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Abstract

A pinhole camera selects a two-dimensional set of rays from the four-dimensional light field. Pinhole cameras are
a type of general linear camera, defined as planar 2D slices of the 4D light field. Cameras with finite apertures can
be considered as the summation of a collection of pinhole cameras. In the limit they evaluate a two-dimensional
integral of the four-dimensional light field. Hence a general linear camera with finite aperture factors the 4D light
field into two integrated dimensions and two imaged dimensions. We present a simple framework for representing
these slices and integral projections, based on certain eigenspaces in a two-plane parameterization of the light
field. Our framework allows for easy analysis of focus and perspective, and it demonstrates their dual nature.
Using our framework, we present analogous taxonomies of perspective and focus, placing within them the familiar
perspective, orthographic, cross-slit, and bilinear cameras; astigmatic and anastigmatic focus; and several other
varieties of perspective and focus.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Point perspective has been well understood since the Renais-
sance, and is the geometric foundation of much of computer
graphics. On occasion, in technical drawings especially, the
point is moved to infinity and an orthographic projection is
used. Recently, however, new kinds of perspective have been
introduced, in which rays do not intersect at a point, even at
infinity.

Gupta and Hartley [GH97] describe the pushbroom cam-
era, motivated by the geometry of satellite imagery. Zomet
et al. [ZFPW02] generalize this notion to the cross slit cam-
era, which selects a family of rays passing through two
lines in space. Pajdla [Paj02] describes oblique cameras, in
which no two rays intersect (linear oblique cameras are also
known as bilinear cameras). The work of Yu and McMil-
lan [YM04b] then collected and generalized these cameras,
classifying them as two-dimensional slices of the four di-
mensional space of rays passing between two planes.

These models all assume the generalized equivalent of a
pinhole camera - each pixel records a single ray. Real cam-
eras, by contrast, integrate over a finite aperture, forming a
projected integral of ray space as opposed to just a slice.
We present a mathematical model for general linear cameras
which first simplifies the work of Yu and McMillan, and then
extends it to cover focus. In our model, focus and perspec-

tive can be characterized by the eigenspaces of certain 2x2
matrices.

While this framework is primarily a theoretical contri-
bution, it has several potential uses. First, it can be used
for optical design. Specifically, unlike ray transfer matri-
ces [Hal64], this framework can be used to characterize opti-
cal systems with cylindrical components, such as those used
in some motion capture systems. Our framework can also
be used as a tool to understand recent multiperspective tech-
niques (such as [RGL04]). The most immediate utility of
this framework is to render novel views from light fields or
geometry.

Implementation of the viewer will be discussed in section
6. First, we introduce our parameterization (below), con-
struct taxonomies of general linear perspective (section 3)
and general linear focus (section 4), and discuss how they
can describe general integral projections of ray space (sec-
tion 5).

2. Parameterization of the Light Field

In this work we will parameterize a ray using four spatial co-
ordinates. In figure 1, the ray ((u,v),(x,y)) passes through
the two points (u,v,0) and (x,y,1). This two-plane param-
eterization (described in [LH96]) exhibits a symmetry be-
tween space and angle, which we capitalize upon. The scene
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Figure 1: A ray ((u,v),(x,y)) in the two plane coordinate
system.

under consideration will typically be near the plane z = 1, so
the x and y coordinates of a ray denote a point in the scene,
while the u and v coordinates describe the angle from which
it is viewed. The plane z = 1 will be called the world plane,
while the plane z = 0 will be called the aperture plane.

Our coordinate system is defined by the placement of
these two planes. Hence they are parallel by definition. How-
ever, they need not be parallel in their containing coordinate
system. They will intersect along some line, and all inter-
esting events in this framework will occur on planes inter-
secting the same line. The transform of space implied by the
coordinate system of the planes maps this line to infinity.
In other words, the Scheimpflug condition holds (this fact is
used in this context in [VGT∗05]).

Within this two-plane parameterization of the light field
we now describe and construct a taxonomy of general linear
perspective.

3. Characterizing General Linear Perspective

The two most salient features of a perspective view are the
location of the eye and the view direction. In our model the
view direction is determined by the placement of the planes,
with respect to which our viewing direction is along the pos-

Aperture Plane
Z=0

World Plane
Z=1

Z=d

P
I

dP + (1-d)I 

Figure 2: The cross section of a bundle of rays with (u,v)
coordinates equal to P(x,y) can be determined at arbitrary
depth by linear interpolation between the value at z = 0, P,
and the value at z = 1, I.

itive Z-axis. The location of the eye is fixed by the meeting
point of the rays that form our view.

Consider the bundle of rays Bxy with ray space coordi-
nates (P(x,y),(x,y)), where (x,y) ∈ [−1,1]2, and P is some
2x2 matrix. Bxy is a 2D linear slice of 4D ray space, and
hence forms a linear camera. This model covers all of the
general linear cameras of Yu and McMillan [YM04b] except
for the epipolar camera, discussed in section 5. For example,
when P is zero we have a simple point perspective camera
(Bxy = ((0,0),(x,y))), and when P = I, we have an ortho-
graphic camera (Bxy = ((x,y),(x,y))).

At the world plane (z = 1) the cross section of Bxy de-
scribes a square. At the aperture plane (z = 0) the cross sec-
tion is a square transformed by P. Rays are linear, so we can
linearly interpolate or extrapolate to determine the cross-
section of the bundle at an arbitrary depth (Figure 2). If at
z = 1 the transformation of the square is the identity I, and
at z = 0 the transformation is P, then at z = d the transfor-
mation is the 2x2 matrix:

P′d = (1−d)P+dI (1)

The rays in Bxy meet at a point when P′ is rank zero, and
they meet along a line when it is rank one. The kernel of a
matrix is invariant under scaling, so if we parameterize depth
by λ = d

d−1 then we can equivalently use the kernel of:

P′′λ = P−λI (2)

This kernel is described by the eigenvalues and eigenvec-
tors of P. If a perspective view has an eigenvector v with
real eigenvalue α, then the rays all intersect a line. This line
is at depth z = α

α−1 , is parallel to the world and aperture
planes, and is normal to v, as P′z zeroes that direction. Two
distinct eigenvectors with the same real eigenvalue will bring
the rays to a point at the corresponding depth. There are a
very limited number of possibilities for the eigenspaces of
a 2x2 matrix. The eigenvalues are the roots of the charac-
teristic quadratic of the matrix. They may be real and equal,
real and distinct, or complex conjugates. If the eigenvalues
are distinct, then they must each be associated with a one-
dimensional eigenspace (and hence an eigenvector). If they
are equal, then they are associated with an eigenspace that is
either one-dimensional (deficient), or two-dimensional.

Point Perspective Cameras. 2x2 matrices with equal
eigenvalues and a two-dimensional eigenspace are all scales
of the identity matrix. All point perspective cameras there-
fore have P matrix equal to λI. As shown in the top row of
figure 3, when λ < 0, the point of view is between the world
and aperture planes. When 0 < λ < 1 the point of view is be-
hind the world plane. As λ approaches 1, the point of view
tends towards negative infinity, and hence an orthographic
camera. In general, the point of view is on the z axis at λ

λ−1 .
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0 < A = B < 1ii) Far Perspective A = B = 1iii) Orthographic

A = B > 1iv) Pseudoscopic A != Bv) Cross Slit A != B = 1vi) Pushbroom

A = B = 1
deficient eigenspace

viii)  Twisted OrthographicA = B != 1
deficient eigenspace

vii) Pencil A, B  complexix) Bilinear

A = B < 0i) Near Perspective

Figure 3: Different conditions on the eigenvalues A,B of the matrix P give rise to different kinds of linear cameras. On the right
in each diagram we see the rays used to construct the image on the left, of a cube on a checkered plane. P is represented as the
red parallelogram.

Setting λ > 1 produces a center of perspective beyond the
world plane - a pseudoscopic view (Figure 3.iv). There are
two ways to think of this type of camera. One can consider
it a view from the aperture plane along a converging set of
rays. This explains why four sides of the cube are visible,
and why the squares on the checkerboard get larger as you go
up the image. The other way to understand a pseudoscopic
image is to treat the view as a conventional perspective from
beyond the world plane looking back towards the aperture
plane, but with an inverted depth buffer test.

Cross Slit Cameras. Matrices with distinct real eigenval-
ues produce cross slit cameras [ZFPW02] (Figure 3.v). An
eigenvalue α with eigenvector v indicates a slit at z = α

α−1
in the direction normal to v. Point perspective cameras are as
a special case of these, for which the slits are unaligned and
at the same depth. The cross slit camera is of the two truly
general linear cameras - the family has four degrees of free-
dom, and a small perturbation in its P matrix will still result
in a cross slit camera. If one of the slits of a cross slit camera
is at infinity, we obtain a pushbroom camera [GH97], shown
in figure 3.vi.

Pencil Cameras. Matrices with equal eigenvalues but a
deficient eigenspace produce pencil cameras (Figure 3.vii).
As with all linear cameras, pencil cameras are defined by two
linear constraints on ray space. One linear constraint is that
all rays must pass through a particular slit, leaving a 3D fam-
ily of possible rays. The second constraint selects allowable
incoming angles of rays to the slit. The orthographic ver-

sion of the pencil camera, for which the eigenvalues are one,
is known as the twisted orthographic camera, and is shown
in figure 3.viii. A pencil camera may occur in practice by
horizontally translating a camera that uses rolling shutter, or
equivalently photographing a moving object with a rolling
shutter camera.

Bilinear Cameras. The bilinear camera (Figure 3.ix) is
the other truly general linear camera. The eigenvalues of its
matrix are complex conjugates. No two rays imaged by this
camera intersect anywhere in space. Bilinear cameras can
come arbitrarily close to point perspective cameras. For ex-
ample, if P is a scaled very slight rotation then the family of
rays will neck down almost to a point.

Relationships Between Cameras. The eigenvalues of P
are the roots of its characteristic quadratic. If the discrimi-
nant of this quadratic is negative, the eigenvalues are com-
plex, if it is positive, they are real and distinct. If the discrim-
inant is zero, the eigenvalues are equal. Therefore, in the 4D
space of P matrices, the pencil cameras form a 3D manifold
separating the bilinear cameras from the cross slit cameras.
The point perspective cameras are a 1D subset of the pencil
cameras. All cameras, except those which are purely bilin-
ear, have an orthographic variant. The 2D set of pushbroom
cameras intersects the 3D manifold of pencil cameras at the
1D family of twisted orthographic cameras. This set inter-
sects the point perspective cameras at the orthographic cam-
era. These relationships are illustrated on the left in figure
4.
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Figure 4: Parallel Venn diagrams illustrating the set relationships between the various linear cameras on the left, and the
various types of focus on the right. Colors indicate the dimensionality of each subset.

4. Characterizing General Linear Focus

The most salient feature of a finite aperture view of a scene
is the depth of the plane of best focus. For such a view one
can define the output image Im as a linear projected integral
over ray space. The domain of integration Ω will define the
shape of the out of focus blur, or bokeh.

Im(x,y) =
Z

Ω

L((u,v)+P(x,y),(x,y)+F(u,v))dudv (3)

At output pixel (x,y) our model integrates the bundle of
rays ((u,v)+P(x,y),(x,y)+F(u,v)), where (u,v) ∈Ω. The
terms in x and y translate the bundle in ray space. A trans-
lation in ray space is a shear as a function of z in the world,
which does not change the cross section of the bundle at a
fixed z. Therefore, without loss of generality we will con-
sider only (x,y) = (0,0) - the rays integrated by the central
pixel of the output image.

We would like to know at what depth these rays meet.
The cross section of this bundle of rays on the aperture plane
(z = 0) is Ω. At the world plane (z = 1) the bundle has cross
section Ω transformed by the matrix F . Linearly interpolat-
ing, at depth d the transform is:

F ′
d = dF +(1−d)I (4)

The kernel of this matrix tells us if the rays meet at a point
or line. Equivalently, via the transform µ = d−1

d , we can use
the kernel of:

F ′′
µ = F−µI (5)

This kernel is described by the eigenvalues and eigenvec-
tors of F . We now consider all cases and present a taxonomy
of focus, which mirrors that of perspective.

Focused Cameras. Conventional anastigmatic focus cor-
responds to point perspective. With eigenvalues equal to µ,
F = µI, and the focus is at 1

1−µ . As µ approaches negative
infinity, the depth in focus approaches the aperture plane, at
µ = 0 the focus is on the world plane, and at µ = 1 the focus
is at infinity. µ > 1 corresponds to a pseudoscopic camera. In
this case the focus is beyond infinity, with rays that converge
behind the aperture plane. These four cases are illustrated in
figure 5.i-iv.

Astigmatic Cameras. Linear astigmatic focus is charac-
terized by two different depths of focus in two different di-
rections (figure 5.v). This corresponds to cross slit cameras.
The eigenvalues fix the depths of focus, and the eigenvec-
tors fix the directions which become sharp. Equivalently, the
eigenvectors are normal to the orientation of the bokeh at
that depth. One depth of focus may be at infinity, which cor-
responds to the pushbroom camera (Figure 5.vi).

Partially Afocal Cameras. With two equal eigenvalues
and a deficient eigenspace, rays converge in one direction
only. This is illustrated at a finite depth in figure 5.vii, which
corresponds to the pencil camera, and at infinity in figure
5.viii, which corresponds to the twisted orthographic cam-
era. Note how the bokeh shears from a ellipse into a line.

Afocal Cameras. Complex eigenvalues give a bundle of
rays which may neck down, as they do in figure 5.ix, but
do not intersect, and hence do not focus at any point. This
corresponds to the bilinear camera.

Relationships Between Cameras. Exactly the same re-
lationships hold between the kinds of focus as the kinds of
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0 < A = B < 1ii) Far Focus A = B = 1iii) Focus at Infinity

A = B > 1iv) Focus Beyond Infinity A != Bv) Astigmatic Focus A != B = 1vi) Astigmatic Focus

A = B = 1
deficient eigenspace

viii) Partially AfocalA = B != 1
deficient eigenspace

vii) Partially Afocal A, B  complexix) Afocal

A = B < 0i) Near Focus

Figure 5: Different conditions on the eigenvalues A,B of the matrix F give rise to different kinds of focus, in a manner that
strictly parallels that of perspective (Figure 3). Each diagram shows a focused image of colored point lights resting atop cones
on the left, and the rays integrated to produce the central pixel of that image on the right. The defocused point lights show how
the bokeh changes with depth, and the blur on the checkerboard illustrates focus in the horizontal and vertical directions at
each depth. In each line diagram, F is represented by the red parallelogram on the world plane.

perspective. The general cases are afocal cameras and astig-
matic cameras. Partially afocal cameras form the border of
the two, and conventional anastigmatic focus is a special
case of this. These relationships are illustrated on the right
in figure 4.

5. General Linear Cameras with Finite Aperture

Most generally, a linear camera is a linear integral projection
of ray space. Given a suitable choice of coordinate system,
all such cameras can be expressed as the following integral
over a light field L.

Im(x,y) =
Z

Ω

L(Q(x,y,u,v))dudv (6)

The 4x4 matrix Q can be factored as follows:

Q =
(

A PM
FA M

)
=

(
I P
F I

)(
A 0
0 M

)
(7)

Two new matrices have appeared: A and M. We assume
in this factorization that A and M are invertible. This rules
out epipolar cameras, which explains why we omit them

from the taxonomy. An epipolar camera images a one-
dimensional subset of the world plane, and hence has a rank-
one M.

The aperture matrix A warps the light field on the aper-
ture plane. This space is integrated over, so A determines the
shape of the bokeh. For example, A = 2I is a large aperture
and hence short depth of field, while A = 0.1I produces a
long depth of field. A = 0 produces a pinhole camera, and
a rank-one A will produce a slit aperture. Note that due to
the integration, not all A matrices have a unique effect. For
example, pure rotations are equivalent to the identity.

In contrast, M is relatively uninteresting. It warps the light
field on the (x,y) plane, which has no effect on the integra-
tion, so it just warps the output image. The perspective (P)
and focus (F) matrices appear in this more general frame-
work as shears between the (u,v) and (x,y) coordinates.
Refocusing has been recognized to be a shear in ray space
( [IMG00]), but its dual relationship with perspective has not
been described explicitly before now.

This factorization demonstrates that F and P capture the
interesting properties of a linear camera. All that remains is
the aperture shape, determined by A, and the alignment of
the output image, determined by M.
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6. Real Time Implementation

To demonstrate this factorization, and to permit exploration
of each branch of the taxonomies presented in sections 3 and
4, we have implemented a light field viewer for rendering
discretely sampled light fields. For this purpose, equation
6 lends itself well to direct implementation in a fragment
shader. The (x,y) coordinates are fixed by the fragment coor-
dinates, and the (u,v) coordinates are iterated over in a loop
inside the shader. Q is passed into the shader as a uniform
4x4 matrix, which warps (u,v,x,y) to determine a sample
location. The light field, stored as a 3D texture, can then be
trilinearly sample twice to perform the desired quadrilinear
interpolation.

To implement a viewer that renders from a 3D model
(as seen in figures 3 and 5), we use OpenGL with a ver-
tex shader. For each (u,v) we render the scene, integrat-
ing the results in the accumulation buffer. Knowing Q and
(u,v) we must transform each vertex v to the right screen
space coordinates (x,y). We know that v must lie on the ray
(u′,v′,x′,y′) = Q(u,v,x,y), so:

(
vx
vy

)
= vz

(
x′

y′

)
+(1− vz)

(
u′

v′

)
Expanding Q and solving for (x,y) yields:

K = (vzM +(1− vz)PM)−1

J = K(vzFA+(1− vz)A)(
x
y

)
= K

(
vx
vy

)
− J

(
u
v

)
which can be implemented in a vertex program. The com-

putations of K and J are dependent on vz, and so must be
done per vertex. This is not a linear map, so rational linear
interpolation of attributes across polygons will not be cor-
rect. Our approximate solution is to subdivide large poly-
gons finely enough that a linear approximation looks accept-
able.

7. Future Work

This work reformulates and extends the concept of general
linear cameras to include focus. Its appeal is its simplicity
- that it is possible to understand general linear perspective
and focus in terms of eigenspaces of 2x2 matrices. One pos-
sible future direction is to consider nonlinear integral projec-
tions that can be approximated locally as linear, with tangent
P and F matrices at a given ray, analogously to the work of
Yu and McMillan [YM05] [YM04a].

The main limitation of this framework is that once the
two-planes are placed, all interesting events must be fron-
toparallel. A tilted focal plane requires a nonlinear projec-

tion of ray space, as does a cross slit camera with non fron-
toparallel slits. The most obvious mathematical extension is
to add a third coordinate and use projective transforms, but
this has not yet borne fruit. Some similarly simple extension
of this framework to cover more general settings such as ar-
bitrarily placed focal planes or slits would be interesting.

The challenge going forwards is to further generalize our
notion of general linear cameras, without detriment to the
concept’s utility and elegance.
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