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Abstract
This paper presents a new perceptually based tone mapping operator that represents scene visibility under time-
varying, high dynamic range conditions. The operator is based on a new generalized threshold model that extends
the conventional threshold-versus-intensity (TVI) function to account for the viewer’s adaptation state, and a new
temporal adaptation model that includes fast and slow neural mechanisms as well as photopigment bleaching.
These new visual models allow the operator to produce tone-mapped image streams that represent the loss of
visibility experienced under changing illumination conditions and in high dynamic range scenes. By varying the
psychophysical data that the models use, we simulate the differences in scene visibility experienced by normal and
visually impaired observers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation-
Display Algorithm. I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism. Keywords: Tone map-
ping, perception, adaptation, low vision.

1. Introduction
The variations in light levels we experience in the world are
vast. For example, the average luminance in a outdoor scene
can be 100 million times greater during the day than at night.
The dynamic range of luminances can also be large, with ra-
tios on the order of 10,000:1 from highlights to shadows. Lu-
minance levels can change dramatically over time and from
place to place.

Vision functions across these changes through a variety
of adaptation mechanisms that include the pupil, the rod and
cone receptors, photopigment bleaching and regeneration,
and neural gain controls. However, vision is not equally good
under all conditions. In particular, older people and those
with visual disorders may be profoundly impaired by the low
intensity, high dynamic range, and rapidly changing illumi-
nation conditions we often experience. Disabling glare and
loss of visibility are frequent complaints of people with so-
called low vision.

We have been working to develop a low vision simula-
tor that shows people with normal vision what the world
looks like to people with visual impairments. Such a simu-
lator would have important applications in medical training,
disability determination, and design of accessible environ-

ments. A key component of this simulator is a perceptually
based tone reproduction operator that creates images that ac-
curately predict visibility in real or modeled scenes-.

In this paper we describe a new tone reproduction op-
erator created for this low vision simulator. The operator
seeks to accurately represent scene visibility under time-
varying, high dynamic range conditions. To achieve this we
developed new models of temporal adaptation and contrast
visibility. By varying the psychophysical data the adapta-
tion models use, we are able to simulate the differences
in scene visibility experienced by normal and visually im-
paired observers under changing illumination conditions. In
the following sections we first review the properties of ex-
isting tone reproduction operators, then describe how we
have extended two advanced perceptually-based operators,
[WLRP97] and [PTYG00], and combined them with our
new adaptation model to achieve our goals.

2. Background
2.1. Tone mapping
The development of techniques for high dynamic range
(HDR) image capture and synthesis have made tone map-
ping an important problem in computer graphics (reviewed
in [DCWP02]). The fundamental problem is how to map the
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Figure 1: Ward’s visibility preserving operator.

large range of intensities found in an HDR image into the
limited range generated by a conventional display device.
Different tone mapping operators have been introduced in
the research literature, and a taxonomy is emerging that al-
lows the operators to be classified in a broader context.

2.1.1. A taxonomy of tone mapping operators
A primary distinction is whether an operator is global or lo-
cal. Global operators apply a single mapping function to all
pixels of the image, whereas local operators modify the map-
ping depending on the characteristics of different parts of
the image. A second important distinction is between empir-
ical and perceptually based operators. Empirical operators
seek to meet criteria such as dynamic range compression,
detail preservation, or freedom from artifacts. On the other
hand, perceptually based operators strive to produce images
that are predictive visual simulations of scene appearance.
A third distinction is between static and dynamic opera-
tors. Most existing operators are static, designed to process
still images. In contrast, dynamic operators are explicitly de-
signed for processing image streams.

2.1.2. Tone mapping operators for vision simulation
Since our overall goal is to create a real-time vision sim-
ulator that is capable of accurately representing how high
dynamic range scenes appear to people with low vision, we
need a tone mapping operator that is both perceptually based
and dynamic. Whether the operator is global or local is of
secondary importance. To our knowledge no existing opera-
tors meet these requirements, so we developed a new one.

To create this operator we took substantial inspi-
ration from the perceptually based operators of Ward
et al. [WLRP97] and Pattanaik et al. [PTYG00]. Neither of
these operators alone can serve our purposes, but between
them we found components that provided a good foundation
for our work.

2.1.3. Ward’s visibility preserving operator
The goal of Ward’s operator is to produce displayable im-
ages that accurately represent the threshold visibility of
scene features. To do this, the operator uses histogram ad-
justment constrained by a model of visual adaptation.

The main components of Ward’s operator are illustrated in
Figure 1. In the first stage the input image is downsampled to
create a low-resolution “foveal image” in which each pixel
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Figure 2: Pattanaik’s time dependent operator.

covers 1◦ of visual angle. Next, a visual model that simulates
the effects of veiling glare and low-luminance color and acu-
ity loss is applied. At the heart of the operator is a histogram
adjustment algorithm, in which the cumulative distribution
function of the histogram of the foveal image, constrained
in slope by the human threshold versus intensity (TVI) func-
tion (see Figure 4), is used to define the mapping from scene
luminances to display luminances.

Ward’s operator is an elegant solution to the perceptually
based tone mapping problem, and we use significant compo-
nents of it in our new operator. However, it is a static opera-
tor, designed to process individual images, and it is unable to
correctly represent changes in scene visibility over time. To
address this issue, we looked to Pattanaik’s time dependent
operator that incorporates a model of the temporal dynamics
of vision.

2.1.4. Pattanaik’s time dependent operator
The goal of Pattanaik’s operator is to process a stream of
input images of a scene and produce an output stream that
simulates the changes in visual appearance caused by vari-
ations in scene luminance. To accomplish this, the operator
merges components of an advanced color appearance model
with a physiologically based model of the temporal dynam-
ics of visual adaptation.

Figure 2 shows the main components of Pattanaik’s op-
erator. At the highest level the operator consists of a for-
ward and inverse pair of visual models. First, an adaptation
model transforms input scene intensities into retina-like re-
sponses. These responses are then transformed by a sim-
plified version of Hunt’s color appearance model [Hun95],
to produce a representation of the scene’s suprathreshold
“whiteness/blackness” and “colorfulness” appearance corre-
lates. To complete the tone mapping process, the adaptation
state of the display observer is determined, and the inverse
appearance model transforms the appearance correlates into
display values that are calculated to produce corresponding
responses in the display observer.

The time-dependent features of the operator derive from
the forward adaptation model. The characteristics of the
model are illustrated in Figure 3 where the curves show the
S-shaped response profile of the combined rod and cone sys-
tem at different luminance levels. At any given level the sys-
tem only has a linear response range of 2 to 3 log units, so
inputs above or below this range will be subject to response
compression. Figure 3(a) shows the response of the system

c© The Eurographics Association 2005.



P. Irawan, J. A. Ferwerda, & S. R. Marschner / Perceptually Based Tone Mapping of High Dynamic Range Image Streams

1

0

1

0

1

0

luminance

re
sp

on
se

range of scene luminances

adaptation state
instantaneous
response

(a) adapted
to bright
scene

(b) maladapted
to dark
scene

(c) adapted
to dark
scene

Figure 3: Adaptation over time in Pattanaik’s operator.

to a scene illuminated at daylight levels. Note that through
adaptation, the linear response range is nearly centered over
the scene luminance range, so sensitivity (and therefore vis-
ibility) will be good and there will be little compression of
response. Figure 3(b) shows the situation an instant after the
illumination in the scene has suddenly dropped. While scene
luminance range is now much lower, constraints on the speed
of adaptation only allow the system to partially adjust its sen-
sitivity, so responses will be severely compressed and much
of the scene will be invisible. However, as Figure 3(c) shows,
given enough time the system will continue to adapt, sen-
sitivity will return, and visibility will be (at least partially)
restored.

In the visual system both neural and photochemical adap-
tation mechanisms are responsible for altering the sensitiv-
ity of the rod and cone systems and shifting the response
profiles across the luminance range. Neural adaptation is a
fast and symmetric process that can alter sensitivity within
milliseconds, but the magnitude of its effect is limited. Pho-
topigment bleaching and regeneration, on the other hand, can
have a much greater impact on sensitivity, but it is an asym-
metric process, with potentially rapid bleaching followed by
relatively slow regeneration and recovery of sensitivity. Pat-
tanaik models the temporal dynamics of adaptation with four
low-pass exponential filters; two each for the neural and pho-
tochemical mechanisms in the rod and cone systems.

Pattanaik’s operator stands as the most advanced percep-
tually based operator for tone mapping image streams. How-
ever, with respect to our goals it is limited for two reasons: 1)
it uses a suprathreshold color appearance model rather than
a threshold visibility model so the images produced may not
accurately represent visibility; and 2) it produces a simple
S-shaped global mapping function so high dynamic range
scenes may not be mapped correctly. However, its tempo-
ral adaptation model addresses our need to correctly repre-
sent the appearance of dynamic scenes, so with some signif-
icant modifications, we will incorporate this component in
our new operator.
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Figure 4: Threshold-versus-intensity functions. Based on
data from [Bla46].

2.2. Adaptation and maladaptation
The purpose of visual adaptation is to optimize visual sensi-
tivity with respect to prevailing levels of stimulation. Phys-
iological studies of adaptation have tended to focus on
changes in the response properties of individual photorecep-
tors [NR66], while psychophysical studies have focused on
changes in the visibility of patterns imaged on particular re-
gions of the retina [Bla46]. While these studies have pro-
vided fundamental knowledge about adaptation, the highly
controlled conditions used in the experiments are not repre-
sentative of normal vision.

Under normal conditions vision is an active process. We
have mobile eyes that are constantly scanning the visual
field with a variety of eye movements. An important con-
sequence of eye movement is that the retinal image is con-
stantly changing, so any particular retinal location is re-
ceiving continuously varying levels of stimulation. Because
adaptation takes time, under natural conditions the visual
system is rarely fully adapted the way it is in laboratory ex-
periments, and the result of this maladaptation is that sen-
sitivity, and therefore visibility, will typically be less than
optimal.

2.2.1. Measuring adaptation and maladaptation
Adaptation is often described with the threshold versus in-
tensity (TVI) functions, which give the threshold ∆L, re-
quired to create a visible contrast at various background lev-
els L. The solid curves in Figure 4 show representative TVI
functions for the rod and cone systems. Note the both curves
are flat at extremely low luminance levels and become lin-
ear over the range where the visual system adapts well. The
rod curve bends upward for high luminances due to satura-
tion, because the rod system has a limited ability to adapt to
brighter conditions.

Classically, the TVI functions are measured using spot-
on-background patterns. An observer is adapted to a circu-
lar background field of a particular luminance (L), and then
tested to see how much more intense (∆L) a central spot
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Figure 5: TVI (filled) and probe-on-flash (open) curves for
the rod and cone systems [WECH∗90].

has to be to be visible. By repeating this experiment for a
range of background luminances the TVI functions can be
described.

It is important to understand that because the observers are
fully adapted to the backgrounds, the TVI functions measure
the optimal sensitivity of the visual system at the tested lumi-
nance levels. As described above, under natural conditions,
the visual system will only rarely achieve this sensitivity and
will generally be maladapted to some degree. This has im-
portant consequences for visibility and other measures of vi-
sual performance.

Psychophysicists have characterized the effects of mal-
adaptation on visual thresholds with probe-on-flash experi-
ments [WECH∗90]. The observer again adapts to a steady
background, but instead of testing for visibility of a spot
against that background, a circular spot and annulus pat-
tern are briefly flashed, and the threshold for seeing the spot
against the flashed annulus is measured. The short duration
of the flash bypasses the normal adaptation processes to al-
low the measurement of threshold sensitivity at luminance
levels away from the background adapting level. The results
of typical probe-on-flash studies are indicated by the open
circles in Figure 5. Note how the probe-on-flash curves di-
verge from the TVI curves (filled circles), indicating that due
to maladaptation thresholds are higher than would be pre-
dicted from TVI experiments. Because of the active nature
of the eye, maladaptation like this is a constant condition of
human vision and has a significant impact on visibility un-
der real-world conditions. For this reason we account for the
effects of maladaptation in our operator.

3. A new operator for vision simulation
Recall that our goal is to develop a low vision simulator
that produces images that show people with normal vision
what the world looks like to people with visual impairments,
and that a key component of this simulator is a perceptually
based tone reproduction operator that can handle high dy-
namic range image streams. Like Ward’s operator, our new
operator should preserve visibility while compressing high
dynamic range scenes for display. Like Pattanaik’s operator,
it should model the viewer’s changing adaptation state and
include the effects of maladaptation in the output images.

Producing an operator that combines these features is not
a simple matter of bolting together the parts, because the
two operators have different goals and incompatible notions
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Figure 6: Block diagram of our new operator, which com-
bines components from Ward’s and Pattanaik’s operators
with a new threshold visibility model, the TVIA. Components
outlined with heavy lines have new contributions.

of adaptation. Since we need a threshold visibility model,
we used Ward’s TVI-constrained histogram equalization as
the basis for the operator. But the TVI function Ward uses
is based on experiments in which observers were optimally
adapted. In order for a Pattanaik-like temporal adaptation
model to make sense in the histogram equalization frame-
work, a generalized TVI function without this steady-state
assumption is needed, but to our knowledge no one has pro-
posed such a function. We had to return to the psychophysics
literature and develop a more advanced threshold model that
predicts the contrast threshold as a function of both the stim-
ulus luminance and the observer’s adaptation state.

3.1. Overview of new operator
The essential components of our new operator are shown in
Figure 6. Ward’s approach forms the basis for our new oper-
ator, with modifications to the histogram adjustment proce-
dure. However, where Ward uses a static TVI-based thresh-
old model we introduce a new dynamic threshold model,
which we call the TVIA function, for threshold versus in-
tensity and adaptation. To provide the adaptation state we
use a time-course model based on exponential filters similar
to Pattanaik’s, but we extend the model to account for more
temporal adaptation effects.

The TVIA model is based on S-shaped response functions
inspired by Naka and Rushton’s measurements [NR66], as
are the response curves from Hunt’s model that were used
by Pattanaik. However, our use of the response curves is en-
tirely different from Pattanaik’s: we use small differentials
along the curves to derive thresholds that drive the histogram
adjustment process, rather than using the curves directly to
compute appearance.

3.2. Histogram adjustment
See Figure 7 for definitions of symbols used in this section.

The simplest way to map world luminance to display lu-
minance is by a linear function with constant Ld/Lw, but this
only works if the display luminance range spans a larger
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Lw = world luminance (in cd/m2)
Lwi = world luminance for histogram bin bi
Lwmin = minimum world luminance for scene
Lwmax = maximum world luminance for scene
Ld = display luminance (in cd/m2)
Ldi = display luminance for histogram bin bi
Ldmin = minimum display luminance for scene
Ldmax = maximum display luminance for scene
N = number of histogram bins
T = total number of adaptation samples
f (bi) = frequency count for histogram bin bi
∆L(La) = “just noticeable difference” for adaptation level La

Figure 7: Symbols used in histogram adjustment.

dynamic range than the world luminance values. For HDR
scenes, a global tone mapping operator must selectively al-
locate the available display luminance values to world lumi-
nance values. As introduced in Subsection 2.1.3, Ward uses
histogram adjustment to solve this problem.

3.2.1. Ward’s histogram adjustment method
Since allocating larger display luminance ranges means less
contrast compression, it is reasonable to assign more values
to world luminances that occur frequently in the image. That
is, we want to compress contrast in sparsely populated re-
gions of the image’s histogram, thereby conserving the avail-
able luminance range for the densely populated regions.

Naive histogram adjustment, however, may magnify con-
trast in well-populated regions, violating the goal of preserv-
ing visibility. Ward avoids this problem by limiting the slope
of the mapping function to the ratio of contrast visibility
thresholds for the display and world observers:

dLd
dLw

≤ ∆L(Ld)
∆L(Lw)

(1)

With this constraint, two world luminances that are not vis-
ibly different will map to two display luminances that are
also not visibly different. This is the sense in which Ward’s
operator (and ours) preserves contrast visibility.

From (1) Ward derives a constraint on the values of the
histogram that will be used for histogram adjustment:

f (bi)≤
T
N
· log(Lwmax)− log(Lwmin)

log(Ldmax)− log(Ldmin)
·

∆L(Ldi)/Ldi

∆L(Lwi)/Lwi

(2)

Ward simply truncates the histogram to ensure that this con-
dition is met. However, this changes the total number of
adaptation samples T and, worse, changes the mapping func-
tion, which in turn changes Ldi and ∆L(Ldi), creating a non-
linear problem. Ward iteratively truncates counts and recom-
putes the ceilings until a termination tolerance is reached.

3.2.2. A new, temporally continuous, method
The human eye continuously adapts to the brightness of its
surrounding. However, we find that Ward’s iteration can be-
have discontinuously; that is, a small change in the input can
result in a sudden change in the mapping function. Disconti-

nuities also occur as the operator switches between the low
and high dynamic range modes.

Instead of the iterative procedure, we choose instead to re-
distribute counts that exceed the ceiling. Rather than simply
truncating the histogram, we keep track of the total of the
truncated counts and redistribute that total to the other bins,
taking care not to fill them past the ceiling. Any reasonable
method for doing this may be used; we used a procedure
that redistributes the trimmings proportional to the existing
counts and distributes any excess uniformly.

For this to work we have to ensure that the sum of all the
ceilings is not less than T . That is:

N

∑
i=1

T
N
· log(Lwmax)− log(Lwmin)

log(Ldmax)− log(Ldmin)
·

∆L(Ldi)/Ldi

∆L(Lwi)/Lwi

≥ T (3)

If this constraint is not met, it signals that we are in a low
dynamic range condition: the dynamic range of the scene
is lower than that of the display, so that no response com-
pression is needed. Ward handles this case by switching to a
separate linear mapping mode, but in our method we instead
simply reduce log(Ldmax)− log(Ldmin) so that (3) is satis-
fied exactly, then proceed as usual. We thereby handle low
and high dynamic range in a unified and continuous way.
Also unlike the previous method, we maintain the contrast
preservation property in the low dynamic range case, which
is important when the operator is simulating severely im-
paired visibility due to low vision or extreme maladaptation
(such as walking from a sunlit street into a dark theater).

It is difficult to evaluate (3) directly because Ldi depends
on the (unknown) mapping function used. We remove this
dependency by making the simplifying but reasonable as-
sumption that the display luminance range lies in the region
governed by Weber’s Law, which means ∆L(Ldi)/Ldi is a
known constant.

If the operator decides to use less display dynamic range
than is available, we have to choose which portion of the
available range to use. We compare the highest and lowest
responses generated by the world luminances and the dis-
play luminances to determine which portion of the available
range to be allocated. However, one can freely choose an-
other way to do this without affecting the essential function
of the tone mapping operator.

3.3. A generalized threshold model (TVIA)
In Ward’s operator the luminance threshold ∆L(La) used in
Subsection 3.2 comes from a TVI function (Figure 4). As
we outlined at the beginning of Section 3, this implicitly as-
sumes the eye is optimally adapted at all times. To eliminate
this assumption we generalize the TVI function ∆L(La) to
a function of two variables that depends separately on the
stimulus luminance and the adaptation state. We denote this
TVIA function as ∆L(L,σ(La)): it gives the “just noticeable
difference” when the eye is looking at luminance level L
while adapted to luminance level La. Here, σ(La) represents
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Figure 8: Response function at σ = 1. The farther a lumi-
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the larger the luminance difference required to produce the
same change in response (R).

the adaptation state that is reached when we are fully adapted
to La.

The TVI and probe-on-flash experiments provide infor-
mation about the thresholds of the visual system, but data is
not available for all luminance levels and adaptation states.
In particular, while many TVI curves are available, probe-
on-flash data is only available for a few isolated adaptation
levels. To extend the TVI to the TVIA, we need to develop a
new threshold model that is physiologically plausible, con-
sistent with the known psychophysical data, and capable of
supplying thresholds for any combination of luminance level
and adaptation state. Our TVIA model is derived from a sim-
ple physiological model of visual response, and it is cal-
ibrated by requiring that it match the TVI function when
La = L.

3.3.1. Visual response model
Based on their studies of photoreceptor response, Naka and
Rushton [NR66] proposed the following function to de-
scribes the response R of retinal photoreceptors:

R(L,σ(La)) =
Ln

Ln +σ(La)n (4)

Values for n between 0.7 and 1 have been reported in the
literature. [BW70] [NW74]

R(L,σ(La)) is the response generated by looking at lumi-
nance L in adaptation state σ(La). For constant σ, R(L,σ) is
a sigmoid curve centered at L = σ (the curve for σ(La) = 1
is shown in Figure 8). Because the curve is steepest near
the center, the response is most sensitive to changes in lu-
minance when L is near σ, and when L is far from σ, the
response is nearly constant due to the compressive nature
of the curve. Because the photoreceptors are unable to sig-
nal luminance differences far removed from σ, the system
adapts by changing σ, which shifts the response function left
or right to lower or higher luminance levels.

Given this response model, we assume that under all con-
ditions there is a single criterion response ∆R, which is the
smallest amount of additional response that is needed in or-
der to produce a just noticeable difference (JND).

3.3.2. Response threshold and luminance threshold
Since the criterion response ∆R is the amount of additional
response that is needed in order to perceive a difference in
luminance, adding ∆L(L,σ(La)) to L should increase the re-
sponse generated by exactly ∆R.

R(L,σ(La))+∆R =
(L +∆L(L,σ(La)))n

(L +∆L(L,σ(La)))n +σ(La)n (5)

Rearranging Equation (5), we get:

∆L(L,σ(La)) = σ(La)
(

R(L,σ(La))+∆R
1− (R(L,σ(La))+∆R)

) 1
n

−L

(6)
Since no amount of ∆L(L,σ(La)) can increase response

above 1, R(L,σ(La)) + ∆R > 1 means the visual system
reaches saturation and is unable to discriminate luminance
values above L at current adaptation state σ(La). The steps
of computing ∆L(L,σ(La)) are as follows:

1 Compute R(L,σ(La)).
2 Add ∆R to this value.
3 If R(L,σ(La))+∆R > 1, ∆L(L,σ(La)) =∞.
4 Otherwise, compute ∆L(L,σ(La)) (Equation (6)).
To find ∆R, we use the known luminance thresholds from

the TVI function. We start by assuming that σ(L) = L for all
L. By doing so, the response generated by looking at lumi-
nance L while adapted to L is R(L,L) and the response gen-
erated by adding a just noticeable luminance increment to
L is R(L +∆L(L),L). The difference between these two val-
ues is the amount of additional response necessary to cause a
perceived difference in luminance. We take the smallest such
value as ∆R, then adjust the function σ to match the rest of
the TVI curve.

3.3.3. Defining the adaptation state σ

Recall that adaptation corresponds to lowering or raising the
value of σ(La), which shifts the response function left or
right. In our discussion so far we have assumed that we are
given σ(La), but in fact the function σ is uniquely deter-
mined by the TVI function, because the TVIA generalizes
the TVI and must match for L = La. We model changes in
relative thresholds using incomplete adaptation. For lumi-
nances in the Weber range, where the TVI curve gives rela-
tive thresholds close to the minimum, σ(La) is close to La;
where the TVI curve gives higher thresholds, σ(La) posi-
tions the sigmoid so that La is not at the center, resulting in
a higher threshold.

To find σ, we look at ∆L(L,σ(L)), which is the contrast
visibility threshold when the eye is looking at luminance
level L while optimally adapted to that same luminance level.
Since it is just noticeable, adding ∆L(L,σ(L)) to L should in-
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Figure 9: Slices of the TVIA, our general threshold func-
tion, for several values of the adaptation luminance La. The
curves increase for luminances away from La. The TVI func-
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crease the response generated by exactly ∆R. That is:

R(L,σ(L))+∆R =
(L +∆L(L,σ(L)))n

(L +∆L(L,σ(L)))n +σ(L)n (7)

The equation above is just Equation (5) with La = L. From
the TVI function, we know ∆L(L,σ(L)) for every L. Now
we can numerically solve for σ(L) to obtain the adaptation
state that the eye is in when fully adapted to luminance L.
Graphically, this calculation is equivalent to shifting the re-
sponse function left and right until the difference between
R(L,σ(L)) and R(L +∆L(L,σ(L)),σ(L)) is exactly ∆R.

We are now able to obtain the general TVIA function.
Slices of the function for several fixed values of La are shown
in Figure 9. Luminances that are near the adaptation lumi-
nance fall near the middle of the response function, result-
ing in small thresholds; luminances far from the adaptation
luminance fall at the ends, resulting in large relative thresh-
olds. The TVI is approximately the lower envelope of these
curves. The individual curves in the TVIA function also pro-
vide a good qualitative match to the changes in the con-
trast thresholds measured in the probe-on-flash experiments
(quantitative variation is to be expected from differences in
the experimental conditions). The TVIA function we have
derived is a new general threshold model that allows us to
predict contrast sensitivity for any combination of adapta-
tion state and background luminance level.

3.4. Adaptation over time
In order to process time-varying scenes, we need a way to
generate the adaptation state σ required by the TVIA model
for every frame, based on the changes in overall illumination
in the input stream. The primary constraint is that after a
long period of exposure to a constant adaptation luminance,
σ must converge to the σ(La) derived in the previous section.

3.4.1. Temporal dynamics of adaptation
Psychologists have described four mechanisms that control
the adaptation state: pupil size (which we omit because of
its relatively small effect), photoreceptor pigment bleaching,
slow neural adaptation, and fast neural adaptation [HF86].
As Pattanaik et al. observed, it is important to track these
different mechanisms separately because each adapts on a
different time scale. For this reason we will break the steady-
state function σ(La) up into a product of terms, one for
each adaptation mechanism, then define temporal behavior
for each.

Therefore, we need to define σb (adaptation due to
pigment bleaching), σc (slow neural adaptation), and σn
(fast neural adaptation) such that σ(La) = σb(La) ·σc(La) ·
σn(La).

Pigment bleaching is a well-studied process with known
steady-state and temporal behavior. We denote the fraction
of unbleached pigment left in the receptors after looking at
luminance L for a long time p(L).

We assume that the amount of signal transmitted by re-
ceptors is proportional to L · p(L) [HHC37]. Scaling the lu-
minance down is equivalent to shifting the sigmoid-shaped
response curve rightwards by the same factor, so we have:

σb(La) =
1

p(La)
(8)

where p(La) is the fraction of unbleached pigment for a
viewer fully adapted to La. In steady state the value of p(L)
follows the following formula.

p(L) =
I0

I0 +L
(9)

where I0 is around 104cd/m2 [HF86].
Dividing σ with σb yields a range of about 4 log units.

We attribute half of the remaining adaptation to each of the
two neural adaptation mechanisms. The formulae for σn are
obtained from fitting the σ curve with a sigmoid with mag-
nitude of 2 log cd/m2. With both σb and σn known, we can
obtain the formulae for σc by dividing σ by σn ·σb and fit-
ting a curve to the values. The resulting formulae for cone
system are as follows:

log10(σn(La)) =
2.027L0.6406

L0.6406 +5.8590.6406 +0.01711 (10)

log10(σc(La)) =
1.929L0.8471

L0.8471 +10480.8471 +0.01820 (11)

And for the rod system:

log10(σn(La)) =
2.311L0.3604

L0.3604 +0.0080610.3604 −2.749 (12)

log10(σc(La)) =
1.735L0.9524

L0.9524 +1.2770.9524 +0.005684 (13)

The steady state values for all the σs are plotted in Figure 10.
The flat region between 101cd/m2 and 103cd/m2 for the
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Figure 10: Steady-state adaptation state σ and its com-
ponents across the luminance range for cone system (left)
and rod system (right). The three components represent pho-
topigment bleaching (σb) and fast (σn) and slow (σc) neural
adaptation; σ is the product of the three.

rods is where rod saturation occurs in the TVI function (Fig-
ure 4): the value of σ falls behind the increase in brightness,
resulting in loss of function in the rods. (The curve does
eventually unflatten because of pigment bleaching, but not
enough to be useful.) In the cone system, saturation does not
occur because pigment bleaching takes over before neural
adaptation stops.

The time course of pigment bleaching and regeneration
after a change of luminance at time t = 0 from L0 to La is
known to follow the equation:

p = p(La)+(p0− p(La)) · e
−t

t0·p(La) (14)

Because in the dark p(La) = 1 and in a bright surrounding
p(La) < 1, pigment bleaching happens faster than pigment
regeneration. The time constant t0 is 110 seconds for cones
and 400 seconds for the rods [Alp97] [HA73].

We follow [PTYG00] in describing the time course of
neural adaptation using simple exponential decay function:

L = La +(L0−La) · e
−t
t0 (15)

Unlike pigment bleaching and regeneration, neural adapta-
tion is symmetric. Following [PTYG00], we set t0 to 0.08
seconds for the cones and 0.15 seconds for the rods.

We implement these equations for an image stream by
maintaining an adaptation luminance for each neural mecha-
nism, the fraction of unbleached cone pigment, and the frac-
tion of unbleached rod pigment. At each frame we update
the adaptation state by using Equations 14 and 15 with t set
to the frame duration. La is set to the arithmetic mean of the
foveal image.

Slow neural adaptation is slower than fast neural adap-
tation, but faster than pigment bleaching and regeneration.
We determined time constants for slow neural adaptation
by matching the model to published dark adaptation data
[Hai41]. Figure 13 shows the time course of dark adapta-
tion. The first drop in threshold is due to fast neural adap-
tation, while the subsequent adaptation is dictated by cone
system before the more sensitive rod system takes over.

3.4.2. Adaptation during fixations
An additional modification is required to make this thresh-
old model suitable for tone mapping images. If we assume a
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Figure 11: Modeling dark adaptation. The top curve
starts with the eye adapted to 15000 cd/m2; middle curve
1500 cd/m2; bottom curve 12.5 cd/m2. Three parts of adap-
tation can be seen: fast neural adaptation, followed by the
slow neural adaptation, and trailed by the pigment regener-
ation process.

fixed adaptation state for the entire image, we will severely
overestimate thresholds, because in reality a viewer look-
ing at an image exhibits saccadic eye movements, fixating
for approximately 200-300 milliseconds in one area before
jumping to another [SB02]. During these fixations the vi-
sual system adapts significantly, so using a fixed adaptation
state is unrealistic. To account for this partial adaptation we
keep track of the average adaptation state over the image,
then compute a temporary adaptation state for each lumi-
nance level L as if the observer started in the average state
and then adapted for a fixation time t f to luminance L.

Using partial adaptation always results in increased visi-
bility compared to a single global adaptation, and our model
always results in decreased visibility compared to Ward, in
which the eye is assumed fully adapted for every luminance
level. The fixation time t f acts as a parameter to continuously
change the model from global adaptation, when t f = 0, to
full local adaptation (Ward’s approach), when t f = ∞. We
use t f = 1/3 second to simulate partial adaptation due to
saccadic eye movements.

Figure 12 shows Ward’s bathroom scene as seen by an ob-
server who is adapted to luminances much higher and much
lower than the prevailing luminance. With t f = ∞ there is
no concept of adaptation state and the images are identical;
with t f = 0 there is substantial loss of visibility in both cases;
and with t f = 1/3 sec the observer is able to adapt partially.
Because light adaptation is much faster for large changes in
luminance than dark adaptation, visibility is good in the case
of too-low adaptation luminance but poor in the case of too-
high adaptation luminance.

The partial adaptation approach completes our adaptation
model. Together with the TVIA and the improved histogram
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Figure 12: Partial adaptation. The average luminance of the
scene is 101 cd/m2; observer is adapted to 10−3 cd/m2 (top
row) and 105 cd/m2 (bottom row). The columns show the
effect of local, partial, and global approaches to calculating
adaptation state.

adjustment method we have described all the components of
our new operator.

4. Results
We have now achieved our goal of creating a new
perceptually-based tone mapping operator for high dynamic
range image streams. In this section we will first demon-
strate the basic capabilities of the operator and then show
how we have used it to create a low vision simulator that
produces images that predict the effects of aging on visual
performance.

We implemented the operator in MATLAB, and running
on a standard desktop PC (1.7 GHz, 512 Mb, Windows XP)
it processes the 1080 by 720 images in Figures 13, 15, and
16 in 5 to 10 seconds without acuity processing. Simulat-
ing acuity changes adds up to 30 seconds to the processing
time for dim scenes but could easily be implemented more
efficiently.

4.1. Dynamic range mapping; simulating visibility
One goal we set for our operator is to be able to tone map
scenes of arbitrary dynamic range. Figure 13 shows a stair
tower scene. A high dynamic range image of the scene was
captured using a Canon D30 digital camera and the tech-
niques described in [DM97]. With the door open the scene
has a dynamic range of 723:1, a maximum luminance of
2892 cd/m2 and an average (arithmetic mean) of 280 cd/m2.
With the door closed the scene’s dynamic range decreases
dramatically to 28:1 and the maximum and average lumi-
nances are 0.5 cd/m2 and 0.2 cd/m2 respectively.

With the door open the scene’s dynamic range exceeds

the dynamic range of a conventional display so a simple lin-
ear tone mapping operator will not be sufficient. The small
graph on the left shows the original luminance histogram of
the “door open” image (gray line), the ceiling curve for the
histogram bins (dotted line), and the histogram after redistri-
bution (black line). The small graph on the right shows the
resulting non-linear visibility preserving mapping function.
Note the effects of glare near the edges of the door frame and
the relatively low visibility of the dimly illuminated interior
regions.

When the door is closed, both the scene dynamic range
and average luminance level change dramatically. Because
the scene range is now smaller than the display range it
is possible for the operator to use a linear mapping func-
tion, but because the luminance levels are low, the function
should use less than the full display range to simulate the
limits of contrast visibility under these conditions. The right
side of Figure 13 shows the tone mapped image, the origi-
nal and adjusted histograms, and the mapping function. Note
the loss of color saturation produced by the operator’s visual
model. Acuity changes have also been computed, but the de-
tail losses at this level of illumination are are too small to be
visible in the images.

4.2. Handling image streams; time course effects
A second goal we set to achieve was to develop an opera-
tor that can efficiently process image streams and simulate
the transient visual effects caused by changes in scene lumi-
nance levels. Figure 14 presents some stills from the accom-
panying video that show our operator applied to Pattanaik et
al.’s tunnel sequence. As in the original, roadway luminance
is 5000 cd/m2 outside the tunnel and 5 cd/m2 inside. Note
the poor interior visibility at the tunnel entrance, the par-
tial recovery of visibility in the interior, the glare and cor-
responding losses when approaching the exit, and the final
recovery. Keen observers may notice differences the images
in our sequence and Pattanaik et al.’s. These are due to 1) the
different perceptual-matching criteria used by our threshold
visibility model and their suprathreshold color appearance
model; and 2) our ability to handle the animation’s high dy-
namic range images.

4.3. Simulating low vision
Finally, recall that our overarching goal is to create a low vi-
sion simulator that can show people with normal vision what
the world looks like to people with visual impairments. By
modifying the psychophysical data used in our new opera-
tor’s visual models (glare, adaptation, acuity, color, etc.) we
can simulate how scenes appear to observers with different
visual abilities. In this section, we demonstrate this capabil-
ity by simulating the changes of vision with age.

Three important changes in vision that occur over the life
span are increases in glare, decreases in contrast sensitivity,
and slowing of the time course of dark adaptation. To ac-
count for the changes in light scattering in the aging eye we
use the following model described by [Vos84], where age A
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Figure 13: Visibility preserving tone-mapping of a high dynamic range scene (left) and a low dynamic range scene (right).

Figure 14: Simulating the effects of the time course of adaptation. New operator applied to Pattanaik’s tunnel image sequence.

modifies the parameter V that represents the percentage of
light energy scattered by the glare filter in Ward’s operator.

V = 0.08 · 10+5 ·10−7 ·A4

10+5 ·10−7 ·204 (16)

Losses in contrast sensitivity with age are modeled by the
following threshold elevation equation based on measure-
ments by [SZT∗97] and [JOCF98], where A is the observer’s
age in decades. Similar effects of age were described earlier
by [BB71].

Threshold = 100.0085·max((A−20),0) · (Threshold at age 20)
(17)

Finally, studies by [CB92] and [JOJ99] have shown that
the slowing of the time course of dark adaptation with age
is largely due to changes in the rates of photopigment re-

generation. We model this by increasing the corresponding
rod and cone time constants in our adaptation model by 20.4
sec/decade and 12.6 sec/decade respectively in accordance
with their measurements.

Figures 15 and 16 show sequences generated by our low
vision simulator. The upper and lower rows simulate the dif-
ferences in glare and dark adaptation for young and old ob-
servers (20 years and 70 years respectively). The "before"
image shows the high dynamic range "door open" scene.
Note the differences in glare and in contrast visibility at both
the high and low ends of the luminance range. The 0, 5, and
10 minute images show differences in the rate and degree
of dark adaptation when the door in the "before" image is
closed. The 20 year old is well adapted after 5 minutes while
visibility for the 70 year old is still poor after 10 minutes.

Figure 16 similarly illustrates differences in light adapta-
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Figure 15: Simulating the effects of glare and age on dark adaptation.

Figure 16: Simulating the effects of glare and age on light adaptation.

tion in young and old observers. Note that when the door
is opened, the 20 year old observer rapidly adapts to the
higher luminance levels and dynamic range while the older
observer shows significant losses in visibility at this transi-
tion and overall poorer adaptation to the new conditions.

5. Conclusion and future work
We have presented a new tone mapping operator for high dy-
namic range scenes, based on a new model for contrast vis-
ibility under varying adaptation, that fills an important gap
in the field. The new operator is both perceptually based
and dynamic: it quantitatively reproduces contrast visibil-
ity while at the same time accounting for changes in the
observer’s adaptation state over time. It includes three new
components: the TVIA, our new contrast visibility model;
an improved histogram adjustment procedure that is tem-
porally continuous, and therefore is suitable for processing
dynamic image sequences; and a generalized model for the
time course of adaptation that accounts for the contributions
of three adaptation mechanisms. We have shown how this

new operator can solve the problem that originally moti-
vated the work: simulating visibility in time-varying, high
dynamic range scenes for observers with low vision.

Time-varying adaptation has fundamental implications
for the goals of perceptually based tone mapping, because
observers are constantly and significantly adapting as they
look around a high dynamic range scene. The observer can-
not be optimally adapted to every part of the scene, which
was the previously accepted assumption. On the other hand,
substantial adaptation does happen from one part of the im-
age to another. We have shown how to allow a realistic
amount of adaptation to reflect the very good abilities of nor-
mal observers in moderately high dynamic ranges while still
modeling loss of visibility in observers who have limited vi-
sion or are very maladapted.

Our work on tone mapping and vision simulation opens
up a number of areas for future work. Our operator is global
in nature, limiting its performance in scenes that have con-
tent over a continuous range of luminance levels. The same
visual models could be adapted to local tone mapping opera-
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tors, giving more flexibility. It would be useful to implement
the operator efficiently in graphics hardware and, eventually,
integrate it into a high dynamic range camera system to cre-
ate a portable, real time low vision simulator.

Our model for vision under maladaptation is based solely
on contrast thresholds. While it seeks to accurately repre-
sent the threshold visibility of scene features, it provides no
guarantee of matching appearance at suprathreshold levels.
The color and acuity aspects of the model, which we have
not changed from previous work, could also be made more
accurate, and more types of visual impairments (e. g. glau-
coma, cataracts, or macular degeneration) could be added.
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