
Thirteenth Eurographics Workshop on Rendering (2002)
P. Debevec and S. Gibson (Editors)

Approximate Soft Shadows on Arbitrary Surfaces
using Penumbra Wedges

Tomas Akenine-Möller and Ulf Assarsson

Department of Computer Engineering, Chalmers University of Technology, Sweden

Abstract
Shadow generation has been subject to serious investigation in computer graphics, and many clever algorithms
have been suggested. However, previous algorithms cannot render high quality soft shadows onto arbitrary, ani-
mated objects in real time. Pursuing this goal, we present a new soft shadow algorithm that extends the standard
shadow volume algorithm by replacing each shadow quadrilateral with a new primitive, called the penumbra
wedge. For each silhouette edge as seen from the light source, a penumbra wedge is created that approximately
models the penumbra volume that this edge gives rise to. Together the penumbra wedges can render images that
often are remarkably close to more precisely rendered soft shadows. Furthermore, our new primitive is designed
so that it can be rasterized efficiently. Many real-time algorithms can only use planes as shadow receivers, while
ours can handle arbitrary shadow receivers. The proposed algorithm can be of great value to, e.g., 3D computer
games, especially since it is highly likely that this algorithm can be implemented on programmable graphics hard-
ware coming out within the next year, and because games often prefer perceptually convincing shadows.
CR Categories: I.3.7 [Computer Graphics ] Three-Dimensional Graphics and Realism
Keywords: soft shadows, graphics hardware, shadow volumes.

1. Introduction

Shadows in computer graphics are important, both for the
viewer to determine spatial relationships, and for the level
of realism. When rendering shadows on arbitrary receivers
in real time using commodity graphics hardware, the only
currently feasible solution is to render hard shadows. A hard
shadow consists only of a fully shadowed region, called the
umbra. Therefore, a hard shadow edge can sometimes be
misinterpreted for a geometric feature. However, in the real
world, there is no such thing as a true point light source,
as every light source occupies an area or volume. Area and
volume light sources generate soft shadows that consist of
an umbra, and a smoother transition, called the penumbra.
Thus, soft shadows are more realistic in comparison to hard
shadows, and they also avoid possible misinterpretations.
Therefore, it is desirable to be able to render soft shadows
in real time as well. However, currently no algorithm can
handle all the following goals:

I. The softness of the penumbra should increase linearly
with distance from the occluder, starting at zero at the
occluder.13

II. The umbra region should disappear given that a light

source is large enough.
III. Typical sampling artifacts should be avoided. For

example, often a number of superpositioned hard shadows
can be discerned.17 The result should be visually smooth.13

IV. The algorithm should be amenable for hardware im-
plementation giving real-time performance (and interactive
rates for a software implementation).

V. It should be possible to cast soft shadows on arbitrary
surfaces, and work for dynamic scenes as well.

Our algorithm, which is an extension of the shadow vol-
ume (SV) algorithm (see Section 3), achieves these goals
with some limitations on the type of scenes that can be used.

Instead of creating a shadow quadrilateral (quad) for each
silhouette edge (as seen from the light source), a penumbra
wedge is created. Each such wedge represents the penum-
bra volume that a silhouette edge gives rise to. See Figure 2.
Together these shadow wedges represent an approximation
of the soft shadow volume with more or less correct charac-
teristics (see Section 7). For example, the results often look
remarkably close to those of Heckbert and Herf.9 Some ap-

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org


Akenine-Möller and Assarsson / Approximate Soft Shadows

proximations are introduced, but still the results are plausi-
ble (as can be seen in Figure 12). In addition to the new algo-
rithm, an important contribution is a technique for efficiently
rasterizing wedges. Our software implementation of the al-
gorithm runs at interactive rates on a standard PC. Assuming
that the algorithm can be implemented using graphics hard-
ware that comes out within a year, which is very likely, the
algorithm will reach real-time speeds. Our focus has there-
fore been on generating soft shadows that approximate true
soft shadows well, and that can be rendered rapidly, instead
of a slow and accurate algorithm. This is a significant step
forward for shadow generation in, e.g., games.

Next, some related work is reviewed, followed by a de-
scription of the standard shadow volume algorithm,1 which
is the foundation of our new algorithm. In Section 4, our
algorithm is described. Then follows optimizations, imple-
mentation notes, and results. In Section 8, we discuss limita-
tions of our work, and finally we offer some ideas for future
work, and a conclusion.

2. Related Work

In this section, the most relevant work for soft shadow gen-
eration at interactive rates is presented. Consult Woo et al.20

for an excellent survey on shadow algorithms in general, and
Haines and Möller6 for a survey on real-time shadows.

By averaging a number of hard shadows, each generated
by a different sample point on an extended light source,
soft shadows can be generated as presented by Heckbert and
Herf.9 This is mostly suitable for pre-generation of textures
containing soft shadows, because a high number of samples
(64–256) is needed so that a soft shadow edge does not look
like a number of superpositioned hard shadows. These types
of algorithms can normally only get n + 1 different levels
of shadow intensities for n samples.11 Once the soft shadow
textures have been generated, they can be rendered in real
time for a static scene. Such algorithms only apply to planar
shadow receivers. Gooch et al.5 also project hard shadows
onto planes and compute the average of these. Light source
samples are taken from a line parallel to the normal of the re-
ceiver. This creates approximately concentric hard shadows,
which in general look better than the method by Heckbert
and Herf,9 and so fewer samples can be used.

Haines7 presents a novel technique for generating planar
shadows. The idea is to use a hard shadow from the center
of a light source. Then a cone is “drawn” from each silhou-
ette (as seen from the point light source) vertex, with shadow
intensity decreasing from full (in the center) to zero (at the
border of the cone). Between two such cones, inner and outer
Coons patches are drawn, with similar shadow intensity set-
tings. These geometrical objects are then drawn to the Z-
buffer to generate the soft shadow. Our algorithm can be seen
as an extension of Haines’ method and the SV algorithm.
Haines’ algorithm produces umbra regions that are equal to

a hard shadow generated from one point on the light source,
and thus the umbra region is too large.7 Our algorithm over-
comes this limitation and also allows soft shadows to be cast
on arbitrary receiving geometry. The only requirement is that
it should be possible to render the receiving geometry to the
Z-buffer.

For real-time work, there are two dominating shadow al-
gorithms that cast shadows on arbitrary surfaces. One is
the shadow volume algorithm (Section 3), and the other is
shadow mapping. The shadow mapping algorithm19 renders
an image, called the shadow map, from the point of the light
source. This shadow map captures the depth of the scene at
each pixel from the point of view of the light. When ren-
dering from the eye, each pixel’s depth is tested against the
depth in the shadow map, which determines whether the
point is in shadow. Reeves et al.15 improve upon this by in-
troducing percentage closer filtering, which reduces alias-
ing along shadow edges. Segal et al.16 describe a hardware
implementation of shadow mapping. Today, shadow map-
ping with percentage closer filtering is implemented in com-
modity graphics hardware, such as the GeForce3. Heidrich
et al.11 extend the shadow mapping to deal with linear light
sources, where two shadow maps are created; one for each
endpoint of the line segment. Visibility is then interpolated
across the light source into a visibility map used at render-
ing. For dynamic scenes, the process of creating the visibil-
ity map is quite expensive (may take up to two seconds per
frame). All shadow mapping algorithms have biasing prob-
lems, which occur due to numerical imprecisions in the Z-
buffer, and the problem of choosing a reasonable shadow
map size to avoid aliasing. One notable exception is the
adaptive shadow map algorithm, which iteratively refines the
shadow map resolution where needed.4

Parker et al.13 extends ray tracing so that only one sample
is used for soft shadow generation. This is done by using a
“soft-edged” object, and using the intersection location with
this object as an indicator of where in the shadow region
a point is located. This was used in a real-time ray tracer.
In 1998, Soler and Sillion17 presented an algorithm based
on convolution. Their ingenious insight was that for paral-
lel configurations (a limited class of scenes), a hard shadow
image can be convolved with an image of the light source to
form the soft shadow image. They also present a hierarchical
error-driven algorithm for arbitrary configurations by using
approximations. Hart et al.8 present a lazy evaluation algo-
rithm for accurately computing direct illumination from ex-
tended light sources. They report rendering times of several
minutes, even for relatively simple scenes. Stark and Riesen-
feld 18 present a shadow algorithm based on vertex tracing.
Their algorithm computes exact illumination for scenes con-
sisting of polygons, and is based on the vertex behavior of
the polygons.

There are also several algorithms that use back projection
to compute a discontinuity mesh, which can be used to cap-

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

ture soft shadows. However, these are often very geomet-
rically complex algorithms. See, for example, the work by
Drettakis and Fiume.2

3. Shadow Volumes

In 1977, Crow presented an algorithm for generating hard
shadows.1 By using a stencil buffer, an implementation is
possible that uses commodity graphics hardware.10 That im-
plementation of Crow’s algorithm is called the shadow vol-
ume (SV) algorithm. It will be briefly described here, as it
is the foundation for our new algorithm. The SV algorithm
builds volumes that bound the shadow. This is done by tak-
ing each silhouette edge (as seen from the light source) of
the shadow casting object, and creating a shadow quad. A
shadow quad is formed from a silhouette edge, and then ex-
tending lines from the edge end points in the direction from
the light source to the edge end points. The shadow volume
is illustrated in Figure 1. In theory, the shadow quad is ex-
tended infinitely. The SV algorithm is a multipass algorithm.

shadow casting

object

shadow

quad

shadow

quad
shadow

volume

a

bc

+1

+1

-1

light source

+1
0

0

Figure 1: The standard shadow volume algorithm. Ray b
is in shadow, since the stencil buffer has been incremented
once, and the stencil buffer values thus is +1. Rays a and
b are not in shadow, because their stencil buffer values are
zero.

First, the scene is rendered from the camera’s view, with only
ambient lighting. Then the front facing shadow quads are
rasterized without writing to the color and Z-buffer. For each
fragment that passes the depth test, i.e., that is visible, the
stencil buffer is incremented. Backfacing shadow quads are
rendered next, and the stencil buffer is decremented for vis-
ible fragments. This means that the stencil buffer will hold a
mask (after all shadow quads have been rendered), where ze-
roes indicate fragments not in shadow. The final pass renders
with full shading where the stencil buffer is zero.

See Everitt and Kilgard’s paper for a robust implementa-
tion of shadow volumes. 3

4. New Algorithm

Our new algorithm replaces the shadow quads of the SV al-
gorithm with penumbra wedges (Section 4.1), as illustrated

in Figure 2. For the rest of this description, we assume that
the light source is a sphere. The light intensity (LI), s, in a
point p, is a number in [0,1] that describes how much of a
light source the point p can “see.” A point is in full shadow
(in the umbra) when s = 0, and fully lit when s = 1, and oth-
erwise in a penumbra region. The LI varies inside a wedge,
and our goal is to approximate a physically-correct value as
well as possible, while at the same time obtaining fast ren-
dering.

shadow casting

object

penumbra

wedge

umbra

volume

penumbra wedge

light source

exit point (p
b
)entry point (p

f
)

Figure 2: The new algorithm uses penumbra wedges to cap-
ture the soft region in the shadow.

The wedges that model the penumbra regions also implic-
itly model the umbra volume. The difference between our
algorithm and the standard SV algorithm is that for our al-
gorithm, one need to pass through an entire wedge (or a com-
bination of wedges) before entering the umbra volume.

For a visually appealing result, the light intensity interpo-
lation must be continuous between adjacent wedges. Thus,
the idea of our algorithm is to introduce a new rendering
primitive, namely, the penumbra wedge, that can be raster-
ized quickly and that achieves continuous light intensity. The
details of this interpolation are given in Section 4.2.

Just as the SV algorithm requires a stencil buffer to rapidly
render shadows using graphics hardware, so does our algo-
rithm. However, the presence of penumbra regions makes
the precision demands on the buffer higher. For this, we use
a signed 16-bit buffer, which we call the light intensity (LI)
buffer. So the LI buffer is just a stencil buffer with more pre-
cision. It is likely that the LI buffer can be implemented by
rendering to a HILO texture, where the two components are
16 bits each. For certain scenes, a 12-bit buffer may be suf-
ficient, and another implementation could use the an 8-bit
stencil buffer, at the cost of fewer shades in the penumbra
region.

By multiplying each LI value with k, it is possible to get
k different gray shade levels in the penumbra region. We use
k = 255 since color buffers typically are eight bits per com-
ponent. This choice allows for at least 256 overlapping (e.g.,
in screen-space) penumbra wedges, which is more than suf-
ficient for most applications. It is also worth noting that this

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

is similar to commodity graphics hardware that often has a 8-
bit stencil buffer, which thus also allows for 256 overlapping
objects, using the the SV algorithm. The penumbra wedges
add or subtract from the LI buffer. For example, when a ray
from through a wedge (from light to umbra), 255 will be
subtracted.

The algorithm starts by clearing the LI buffer to 255,
which implies that the viewer is outside shadow. Then the
entire scene is rendered with only diffuse and specular light-
ing. Penumbra wedges are then rendered independently of
each other to the LI buffer using the conceptual pseudocode
(not optimized for hardware) below, where the entry and exit
points are illustrated in Figure 2. See also Figure 3 for an ex-
ample of the pi value used in the code below.

1 : rasterizeWedge()

2 : foreach visible fragment(x,y)...
3 : ...on front facing triangles of wedge
4 : p f = computeEntryPointOnWedge(x,y);
5 : pb = computeExitPointOnWedge(x,y);
6 : p = point(x,y, z); – z is the Z-buffer value at (x,y)
7 : pi = choosePointClosestToEye(p,pb);
8 : s f = computeLightIntensity(p f );
9 : si = computeLightIntensity(pi);

10 : addToLIBuffer(round(255∗ (si − s f )));
11 : end;

Lines 4 and 5 compute the points on the wedge where

light source

silhouette edge
penumbra wedge

eye

p
f

p
bp

i

p
i=pb

Figure 3: Illustration of the p f , pb, and pi values for two
rays.

the ray through the pixel at (x,y) enters (first intersection)
and exits (second intersection) the wedge. A point is formed
from (x,y,z), where z is the depth at (x,y) in the Z-buffer
(line 6). If this point, transformed to world-space, is deter-
mined to be inside the wedge, then pi is set equal to that
point, as this is a point that is in the penumbra region. Oth-
erwise, pi is set to pb. This is done on line 7. Lines 8-9 com-
pute the light intensity [0,1] at the points, p f and pi, and
finally, the difference between these values are scaled with
255 and added to the LI buffer.

After all wedges have been rasterized to the LI buffer,
the resulting image in the LI buffer is clamped to [0,255],

and used to modulate the rendered image (using diffuse and
specular shading). This correctly avoids highlights in shad-
ows. In a final pass, ambient lighting is added.

The clamping of the LI buffer is needed because it is pos-
sible to have overlapping penumbra wedges, e.g., it is possi-
ble to enter the umbra volume more than once. This would
result in a negative LI value—clamping this to zero is cor-
rect, as the umbra volume cannot be darker than zero. LI val-
ues larger than 255 implies that we have gone out of shadow
more than once—this is possible when the viewer is inside
shadow to start with. Again clamping to 255 just means it
cannot be lighter than being totally outside shadow.

In the following subsections, we discuss how penumbra
wedges are constructed, and how light intensity interpolation
is done.

4.1. Constructing Penumbra Wedges

In two dimensions, creation of penumbra wedges is trivial.
In three dimensions it is more difficult. We approximate the
penumbra volume that a silhouette edge gives rise to with
a wedge defined by four planes: the front, back, left side,
and right side planes. As Haines point out, a more correct
shape would be a cone at each silhouette edge vertex, and
two Coons patches connecting these.7 The creation of the
front and back planes is illustrated to the right in Figure 4,
where the corresponding SV quad is shown the left.

front plane

back plane

normal of 

SV quad

parallel to normal

of shadow quad

c

f

b

n
silhouette edge

point light source

Figure 4: Left: shadow volume quad. Right: front and back
planes of a wedge.

Assuming a spherical light with center c and radius r, two
points are created as b = c + rn and f = c− rn, where n is
the normal of the SV quad. The front plane is then defined
by f and the silhouette edge; and similarly for the back plane.
Two adjacent wedges share one side plane, and it is created
from these two wedges’ front and back planes. See Figure 5.
More specifically, a side plane is constructed from two ad-
jacent wedges by finding the line of intersection of the two

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

front planes. The same is done for the two back planes, and
these two lines define the side plane between these wedges.
An example of a wedge is shown to the left in Figure 9.

silhouette edges

side planeback plane 1

back plane 1

back
 pla
ne 2

back
 pla
ne 2

side planeside plane

front plane 1 fron
t pla

ne 2

fron
t pla

ne 2

fron
t pla

ne 2

Figure 5: Two adjacent wedges in general configuration.
Their front and back planes define their shared side plane.

For very large light sources, or sufficiently far away from
the silhouette edge, the two side planes of a wedge may in-
tersect. In such cases, the wedge is defined as shown in Fig-
ure 6.

back

front

left
right

A

B

C

D

E

F

A

B

C

D

G

H

Figure 6: Left: ABDC define the front plane’s quadrilateral,
and ABFE the back plane’s quadrilateral, ACE the left side
plane, and BFD the right side plane. The wedge on the right
is used when rendering soft shadow, in cases where the side
planes overlap.

It should be noted that by simply setting the light source
radius to zero, hard shadows can be rendered with our algo-
rithm in the same way as the SV algorithm.

In Section 4.2, a ray direction that lies in each side plane
is needed to make the interpolation across adjacent wedges
continuous. This direction is shared by two adjacent wedges,
and it is computed by taking the average of the two SV quad
normals (whose corresponding silhouette edges share side
plane), projecting it into the side plane, and then normalizing
the resulting vector.

When two adjacent silhouette edges form an acute an-
gle, the difference between our algorithm and Heckbert/Herf
shadows is more obvious. However, those cases can easily be
detected, and extra wedges around such vertices can be intro-
duced, as in Figure 7, to create a better approximation. The

Figure 7: A (partial) soft shadow of a triangle with an
acute angle. Left: one wedge per silhouette edge. Middle:
one wedge per silhouette edge plus 6 extra wedges around
each vertex. Right: Heckbert/Herf shadows. Also, when com-
paring images on screen, a stepping effect of Heckbert/Herf
shadows is apparent, while our algorithm inherently avoids
stepping effects.

number of extra wedges should depend on the angle between
two adjacent silhouette edges: the smaller angle, the more
extra wedges are introduced. It is worth noting that often the
performance drop from using extra wedges around acute an-
gles only was about 20 percent. This is because those wedges
often are long and thin, and do not contribute much to the
image, and are therefore cheap to render.

4.2. Light Intensity Interpolation

In this section, we describe how the light intensity, s, for a
point, p, inside a penumbra wedge is computed. Recall that
p is a point formed from the pixel coordinates, (x,y), and
the depth, z, in the Z-buffer at that pixel. This is shown in
Figure 8.

edge

wedge

p

light

Figure 8: The point p is in the penumbra wedge volume. The
rationale for our interpolation scheme is that s should ap-
proximate how much the point p “sees” of the light source.

Clearly, the minimal level of continuity of s between two
adjacent wedges should be C0. Our first attempt created a
ray from p with the same direction as the normal of the
SV quad. Then, the positive intersection distances, t f and
tb, were found by computing the intersections between the

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

ray and the front and the back plane, respectively. The light
intensity was then computed as:

s = tb/(t f + tb) (1)

However, this does not guarantee C0 continuity of the light
intensity across adjacent wedges. Instead, the following ap-
proach is used. Two intermediate light intensities, sl and sr,
are computed (similarly to the above) using p as the ray ori-
gin, and ray directions that lie in the left and right side plane,
respectively (see Section 4.1 on how to construct these direc-
tions). See Figure 9. The computations are:

front

back
left righttl tr

tlb

tlf

trb

trf

left

right

back

front

silhouette edge left plane

direction

right plane

direction

Figure 9: Light intensity interpolation inside a penumbra
wedge. Left: penumbra wedge. Right: cross-section of the
wedge, where the positive intersection distances, t’s, from
the point (black dot) to the planes are shown.

sl =
tlb

tl f + tlb
, sr =

trb
tr f + trb

(2)

The light intensity is linearly interpolated as below, where
tl and tr are the positive intersection distances from p to the
left and right side planes. The ray direction used for this is
parallel to the silhouette edge.

s =
tr

tr + tl
sl +

tl
tr + tl

sr (3)

Since the side directions are shared between adjacent
wedges, this equation gives C0 light intensity continuity.
Also, we avoid any form of discretization (such as using
a number of point samples on a light source) here, so the
penumbra will always be smooth inside a wedge no matter
how close to the shadow the viewer is. This choice of light
intensity interpolation also has the added advantage that re-
ciprocal dot products, used in ray/plane intersection to find
the different t-values, can be precomputed at setup of the
wedge rasterization in order to avoid divisions. Also, by sim-
plifying and using the least common denominator in Equa-
tion 3, the number of divisions can be reduced to one per
evaluation instead of four.

Parker et al.13 report that the attenuation factor is a si-
nusoidal for spherical lights, and approximate it by s′ =
3s2

− 2s3. This can easily be incorporated into our model
as well.

5. Optimizations

In this section, several optimizations of the algorithm will be
presented. As can be seen in the pseudocode in Section 4, a
value of si − s f is added to the LI buffer for each rasterized
fragment. The most expensive calculation in computing si
and s f is when Equation 3 needs to be evaluated. For points,
(x,y,z), inside a wedge, this evaluation must be done. Here,
we will present several other cases where this evaluation can
be avoided.

When a ray enters (exits) a side plane, it will also exit (en-
ter) a side plane on an adjacent wedge, and their LI values,
s, will cancel out, and thus the LI values need not be com-
puted. This is illustrated in Figure 10. Also, when entering

entry point

exit point
wedge 1

wedge 2

side plane

Figure 10: A cross-section view through two adjacent
wedges. The square shows where the ray intersects the
shared side plane of the wedges. The LI values for wedge
1 and 2 in the shared side plane cancel each other.

or exiting points are on front or back planes of the wedge,
then we can simply use a value of 0 or 255, depending on
entering/exiting and front/back planes. Using these two op-
timizations, we only evaluate Equation 3 for points inside the
penumbra wedge, that is, where the computations contribute
to the final image, which is minimal. Also, before rasteriza-
tion of a wedge starts, we precompute several reciprocal dot
products that are constant for the entire wedge, and used in
Equation 3. The above optimizations gave about 50% faster
wedge rasterization.

Visibility culling can also be done on the wedges. For
each 8× 8 Z-buffer region, the largest z-value, zmax, could
be stored in a cache as presented by Morein.12 Fragments
on a front facing wedge triangle can thus be culled if the
z-values are larger than zmax. This type of technique is im-
plemented in commodity graphics hardware, such as ATI’s
Radeon and NVIDIA’s GeForce3. Wedge rasterization (both
hardware and software) can gain performance from using
this technique.

All optimizations work for dynamic scenes as well, how-
ever, the wedges and the side direction vectors need to be
recomputed when light sources or shadow casting geometry
moves.

6. Implementation

The main objective of our current implementation was to
prove that the algorithm generates plausible soft shadows
reasonably fast. Since pretty large vertex and pixel shader

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

programs are needed in order to implement this using graph-
ics hardware, we need to await the next-generation graphics
hardware before true real-time performance can be obtained.

Our current implementation works as follows. First,
the scene is rendered using hardware-accelerated OpenGL.
Wedge rasterization is implemented in software (SW), and
therefore the Z-buffer is read out before rasterization starts.
The front facing triangles of a wedge are rasterized using
Pineda’s edge function algorithm.14 Since it thus is known
which plane the rasterized wedge triangle belongs to, the
plane of the entry point is known. The exit point is found
by computing the intersection of the ray with all back fac-
ing planes, and picking the closest. The z-value is read, and
a point in world space is formed by applying the (precom-
puted) screen-to-world transform. Thereafter, that point is
inserted into all plane equations to determine whether the
point is inside the wedge. If the point is inside the wedge,
Equation 3 is evaluated by computing intersection distances
from the point to the planes along the directions discussed in
Section 4.2. We also implement the optimizations presented
in Section 5, except for the culling techniques.

7. Results

In Figures 12 and 14, the major strength of our algorithm is
shown, namely that soft shadows can be cast on arbitrarily
complex shadow receivers. Note that only the spheres and
the EG logo are casting shadows for the first figure, and only
the “@” is casting shadow in the second figure. In Figure 12,
a rather complex object is casting shadows on a complex re-
ceiver formed from several teapots, while the light source
size is increased. As can be seen, the rendered images ex-
hibit typical characteristics of soft shadows: the shadows are
softer the farther away the occluder is from the receiver, and
they are hard where the occluder is near the receiver. Further-
more, the umbra region becomes smaller and smaller with
increasing light source size. At 512× 512, those render at
about 1.8 frames per seconds (fps).

To test the quality of our algorithm, we have compared
it to both Heckbert/Herf (HH) shadows9 with 128 samples,
and Soler/Sillion (SS) shadows.17 HH shadows are more pre-
cise given sufficiently many samples, and the ultimate goal
is to render images like that in real time. The SS shadow al-
gorithm is interesting to compare to, because it is targeted
for real-time soft shadows. Some results are shown in Fig-
ure 12. The motivation for choosing such a simple scene is
that we know what to expect, and that it still includes the
most important effects of soft shadows (increasing penumbra
width, etc). Despite the approximations introduced by our al-
gorithm, the results are here remarkably similar to Heckbert
and Herf’s more precisely generated soft shadows. Our al-
gorithm rendered those images at about 2 fps (in software),
while HH shadows were rendered at about 20 fps (using
hardware). Note, however, that there are two reasons why
HH shadows are not really a feasible solution for real-time

applications with dynamic objects. First, shadows can only
be cast on planar surfaces. It is worth noting here that a soft
shadow texture (generated on a plane) that is projected onto
a curved surface cannot produce correct results. This is be-
cause the penumbra and umbra regions change in space in
such a way that it does not correspond to a simple projection.
Second, the rendering of 128 passes per frame consumes a
lot of capacity of a graphics system that could be used for
better tasks.

The SS shadows fail to produce believable results. This
is because it only produces correct results for parallel con-
figurations, and scenes (including this one) are in general
not configured like that. To their advantage, both SS and HH
shadows are image-based and therefore quite independent of
shadow generating geometry, and they can also handle arbi-
trarily shaped light sources. Also, the SS shadow algorithm
could split up the object into different cylinders to better cap-
ture the soft shadows, but it is highly likely that this would
give rise to discontinuities in the shadows.

We have also implemented an approximation of our algo-
rithm using current graphics hardware. See Figure 15. Each
wedge is discretized with a number of quads sharing the sil-
houette edge and dividing the space between the front and
back plane into different constant LI regions. This imple-
mentation render approximately concentric shadows, but a
stepping effect can still be seen as for other sampling meth-
ods, and also a large amount of rasterization work is done.
Everitt and Kilgard 3 implement a similar algorithm, but put
samples on the light source in the Heckbert/Herf manner,
and let each sample point add in shadow contribution with-
out the need for an accumulation buffer.

Two lights are used in the test scene of Figure 16. The
only modification we made to our algorithm was to multiply
the light intensities, s, by 255/n instead of 255, where n is
the number of lights. All test results are from our software
implementation using a standard PC with an AMD Athlon
1.5 GHz, and a GeForce3 graphics card.

8. Discussion

Here we will discuss the limitations and possible artifacts of
our algorithm.

In this paper, we have restricted the light source to be a
sphere. Approximations of arbitrary, convex light sources
are possible: when creating the front and back planes (which
must pass through the silhouette edge), rotate these until they
touch opposite sides of the light source. Our choice of light
source shape restricts the number of applications, but certain
applications, e.g., games, will most likely be satisfied. Also,
the SV algorithm cannot handle non-polygonal shadow cast-
ing geometry, such as N-patches or textures with alpha, and
neither can our algorithm. It is also worth noting that no
shadow volume-based algorithm can handle transparent sur-
faces in a proper manner.

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

For all shadow volume algorithms, one must be careful
when the viewer is in shadow. For hard shadows, this can be
solved with the Z-fail technique. See Everitt and Kilgard3

for a presentation on this. We have very recently solved
this problem for our algorithm. Briefly, capping of the soft
shadow volumes is needed, together with the Z-fail method,
and with a restructured rendering algorithm. That technique
will be described elsewhere due to space constraints.

One approximation is that we, as do Haines7 and the clas-
sic SV algorithm, use the same silhouette for the entire vol-
ume light source. Since soft shadows are generated by area
or volume light sources, the silhouette cannot in general be
the same for all points on such a light source. Errors are visi-
ble, but only for very large light sources, and in practice, we
have not found this to be a problem. The cost of the SV algo-
rithm, Haines’, and ours is to first find the silhouette edges of
the model, and the rendering of the shadows is proportional
to the number of silhouette edges and the area of the shadow
primitives (e.g., wedges).

A silhouette edge is an edge that is connected to two tri-
angles, where one triangle is facing toward the light, and the
other facing away. Such silhouette edges form closed loops.
Our algorithm can render shadows of geometry whose ver-
tices in the silhouette edge lists only connects to two silhou-
ette edges. However, this is not always the case. A vertex
may connect to more than two silhouette edges. Currently,
we do not handle this problem, and this limits the types of
scenes that we can render. It may be possible to construct
the wedges around such problematic vertices in other ways,
or to interpolate shading differently there. We leave this for
future work.

There may also be rays that pierce through a face on the
wedge, but that do not exit through a wedge face. This oc-
curs, for example, when the viewer is located close to the po-
sition of the light source. However, such rays do not pose any
problem. The reason for this is that for any shadow volume
algorithm to work properly, the shadow quads must penetrate
the geometry of the scene to be rendered. The same holds
for penumbra wedges: they must also intersect the geome-
try of the scene. This implies that rays that enter a wedge,
must either hit geometry inside the wedge, or exit the wedge
through one of the four wedge planes.

If a silhouette edge is nearly parallel or parallel to the di-
rection of the incoming light, another problem may arise:
the side plane construction will not be robust. To avoid this,
we remove such edges, and shorten & connect its neighbors.
This may give shadow artifacts near the shadow generating
object.

When two objects overlap, as seen from a light source,
it is very likely that wedges from these two objects also
will overlap. Our algorithm automatically subtracts the light
intensities from both wedges. This is not always correct.
Sometimes it may be more correct to multiply their contribu-
tions, and sometimes it may be more correct to subtract only

the contribution from one wedge (when wedges coincide).
There does not seem to be a straightforward way to solve
this. However, even though it is possible to see differences
in images, it is often very hard to see which is correct. See
Figure 11.

Figure 11: Overlapping soft shadows. Top: rendered with
Heckbert/Herf’s algorithm with 128 samples. Bottom: result
produced with our algorithm.

As can be seen, there are several limitations of our algo-
rithm. However, it should be noted that it is only recently that
the standard shadow volume algorithm has matured so that
it can handle all cases,3 and a maturing process can be ex-
pected for our algorithm as well. Next, some ideas for future
work, and some early initial results are presented.

9. Future Work

We are continuing to explore our algorithm, and the most
valuable contribution to make in the future, would be to in-
crease the complexity of geometrical models that can cast
soft shadows. Currently, we are exploring several new ways
of interpolating inside a wedge, and initial results show that
several of the limitations from Section 8 can be overcome

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

using different light intensity interpolation techniques. It re-
mains to unify these in a single technique, and make it render
rapidly.

Another avenue for future research is also to make more,
and more accurate, comparisons to more algorithms, and to
stress all algorithms. Finally, it will be interesting to imple-
ment this on graphics hardware that comes out within a year,
which is expected to be massively programmable.

10. Conclusions

We have presented a new soft shadow algorithm that is an
extension of the classical shadow volume algorithm. The
shadow penumbra wedge is a new primitive that we have
introduced, and that can be rasterized efficiently. The gen-
erated soft shadow images have been shown to often give
similar results to the algorithm of Heckbert and Herf,9 de-
spite the approximations that we introduce. It is important
to note that our algorithm can render soft shadows on ar-
bitrary geometry. Also, the performance is independent of
the receiving geometry since the contents of the Z-buffer is
used as a receiver. The software implementation of our algo-
rithm gives interactive rates on a standard PC. Thus, it seems
highly likely that next-generation hardware would give real-
time performance, which would increase the quality of real-
time games and other applications. Therefore, we believe
that this algorithm is a major leap forward for soft shadows
in real time.

Acknowledgement

Thanks to Eric Haines, Kasper Høy Nielsen, and Jacob
Ström for many good suggestions, and for improving our
description.

References

1. Crow, Franklin C., “Shadow Algorithms for Computer
Graphics,” SIGGRAPH 77 Proceedings, pp. 242–248,
July 1977. 2, 3

2. Drettakis, George, and Eugene Fiume, “A Fast Shadow
Algorithm for Area Light Sources Using Back Projec-
tion,” SIGGRAPH 94 Proceedings, pp. 223–230, July
1994. 3

3. Everitt, Cass, and Mark Kilgard, “Practical and Robust
Stenciled Shadow Volumes for Hardware-Accelerated
Rendering,” http://developer.nvidia.com/
view.asp?IO=robust_shadow_volumes 3, 7,
8

4. Fernando, R., S. Fernandez, L. Bala, and D. P. Green-
berg, “Adaptive Shadow Maps,” SIGGRAPH 2001 Pro-
ceedings, pp. 387–390, August 2001. 2

5. Gooch, Bruce, Peter-Pike J. Sloan, Amy Gooch, Peter
Shirley, and Richard Riesenfeld, “Interactive Technical

Illustration,” Proceedings 1999 Symposium on Interac-
tive 3D Graphics, pp. 31–38, April 1999. 2

6. Haines, Eric, and Tomas Möller, “Real-Time Shadows,”
Game Developers Conference, March 2001. 2

7. Haines, Eric, “Soft Planar Shadows Using Plateaus,”
Journal of Graphics Tools, vol. 6, no. 1, pp. 19–27,
2001. 2, 4, 8

8. Hart, David, Philip Dutre, and Donald P. Greenberg,
“Direct Illumination with Lazy Visbility Evaluation,”
SIGGRAPH 99 Proceedings, pp. 147–154, August
1999. 2

9. Heckbert, P., and M. Herf, Simulating Soft Shadows
with Graphics Hardware, Technical Report CMU-CS-
97-104, Carnegie Mellon University, January 1997. 1,
2, 7, 9

10. Heidmann, Tim, “Real shadows, real time,” Iris Uni-
verse, No. 18, pp. 23–31, Silicon Graphics Inc.,
November 1991. 3

11. Heidrich, W., S. Brabec, and H-P. Seidel, “Soft Shadow
Maps for Linear Lights,” 11th Eurographics Workshop
on Rendering, pp. 269–280, June 2000. 2

12. Morein, Steve, “ATI Radeon—HyperZ Technology,”
SIGGRAPH/Eurographics Graphics Hardware Work-
shop 2000, Hot3D session, 2000. 6

13. Parker, S., Shirley, P., and Smits, B., Single Sample Soft
Shadows, TR UUCS-98-019, Computer Science De-
partment, University of Utah, October 1998. 1, 2, 6

14. Pineda, Juan, “A Parallel Algorithm for Polygon Ras-
terization,” SIGGRAPH 88 Proceedings, pp. 17–20,
August 1988. 7

15. Reeves, William T., David H. Salesin, and Robert L.
Cook, “Rendering Antialiased Shadows with Depth
Maps,” SIGGRAPH 87 Proceedings, pp. 283–291, July
1987. 2

16. Segal, M., C. Korobkin, R. van Widenfelt, J. Foran, P.
and Haeberli, “Fast Shadows and Lighting Effects Us-
ing Texture Mapping,” SIGGRAPH 92 Proceedings, pp.
249–252, July 1992. 2

17. Soler, Cyril, and François X. Sillion, “Fast Calcula-
tion of Soft Shadow Textures Using Convolution,” SIG-
GRAPH 98 Proceedings, pp. 321–332, July 1998. 1, 2,
7

18. Stark, Michael M., and Richard F. Riesenfeld, “Ex-
act Illumination in Polygonal Environments using Ver-
tex Tracing,” Rendering Techniques 2000, pp. 149–160,
June 2000. 2

19. Williams, Lance, “Casting Curved Shadows on Curved
Surfaces,” SIGGRAPH 78 Proceedings, pp. 270–274,
August 1978. 2

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

20. Woo, A., P. Poulin, and A. Fournier, “A Survey of
Shadow Algorithms,” IEEE Computer Graphics and
Applications, vol. 10, no. 6, pp. 13–32, November
1990. 2

c© The Eurographics Association 2002.



Akenine-Möller and Assarsson / Approximate Soft Shadows

Figure 12: Increasing light source size from left to right. Only the EG logo, and the spheres are casting shadows. Notice that
the umbra region correctly gets smaller and smaller with increasing light source.

Figure 13: Comparison of our algorithm (top), Heckbert/Herf (middle), and Soler/Sillion
(bottom). Our algorithm provides the accuracy of the much more expensive Heckbert/Herf
algorithm. In addition, our algorithm handles all surfaces, and so casts a shadow from the
right cylinder onto the left, which the other two algorithms cannot do.

Figure 14: A fractal landscape
with 100k triangles is used as a
complex shadow receiver from
different viewpoints.

Figure 15: Rendered at 5 fps on a 1.5 GHz PC with a Geforce3. We modified
nVidia’s shadow volume demo (left) to render soft shadows (right).

Figure 16: Two light sources are
used in this simple test scene.

c© The Eurographics Association 2002.


