—=window 4
1000 , @m==window 5
500
0 d
1 2 3 4 5
Floors
6000

5000 /

4000
e—window 0
= myindow 1
£ 3000 = .
= @m—\indow 2
—indow 3

2000 s——window 4
/ e=window 5

1000

1 2 3 4
Floors

w

Figure 14: Comparison between computing times (in seconds) using main (top) and secondary (bottom) memory for buildings
with different levels and window types (see Figure 12).

(© The Eurographics Association 2012.

