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Abstract.  The introduction of the Progressive Refinement method was the
starting point of interactivity in the radiosity illumination process. Ohers-

ing methods brought an important acceleration to the convergence particularly
for scenes with a high mean reflectivity.

In this paper we present a new acceleration technique to PR and overshooting
methods based on group shooting methods. The acceleration is obtained by oc-
casionally selecting groups of interacting patches and by solving the subsystem
built from this group.

This technique allows us to reduce the number of iterations that are required to
solve the radiosity system and only involves a small computation overhead.
Comparing different algorithms for scenes with particular properties, we high-
light interesting results of the Group Accelerated Shooting Methods especially
when considering complex scenes with many occlusions.

1 Introduction

Many efforts to improve the radiosity method have been made since its introduction
in 1984 by C. M. Goral & al. [1]. Progressive Radiosity [2] was the first step toward
interactivity and overshooting methods [3] [4] [5] improved its convergence rate, espe-
cially for scenes with high mean reflectivity. However these methods still need more
iterations than the total number of patches in the scene when a nearly exact solution of
the system is needed.

In this paper we introduce a new approach based on group iterative methods [6].
Unlike Greiner & al. [7] who select sets of important patches to reduce the size of the
radiosity system, we accelerate existing progressivdout by shooting from group
of patches in order to improve the diffusion of light. Moreover, interactions between all
the patches of the group are resolved.

In the next section we describe group iterative methods and notations used to sim-
plify the expression of the system. Definitions of group Jacobi and group Gauss-Seidel
methods are given with their cost in term of operation per iteration. Direct application
of these methods to the radiosity system is discussed in the case of large scenes where
the form factor matrix is unknown. Greiner’s blockwise refinement method is described
and discussed in the same case. Then we compare the group methods approach with
bi-level [10] and hierarchical [11] radiosity methods and show that it does not relate to
any of these two methods.

In the third section, after rewriting the equation of group Gauss-Seidel iteration by
using the residual, we give algorithms for group Southwell, group Progressive Radiosity
and group overshooting methods and briefly discuss their advantages and drawbacks.



We expose in section four the implementation of group shooting iterations into Pro-
gressive Radiosity and Xu'’s overshooting method followed by a discussion on the opti-
mization of group construction and efficiency.

Finally, comparative results of some group accelerated progressitiedsatpplied
on three different scenes are presented.

2 Group iterative methods

Group iterative methods are an extension of point iterative methods using several equa-
tions of the system at a time. The resolution of a group efjuations instead of the
successive resolution of thesequations leads to a better convergence of the unknowns
to the solution but implies a much higher cost.

Let us consider a system oflinear equations :
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Point Jacobi and point Gauss-Seidel iterations are resolution schemes considering
one equation of the system at a time. For example the point Ja¢bhi'd )* iteration
is the resolution of thé” equation below :
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bgk“) is the only unknown while thé;’s are taken from the previous iteration.

Group Jacobi and group Gauss-Seidel iterations are successive resolution of groups
of the system equations. For example group Jacoki’s 1)!" iteration restricted to a
group built from equationsand; leads to the resolution of the following subsystem :
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b{"+") andb{"*") are the unknowns while tHg's are taken from the previous iteration.

Thus, a group iteration using equations leads to the resolution of a subsystem of
system (1) with. unknowns.

2.1 Notations and definitions

Using an ordered grouping : G,k = 1,... ,gof I = {1,... n} we defined, ,
as the sub matrix ob consisting of rows?;,: € GG, and columng’;, j € G,. B, is
the sub vector o8 consisting of elements;, i € G, andE, is the sub vector of/
consisting of elements, i € GG,.. Using these notations equation (1) is rewritten as :
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Thus, an iteration of the group Jacobi solver is written as :

q
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In the same way, a group Gauss-Seidel iteration is written as :
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2.2 Point versus group methods for radiosity

In the case of radiosity, point iterative methods previously described are known as gath-
ering methods. Each iteration corresponds to the energy gathering from the scene to the
patch associated with the unknown of the equation being solved. Group iterative meth-
ods correspond to group gathering. The resolution of the subsystdnas$ociated

to the group s, composed ofn equations corresponds to the 'simultaneous’ gathering
from the scene to the: patches associated with the unknowns of the equations. By si-
multaneous’ we mean that this group gathering also resolves the interactions between
them patches involved in this group, this leads to a better estimation of their radiosities
thanm successive gathering steps.

But group iterative methods have a higher cost in term of number of operations per
iteration. Considering the groug, associated tan equations of the system, we need
approximativelym® operations to comput; ;. using a Gauss elimination method and
approximatively2nm? operations to compute the unknowns of group Jacobi or group
Gauss-Seidel iteration. Compared to the operations that are required for a point
Jacobi or point Gauss-Seidel iteration (ewenin the radiosity case wherg; ; = 1),
the benefit of group methods over point methods vanishes in the general case. In fact,
group iterative methods are used whercan be partitionned in groups with special
properties permiting the resolution efich iteration irfO(n) operations. For example
[8] gives a procedure to solve directly the subsystem whgp is a symmetric and
positive definite tridiagonal matrix.

Another problem of gathering methods is the lack of interactivity during the pro-
cess. Most nowadays radiosity scenes consist of tens or even hundreds of thousands of
patches and need a lot of time for form factors computation. Each iteration step of a
gathering method requires all the form factors matrix to be available, each row of the
matrix allowing the radiosity of a unique patch to be updated. Thus, one have to wait
almost an entire iteration step to have a first idea of what the result of illumination will
be.

In 1988 Cohen & al. [2] introduced the progressive refinement method also called
progressive radiosity (PR) which shoots energy from a patch, and updates the radiosities
of all the visible patches at each iteration by using a column of the form factors matrix.
This method was proved to be an equivalent of the Southwell iterative method in [9].
Several overshooting methods [3] [4] [5] increased the convergence speed of PR by
anticipating the amount of energy which will come back to the shooting patch in future
iteration steps, and shooting it along with the current unshot radiosity. Xu’'s method
gives the best acceleration by considering diidatination plus an estimation of the
energy due to multiple reflections in the scene before shooting.

These methods introduce interactivity during the process as a few shooting steps
give afirstidea of the illumination of the scene. But they also need more:thearation



steps to give a result close to the exact solution. They involve multiple selections of the
same shooting patches requiring several computation of the same form factors since the
whole matrix cannot be stored in memory. Moreover these methods do not converge
in the same manner, it is difficult to compare for example scenes from PR and Xu’'s
methods before the convergence is achieved. When stopping PR and Xu’s methods at
the same RMS error, the scene computed by Xu's method has a much higher contrast
than PR solution. The patches well exposed to light sources have radiosities much closer
to the exact solution than the less exposed ones. On the contrary, the more uniform
illumination of the PR algorithm leads to a better solution in term of visualisation since
the error with the exact solution is well distributed among all patches of the scene. Xu'’s
method has a good convergence rate in term of mean error measure but not in term of
maximum error measure. The overshooting term added to the unshot radiosity permit
the acceleration of convergence only for patches that are visible frorhdlogisg patch.

2.3 Blockwise refinement

Greiner & al. proposed in [7] a method also based on the selection of groups of im-
portant patches. The Blockwise Refinement approach solves the radiosity system by
selecting in turn a small set of patches. An approximate solution of the whole system
is computed for this set of patches taking into account the exact interactions between
the selected patches and all other patches, and an approximation for the interactions
between the others patches. This solution is refined by selecting other sets of patches
that successively correct the error introduced by the approximation.

This method implies a matrix of unshot radiosities to be stored in order to keep
the energy exchanges between the different patches. Thus, this method does not fit the
resolution of large systems where & n matrix for each wavelength naot be stored.

The comparison of Blockwise Refinement with other methods is done considering
the number of floating points operations needed by the resolution of the system. This
implies that all form factors are already known and that their computation is not taken
into account. This does also not apply to the resolution of large systems.

Taking the form factors computation into account, our goal is to obtain a method
that takes advantage both of the interactivity of shooting methods and aé¢keerated
convergence provided by group resolution without any »n matrix storage. Group
shooting methods described in the next section are a step towards this goal.

2.4 Comparison with substructuring and hierarchical methods

The notion of group exposed in this paper is very different from the grouping of sur-
face elements into patches proposed in the bi-level radiosity method or even from the
hierarchical organization of surfaces and energy exchanges of the hierarchical radiosity
method.

In the bi-level radiosity method, a coarse meshing of the sceng jatches is
subdivided inM surface element6M > N) for patches presenting a high radiosity
gradient. A patch can be considered an element itself or consisting of a group of ele-
ments. The elements are the energy receivers thus capturing detailslhfittieation,
while the patches are the emitters. The elements that are derived from a patch do not
have any interaction between themselves unlike our groups. In our approach, groups are
built from elements which exchange energy in order to accelerate the diffusion of this
energy. In bi-level radiosity, groups are built in order to reduce the size of the system.

The solution obtained by the bi-level radiosity method is comparable to the solution
obtained by a complete resolution of a system implying ax A/ matrix constructed



with all the elements, but requires only the use difax N matrix. This method can
be viewed as a simplification of the system by compressing the mathix merging
columns.

The hierarchical organization of surfaces and energy exchanges of the hierarchical
radiosity method results in reducing the number of form factors needéd:tp[12].
Thus, this hierarchical organization can be viewed as a compression technique of the
form factors matrix reducing the complexity of the system.

The aim of group methods is taccelerate the convergence of the iterate not by
reducing the size or complexity of the system but by relaxing several unknowns at a
time.

3 Group shooting methods

3.1 Group Southwell

Southwell and Gauss-Seidel relaxation methods are very similar. The only difference
is that in Gauss-Seidel, the equations of the system are considered successively while
in Southwell, the order in which the equations are selected is performed according to
a residual criterion. Unlike group Gauss-Seidel where an iteration step consists in the
resolution of all the groups of equations using equation (4), a group Southwell iteration
step solves only one group of equations. Ther 1)!* Southwell iteration step using

a groupr computesB(#+1) where BV is updated using the equation (6) described

below andB* ™) = B forall s # r.
The residual vectoR(*) defined by

R®) = F @Bk (5)

is computed at each iteration and the elemenkd? with the greatest absolute value
defines the next group of equations to consider.

From equation (4) and using the iteration numbering described above, group South-
well iteration can be written using the residuat

q
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Thus, eachunknown is updated using its value from the previous iteration. The
residual can also be updated instead of directly computed from its definition :

q
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From equations (6) and (7), group Southwell algorithm is presented below :

forall 7
b, =0
Ty = €4

while not converged
choose group with largest| R, ||
B, = B, + o] !R,
for all groupss # r
R, = R, &%, , P/ 'R,
R =0
display image using; as intensity of patch

3.2 Group PR and group overshooting

We can express group PR in the group Southwell form usifyg andA B, as the shot
and unshot radiosities of groupand A, as the surfaces vector of patchesdmgjing to
groupr :

forall 4
Vb =0
AbZ = €;

while not converged
choose group with largest| AB,. AL ||
compute form factors columns corresponding to group
VB, = VB, + ®;}AB,
for all groupss # r
AB; = AB, &0, , o 'AB,
AB, =0 ’
display image using b; + Ab; as intensity of patch

Finally, replacing the shot radiosity vect®B by B = VB + AB we get the
following group PR algorithm:

forall ¢
bi = €;
AbZ = €;
while not converged



choose group with largest| (AB, [+AB]. AT ||
compute form factors columns corresponding to group
computed; !
for all groupss
Arad = C@syr@;}(ABr [+AB])
AB, = AB, + Arad
B, = B, + Arad
AB, = 0[€AB}]
display image using; as intensity of patch

Group overshooting is achieved by considering;" (term inside the] in the pre-
vious algorithm) computed by the different overshooting methods.

Each resolution of the subsystem consisting of a group ofsialows a faster con-
vergence than the shooting steps of the patches composing the group. As explained in
section 2.2, interations between all the patches composing a group are resolved. Thus,
unshot radiosities of patches within the group are all setdfier an iteration of group
PR, which is not the case after the shooting steps of point PR. In the same manner,
unshot radiosities of patches within the group are all setAd3" after an iteration of
a group overshooting method.

Group shooting methods are suitable for large scenes illuminagicauise they only
require the storage af. columns of®, m corresponding to the size of the largest group.

3.3 Group building

All group methods described in sections 2.2 and 3 use an ordered grouping as described
in section 2.1. The system is therefore partitioned before starting the resolution. But
in order to define well suited groups for the radiosity system we have to consider the
unshot radiosity values which vary all along the resolution. It is thus preferable to
construct groups dynamically during the resolution of the system. Instead of having
several groups chosen at the beginning of the algorithm we construct one group at the
beginning of each iteration. This leads to the algorithm below :

choosen the size of the group
forall ¢
bi = €;
AbZ = €;
while not converged
construct group with them patches having largegt(Ab; [+Ab]).a; ||
compute form factors columns corresponding to the patches of the group
computed®; !
for all patcheg
Arad = <0;,9; }(AB,[+AB]])
Ab; = Ab; + Arad
bj = bj + Arad
AB, = 0[€ABT]
display image using; as intensity of patch

The cost of solving of a group is not a problem when restricting to small size as
compared to the number of patches in the scene. In fact, the time spent in computing
form factors is much more important than the time spent in solving the subsystems (see



section 5).

But those group shooting methods result in a lack of interactivity since the time
elapsed between eadpdate of the radiosities is much more important than in the case
of point shooting methods. Using a group of sizewe have to wait for the computation
of m columns of the form factors between eagidate.

4 Group accelerated shooting methods

Our goal is to find an interactive method suited to large scenes illumination and that
converges to an accurate solution in a time smaller than the time required to compute the
form factors matrix. The interactivity is conserved from the existing shooting methods
and the acceleration of convergence is obtained from the periodic use of imatng

steps.

4.1 Firstapproach

Giving a scene, we choose the size of the group, typically from 20 to 50 in our exper-
imentations. It determines the number of form factors columns stored into memory.
The chosen shooting method is then started and each column of the form factors matrix
computed to shoot energy from a patch is stored. We keep the same order of selection
of shooting patches as the shooting method.

When the number of stored patches and form factors columns reaches the size of the
group, the subsystem generated by these patches is solved. The time spent solving this
subsystem is measured and compared to the computation time of form factors in order
to compute a frequency of group resolution applications which ensure a small overhead
for the shooting method. The determination of the frequency is based on computation
time because we oaot estimate precisely the cost of form factors computation in term
of operations. It is not only dependent on the method used nor the number of patches
in the scene but also of its geometry.

Then, at the beginning of each new iteration, the older patch stored in the group
is deleted along with its corresponding form factors andaegad by the newtmoting
patch and its form factors. The resulting algorithm is outlined below. hhérst
shooting steps, the resolution of the resulting subsystem and the computation of the
frequency of group resolution are not detailed in order to clarify the algorithm reading.

choosen the size of the group
forall ¢
b; = e;
AbZ = €;
dom shooting steps and store eattosting patch along with its form factors
solve the subsystem generated by thesgatches
compute the frequency of group resolution
while not converged
choose patchwith max | Ab;.a;[+Ab}] |
if patchi is not already stored in memory
compute the form factors colurn, ;
replace oldest patch and ff's in the group with patemd £ ;
if the number of shooting steps matches the frequency of group resolution
computed;!
for all patcheg



Arad = <®;,®;} (AB,[+AB]])
Ab; = Abj + Arad

bj = bj + Arad
AB, = 0[€AB]
else

for all patcheg
Arad = CXOJVZ(AI)Z[—I—AI);I_])
Ab; = Abj + Arad
bj = bj + Arad
Ab; = 0[<Ab]]
display image using; as intensity of patch

Generally, source patches have low reflectivities in radiosity scenes. Considering
these patches in a group is useless and has no gain as compared to successive shooting
steps because there is almost no energy transfer between them. Thus, it is preferable to
shoot from all source patches before starting the construction of the group.

4.2 Optimisation of groups

By storing columns of the matrig instead of columns of the form factors matrix we
would save some operations needed to comgdyte during the group- resolution.

But storing columns of® requires much more memory since it is proportionnal to the
number of wavelenghts used to illuminate the scene. We did not choose this solution
because the qlity of groups constructed during the resolution can be improved using
the memory available in the host machine.

Indeed, we store as much patches and form factors as possible that will be used
to build the groups. The size of the group is not changed but the choice of patches
included in the group is no longer set by the shooting method. For the optimized al-
gorithm presented in section 5, the group were constructed by choosing among all the
patches available in memory those having the maxintima; (| (Ab; + Abj).a; |
for overshooting methods).

But the amount of unshot energy is not always a sufficient criterium to ensure a
significant speedup. The advantage of using groups is to simultaneously illuminate a
great number of patches and to resolve all the interactions due to multiple reflections
between the patches within the groups. It is thus essential foaiagieration method
to construct the groups by maximizing the number of visible patches from the group
and the amount of energy exchange between patches of the group. We are currently
working on new techniques for group building based on the knowledge of the form
factors stored in memory in order to suit best to these criteria.

5 Comparison of the algorithms

We use the normalized Root Mean Square error metric to compare the convergence of
each metod. The computational cost eéch step of the different nieids is dominated

by the form factor computation. For the different scenes we used, the mean cpu time
spent for shooting the energy is 1% in the case of PR and Xu and 4% to solve the
subsystems in the case of group accelerabedsng methods, the rest of the time being
spent for form factors computation. Thus, we simply use iteration steps to present each
method.



We have selected three different scenes for comparing the performances of the algo-
rithms. The first one called multi-cubes contains 480 patches and has a mean reflectivity
of 0.44 (see figure 4). Itis built from a large external cube including 64 smaller cubes
that generate a lot of occlusions. The comparison of PR, Xu, group accelerated PR and
group accelerated Xu with or viibut the storage of more patches than required by the
group is shown in figure 1. All group accelerated hmets perform very well all along
the iterations giving an important acceleration at the beginning of the convergence and
leading to a very good solution in less thaiteration steps. This kind of scene where
light propagation is difficult seems to be well handled by our method. In this case group
shooting is interesting since it allows an update of a larger number of patches than the
sole shooting patch of PR or Xu's method.

Multi-cubes Multi-cubes
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\ Xug30 -
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rms error

01r

0.05 -

0 0 50 100 150 200 250 300 350 400 450
iteration steps iteration steps

Fig. 1. Convergence for multi-cubes scene. On the left side : PR, PR g30 : gaugberated

PR using groups of size 30 and PR g30 m480 : use the main memory to store all the patches and

form factors. On the right side : Xu, Xu g30 : group accelerated Xu using groups of size 30 and

Xu g30 m480 : store 480 patches and form factors columns
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Fig. 2. Convergence for labyrinth. PR, PR g50 and PR g50 m500 on the left side. Xu, Xu g50
and Xu g50 m500 on the right side

The second scene is called labyrinth (see figure 5). It contains 3362 patches and
has a mean reflectivity of 0.59. This scene is a good example of the benefit of storing
several patches in order to improve groups efficiency without having to change their
size when the scene has more patches (see figure 2). Again, group accelerated Xu with
storage of 500 patches leads to a nearly converged solutioiténation steps.
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The last scene, shown in figure 6 is an office. It contains 10991 patches and has a
mean reflectivity of 0.43. Group accelerated PR converges faster than PR, but the dif-
ference appears to be very small (see figure 3). Group accelerated Xu does not provide
any acceleration even by storing someitiddnal rows into memory. These poor re-
sults can be explained by several reasons. The main one is that the patches that appear
in a group have a very small size as compared to the scene dimensions. Consequently
when the group’s patches are homogeneously distributed through the scene (which does
not include a large number of occlusions) the resolution of this group does not provide
any large updates both for group and group-outside patches. Furthermore we used a low
number of patches per group (50) as compared to the total number of patches for this
scene. Using a much more larger number of pacthes per group should provide better
results. But it implies a larger computationnal cost for solving the group subsystem.
We studed some new resolution techniques in [13] which could allow us to use larger
group for our approach.

Office Office

0.0075 t Xu 1
Xugh0 -
Xu g50 mem500 -

0.0075 |
0006 0.006 |

0.0045 0.0045

rms error
rms error

0.003 - 0.003 -

0.0015 0.0015

0 . . . . . 0 . . . . n
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
iteration steps iteration steps

Fig. 3. Convergence for office. PR, PR g50 and PR g50 m500 on the left side. Xu, Xu g50 and
Xu g50 m500 on the right side

6 Conclusion

In this paper we presented a new approach for accelerating exibtogisg methods.
Periodically, during the iteration of the shooting algorithm, we choose a group of im-
portant patches that have been stored into memory and solve the subsystem composed
of the equations corresponding to these patches.

Shooting from groups of patches increases the diffusion of light through the scene
by updating more radiosities and resolving all interactions inside the group. This
method shows very good results especially in scenes with high occlusions where clas-
sical progressive algorithms have a very low convergence rate. Our results show that
near-convergence can be obtained in less shooting iterations than the total number of
patches in the scenes.

Studyingaccurately the group building choices is one of the next stage of our work.
We used simple criteria for choosing both a shooting patch and patches of a group.
Those criteria are too closed from the shooting algorithms ones and seems to be in-
efficient in some cases like the office scene. Some group properties are today under
investigation in order to built the “best” group, providing the best speedup with a low
computation cost.
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Fig. 4. Multi-cubes sceneFig. 5. Labyrinth scenefig. 6. Office scene, 10991
480 patches, mean reflectivd362 patches, mean reflggatches, mean reflectivity
ity 0.44 tivity 0.59 0.43
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