
1

Hierarchical Image-Based Rendering

using Texture Mapping Hardware

Nelson Max, University of California, Davis, max2@llnl.gov
Oliver Deussen, University of Magdeburg, deussen@isg.cs.uni-magdeburg.de

Brett Keating, University of California, Davis, brettk1@home.com

Abstract. Multi-layered depth images containing color and normal information
for subobjects in a hierarchical scene model are precomputed with standardz-
buffer hardware for six orthogonal views. These are adaptively selected according
to the proximity of the viewpoint, and combined using hardware texture mapping
to create “reprojected” output images for new viewpoints. (If a subobject is too
close to the viewpoint, the polygons in the original model are rendered.) Specific
z-ranges are selected from the textures with the hardware alpha test to give accu-
rate 3D reprojection. The OpenGL color matrix is used to transform the precom-
puted normals into their orientations in the final view, for hardware shading.

1. Introduction

Image-based rendering using depth images has become a promising technique for
rendering real-world scenes acquired as images, or models with very high polygon
counts. Our strategy is to reproject for a new viewpoint one or more precomputed
images. This involves using the depth at each pixel, together with the pixel address, to
reconstruct a 3D surface point. This point is multiplied by a matrixQ, which is the
product of the inverse of the viewing matrix for the precomputed view and the viewing
matrix for the desired new view, and then projected into the new view.

Chen and Williams [1] achieve the reprojection using texture flow, which is coher-
ent on large areas where the same smooth surface is visible. For scenes containing veg-
etation, where the depth varies discontinuously with high spatial frequency, it is more
effective to transform each pixel independently, usually in software. McMillan and
Bishop [2] showed that a single image can be processed in a “painter’s” order that does
not require az-buffer for the output image, and Shade et al. [3] extended this to multi-
ple z-layers at each pixel. Max [4] and Shade et al. [3] used the multiple layers to
include more of the depth complexity in the pre-computed images, which might
become “disoccluded” in the new view.

Recently, Schaufler[5, 6] has shown how to reproject single layerz-buffer images
using texture mapping hardware, by storing the depth in the alpha channel, and testing
it for equality during multiple passes through the texture. The alpha channel of the tex-
ture is loaded by reading back the depth buffer of the precomputed view. During ren-
dering, it is scaled by a factor that compresses the 8 or 12 bit alpha range into a smaller
number of integer values. For each of these integersn, a polygon covering the corre-
sponding depth layer in the precomputed view is transformed into the new view by the
matrix Q, and rendered with the alpha test set to transmit only those pixels with alpha
equal ton. The color channels of the texture were used by Schaufler to store preshaded
colors. Here we use them to store unshaded color (diffuse reflectivity) in one pass, and
to store normal components in a second pass.

http://www.eg.org
http://diglib.eg.org

2

Max [7] reprojected precomputed images of various subparts of a tree, organized
in a hierarchical model. These were adaptively selected according to the detail needed
for the current viewpoint. This scheme requires shading during or after reprojection,
because the subparts are used in the hierarchical model at various orientations. Wester-
mann and Ertl [8] show how the color matrix can be used with a surface-normal texture
to reorient the normal and shade the surface in hardware.

In the current work, we have combined the techniques of [5], [7], and [8] into a
completely hardware-based method to reproject and shade hierarchies of images. The
standardz-buffer hardware is used for final visibility determination, so the input can be
processed in any order. The next section explains the basic reprojection scheme, and
the following one deals with the shading.

2. The hierarchical reprojection algorithm

The hierarchical model uses the standard philosophy of constructing complex
objects from repeated instances of subparts, each scaled, translated, and/or rotated into
position by a 4 x 4 matrix. Several systems for modeling vegetation use this hierarchi-
cal philosophy, together with a substantial amount of randomness, so that many geo-
metrically inequivalent subobjects are used at each level of the hierarchy. Here, since
each subobject must have images precomputed in several views and used as textures,
this randomness must be very limited, as in Brownbill [9], so that only one or two
inequivalent objects are used at each level. Our system can parse and render from input
files that contain both the hierarchical objects of Max [7] and those in the Rayshade
format [10], such as produced by Brownbill[9] and Lintermann and Deussen [11].

In order to decide whether to reproject an object as a whole, the reprojected size of
the precomputed pixel closest to the viewpoint is compared to a threshold, which is
approximately the size of an output pixel. If the reprojected size is less than the thresh-
old, reprojection will provide sufficient detail, so the whole object is reprojected. Oth-
erwise, the algorithm goes deeper into its detailed description, in terms of subobjects.
If a part of the model is so close to the viewer that no precomputed image has enough
detail, the polygons in the original model are rendered.

In Max [7], the threshold was fairly small, in order to avoid gaps between
reprojected pixels. Shadeet al. [3] filled in these gaps by reprojecting each input pixel
as an appropriately sized “splat” of several output pixels. Texture mapping hardware
can automatically find the nearest precomputed texture pixel for a reprojected output
pixel, so gaps solely from texture resampling are less of a problem. (Nearest neighbors
must be used, rather than the smoother linear or mip-map texture interpolation,
because interpolating or averaging the depth in the alpha channel could lead to mean-
ingless results when the correct depth is discontinuous.)

The key step is to reproject a precomputed image, using the alpha test. As shown
in [5], even though this alpha test is for equality to a single value, it can be made to
give some overlap in thez-ranges for adjacent layers, in order to reduce visible gaps
between them when viewing slanted smooth surfaces. However this does not com-
pletely eliminate gaps from surfaces which are at too steep a slant in the precomputed
view, and cannot show surfaces that are occluded in the precomputed image. Both
Schaufler [5, 6] and Max[4, 7] reproject several views to help solve these problems. In

3

this paper we use all six views along the positive and negative directions on thex, y,
andz axes. This guarantees that every surface will be positioned (although possibly not
visible) in at least one pair of images at an angle which is not too slanted, and also that
thin round objects like twigs can have all sides represented. The same six views were
also used for image based rendering by Lischinski and Rappaport[12].

Shadeet al. [3] and Max[4, 7] used multiple depth layers in the precomputed
images, whose depths were stored individually in a sorted list at each pixel, and thus
could not be easily generated in standardz-buffer hardware. To take advantage of hard-
ware rendering, we slice the object by hardwarez clipping into multiple slabs, and
reproject each of them by the method of Schaufler[5]. Since each slab is viewed from
both the front and the back (in two of the six fixed viewing directions) this completely
handles slabs with a depth complexity of two (i. e. a viewing ray intersects at most two
surfaces per slab). The RGBA images for the multiple slabs are placed together in a
single texture for each precomputed view. These are each loaded as a separate texture
object, using OpenGL texture binding.

A related technique was described by Meyer and Neyret[13]. They made many
morez-clipped slabs and put each in a separate texture. In general, a smooth closed
surface intersects a slab in a collection of strips, each bounding an interior region of
pixels. Meyer and Neyret filled in these interior regions with opaque textured pixels,
and thus eliminated the cracks visible in our method when the surface is viewed at a
steep angle. However, since our bottleneck is in the loading of many different textures,
this method is impractical for us.

We preprocess each frame by going once through the hierarchical model doing no
rendering, but instead accumulating a list of reprojection matricesQ for the multiple
instances of each precomputed view of each object. In a second pass, we go through all
the precomputed views in order, and for each non-empty list, we bind the appropriate
texture and reproject all the instances using it. This reduces texture swapping. We also
render in the hardware pipeline the polygonal descriptions for parts of objects that are
so close that resampling is inadequate. In a third pass, we similarly reproject or render
all the surface-normal images and use them for shading, as described below. The scene
parser must repeatedly read the same object description files, so these are first loaded
once into memory, and then processed from there.

3. Normals and shading

To precompute a separate RGBA texture, with thex, y, andz components of the surface
normal in the R, G, and B components of the texture, standard color interpolation is
used while rendering the polygons in the model. The polygonal tessellations for curved
surfaces must be fine enough so that when the vertex normals are interpolated in hard-
ware, they remain approximately unit vectors. The polygon vertex colors are set by
scaling and biasing the normal components (Nx , Ny , Nz), from the range [-1, 1] into

the range [0, 1], as in Westermann and Ertl [8], so that

 (red, green, blue) = (.5 + .5*Nx , .5 + .5*Ny , .5 + .5*Nz) . (1)

When the precomputed texture is reprojected into a new view, these normals must be

4

rotated into their new positions, usingMrot, the rotation part of the reprojection matrix

Q, after scaling and translation are removed. This is done using the 4 x 4 color matrix,
an SGI OpenGL extension in the “imaging pipeline”, which multiplies the RGBA val-
ues from an array in memory as they are being stored into the texture table.

If L = (Lx, Ly, Lz) is the vector to a light source at infinity, we used the color matrix

 . (2)

To remove the scale and bias of equation (1), we used a post-color-matrix scale of 2,
and a post-color-matrix bias equal to minus the sum of the entries in one of the identi-
cal first three row ofCM. (Westermann and Ertl [8] did this instead by multiplying the
product in equation (2) on the right by an appropriate constant matrix, but this assumed
that alpha is always 1, while we are using alpha to store the depth.) The color data are
automatically clamped to [0, 1] before being stored in the texture map. This sets the
shading value to zero for surfaces facing away from the light source, and gives the
shaded image that would result if all the model surfaces were perfectly diffuse white.

This black and white shaded image is multiplied by the unshaded color image by
copying it over the color image, using a blending weight of zero for the source image,
and a blending weight of the source color for the destination image. During this image
copy (we used an image read and write) we used a bias ofambient, and a scale of (1. -
ambient), in order to add ambient illumination to the final image.

The same lists of reprojection matricesQ for each needed object view are used for
reprojecting the normal textures. Each texture is loaded into system memory only once
per non-empty list, but since the color matrix is only in the imaging pipeline, not the
fragment pipeline, the texture map has to be reloaded from memory with a different
color matrix for each different matrixQ on the list.

4. Results and future work

Figure 1 (see color section at the rear of this volume) shows a view of a maple for-
est, produced in 5 minutes by this method, using one 195 Mhz R10000 processor on an
SGI Onyx, InfiniteReality. Figure 2 shows the hardware rendering of the complete
model of 955,871 subobjects with 17,205,476 polygons, which took 11 minutes. Much
of this time was spent in the software traversal of the deepest levels of the hierarchy. It
took about 3 hours to prerender the colors, normals, and depths in the 6 orthogonal
views, each with 6 depth slabs, for the five levels in the hierarchical model. The com-
plete polygonal models were used. Much of this time could be saved, at some cost in
accuracy, if reprojections of prerendered lower levels of the hierarchy were used in
prerendering the higher levels. The precomputed textures were stored on disc as run
length encoded SGI image files, requiring 15.4 megabytes.

Our goal was to produce complex images like those in Deussenet al. [14], so we
extended the parser of Max[7] to read Rayshade files. Figure 3 shows a forest contain-

CM

Lx Ly Lz 0

Lx Ly Lz 0

Lx Ly Lz 0

0 0 0 1

Mrot=

5

ing a mixture of the maple trees in figure 1, with oak trees modeled by the system of
Lintermann and Deussen[11]. It took 46 seconds to render, using only the precom-
puted images of the whole trees. A polygon rendering took 20 minutes. Figure 4 shows
a closer view, which took 109 seconds because it also needed precomputed views of
branches. Figures 5 is a close-up showing textured leaves, and figure 6 is a long view.

Because normals are represented in the precomputed images, it should be possible
to use bump-mapped texture for the bark on the tree trunks and branches, which would
make them look more realistic.

Currently, our leaf polygons have only one normal, which can become reversed
when the wrong side of the leaf is visible. If the normals were transformed byMrot
alone, to form a normal image, instead of using equation (2) to take their dot product
with L, then a software post-process could reverse the normals that point away from
the viewer. Also, given a corrected normal image, table look-ups, perhaps using “pixel
textures”, could be used to produce the radiance-based shading of Maxet al. [15].
Since the “shadow buffer” of Williams [16] can also be generated by image-based ren-
dering, it should be possible to add post-process shadows to this algorithm, as in Max
et al. [15], but the quantization of the depth onto the parallel planes used in the
reprojection technique might cause artifacts in the shadows.

The accuracy in reprojecting using the alpha test depends on the spacing of the
polygonal layers into which the depth is quantized. This depends on the total number
of layers from all the slabs, but not on the number of slabs sliced from the object. So
the cost in textured pixels (“fragments”) is not increased with multiple slabs; only the
texture storage and transfer costs increase. The speed/quality trade-offs involved in set-
ting these two quantities should be further explored.

In the “standard” layered depth images of Shade[3] and Max[4, 7], the first layer
at a pixel contains the surface, if any, closest to the viewpoint. The next layer contains
the surface, if any, just behind the first one, and so forth. Each layer could potentially
involve the entire depth range of the object, so the fragment cost could grow in propor-
tion to the number of layers. However, no surfaces would be lost from occlusion, even
if only one view were taken along each of the three positivex, y, andz axis directions,
instead of the six positive and negative ones. It is difficult to precompute such images
with current hardware, but possible in software. If the bottleneck is in texture loading
rather than in fragment processing, as it is in our current implementation, the “stan-
dard” layered depth images should be considered. Future hardware which permits ren-
dering from compressed textures, or at least loading texture maps from compressed
data in memory, should alleviate this current bottleneck, since most of each slab or
layer is empty and transparent. Concurrent prefetches of texture from disc should also
help.

Acknowledgments

This work was performed under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. Mark
Duchaineau provided the X-window management software, and Dan Schikore, Rüddi-
ger Westermann, Gernot Schaufler, Brian Cabral, and Mark Duchaineau gave helpful
information and suggestions. Jan Nunes and Ross Gaunt helped record the videotape.

6

References

1. Chen, Shenchang Eric, and Lance Williams, “View Interpolation for Image Synthesis”, ACM
Computer Graphics Proceedings, Annual Conference Series 1993, pp. 279 - 288.

2. McMillan, Leonard, and Gary Bishop, “Plenoptic Modeling: An Image-Based rendering Sys-
tem”, ACM Computer Graphics Proceedings, Annual Conference Series 1995, pp. 39 - 46.

3. Shade, Jonathan, Steven Gortler, Li-wei He, and Richard Szeleski, “Layered Depth Images”,
ACM Computer Graphics Proceedings, Annual Conference Series 1998, pp. 231 - 242.

4. Max, Nelson and Keiichi Ohsaki, “Rendering Trees from Precomputed Z-Buffer Views”, in
“Rendering Techniques ’95 (Hanrahan and Purgathofer, eds.) Springer, Vienna (1995) pp.
74 - 81.

5. Schaufler, Gernot, “Per-Object Image Warping with Layered Imposters”, in “Rendering Tech-
niques ’98” (Drettakis and Max, eds.) Springer, Vienna (1998) pp. 145 - 156.

6. Schaufler, Gernot, “Image-based Object Representation by Layered Impostors”, Proceedings
of ACM Symposium on Virtual Reality Software and Technology ’98, Nov. 1998, Taipei,
Taiwan, pp 99-104.

7. Max, Nelson, “Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers”,
in “Rendering Techniques ’96 (Pueyo and Schröder, eds.) Springer, Vienna (1996) pp. 165 -
174.

8. Westermann, Rüdiger and Thomas Ertl, “Efficiently Using Graphics Hardware in Volume
Rendering Applications”, ACM Computer Graphics Proceedings, Annual Conference Series
1998, pp. 169 - 177.

9. Brownbill, Andrew, “Reducing the storage required to render L-system based models”, Mas-
ter’s Thesis, The University of Calgary, 1996.

10. Kolb, Craig, “Rayshade”, http://graphics.stanford.edu/~cek/rayshade.

11. Lintermann, Bernd, and Oliver Deussen, “Interactive Modelling of Plants”, IEEE CG&A
Vol. 19 No. 1 (1999).

12. Lischinski, Dani, and Ari Rappoport. “Image-Based Rendering for Non-Diffuse Synthetic
Scenes, in “Rendering Techniques ’98” (Drettakis and Max, eds.) Springer, Vienna (1998)
pp. 301 - 314.

13. Meyer, Alexander, and Fabrice Neyret, “Interactive Volume Textures” in “Rendering Tech-
niques ’98” (Drettakis and Max, eds.) Springer, Vienna (1998) pp. 157 - 168.

14. Deussen, Oliver, Pat Hanrahan, Bernd Lintermann, Radomír Mech, Matt Pharr, and Prze-
myslaw Pruisinkiewicz, “Realistic modeling and rendering of plant ecosystems”, ACM
Computer Graphics Proceedings, Annual Conference Series 1998, pp. 275 - 286.

15. Max, Nelson, Curtis Mobley, Brett Keating, and En-Hua Wu, “Plane-Parallel Radiance
Transport for Global Illumination in Vegetation”, in “Rendering Techniques ’97” (Dorsey
and Slusallek eds.) Springer, Vienna (1997) pp. 239 - 250.

16. Williams, Lance “Casting Curved Shadows on Curved Surfaces”, Computer Graphics, Vol.
12, No. 3 (1978 Siggraph Conference Proceedings) pp. 270 - 274.

Fig. 1. Maple forest, rendered by IBR. Fig. 2. Maple forest, rendered with polygons.

Fig. 3. Mixed oak and maple forest, by IBR. Fig. 4. Closer view of maple and oak forest.

Fig. 5. A close-up, showing leaf texture. Fig. 6. A long view of the whole forest.

