
Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Metropolis Photon Sampling with Optional User Guidance

Shaohua Fan†, Stephen Chenney and Yu-Chi Lai

University of Wisconsin, Madison

Abstract
We presentMetropolis Photon Sampling(MPS), a visual importance-driven algorithm for populating photon
maps. Photon Mapping and other particle tracing algorithmsfail if the photons are poorly distributed. Our ap-
proach samples light transport paths that join a light to theeye, which accounts for the viewer in the sampling
process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algo-
rithm that exploits coherence among important light paths.We also present a technique for including user selected
paths in the sampling process without introducing bias. This allows a user to provide hints about important paths
or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantita-
tive improvements in error over standard Photon Mapping andMetropolis Light Transport.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Color, shading, shadowing, and texture
Keywords: global illumination, Photon Mapping, particle tracing, visual importance, MCMC, user input

1. Introduction

Applications from film special effects to industrial design
demand realistic renderings of complex scenes, yet the accu-
rate computation of global illumination remains a challeng-
ing problem. Photon Mapping [Jen01] is the current choice
of industry for scenes with general surface primitives and re-
flectance functions [Dri01]. It uses an initial pass to populate
photon maps with samples of the power arriving at points in
the scene. Afinal gatherpass then uses the maps to esti-
mate the contribution of indirect illumination to visible pix-
els. It is essential that the initial pass populate the maps with
photons useful to the final gather, but the standard technique
fails to do so in some common scenes. This paper presents
Metropolis Photon Sampling(MPS), a Monte Carlo sam-
pling algorithm for constructing photon maps that produces
high-quality results in situations where standard photon map
construction fails. MPS also gives users a technique to con-
trol variance over the image.

Standard Photon Mapping traces particles from the lights
distributed according to the lights’ power distribution, and
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deposits photons when the particles interact with surfaces.
It performs poorly when little of the lights’ total power ar-
rives at locations important to the final gather. This situa-
tion is not uncommon in practice: indoor environments may
have many lights that contribute unevenly to the image (Fig-
ure 1); in some scenes most light paths are occluded (Fig-
ure 4); and local views of outdoor scenes may see little of
the sun’s power (under a forest canopy or in downtown city
streets). Poor sampling results in excess noise in the indi-
rect illumination estimates derived from the map. Further-
more, low photon density leads to larger search radii in ac-
cessing photons, which causes inappropriate samples to be
included and hence severe energy bleeding. Both effects are
evidenced in the left image of Figure1, based on the photon
distribution on the left in Figure2.

One underlying cause of a poor sample distribution is the
lack of visual importance information; sampling from the
light does not consider the camera location. Our first contri-
bution is a technique,Metropolis Photon Sampling(MPS),
that builds photon maps using complete light paths that join
a light to the eye. By linking to the eye we account for vi-
sual importance and can identify photon storage locations
that will be useful to the final gather (Figure2). This re-
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Figure 1: Leftmost is the plan of a scene in which only a small portion ofthe lights’ total power contributes to the image.
The left image was produced using standard Photon Mapping, which under-samples some regions and over-samples others,
resulting in image noise and severe energy bleeding from theadjacent room (the cause of the incorrect illumination around the
edges of the rear wall). To the right is our result. Paths joining the eye to a light were sampled and photons were stored only in
important locations. The insets on the far right show zoomedsections taken from the center-left of the images, and demonstrate
how our method (lower) both reduces noise and avoids energy bleeding.

Figure 2: Photon distributions for Figure1. While standard
Photon Mapping generates many photons in a short period
of time (left), they are almost all located in places not rele-
vant to the final image. Right is our result for identical com-
putation time, with all the samples in locations useful to a
final gather operation.

duces image noise and energy bleeding artifacts in scenes
where most paths traced only from the lights are irrelevant
to the image (Figure1). MPS uses a Metropolis-Hastings al-
gorithm [MRR∗53,Has70,GRS96] to sample over paths, but
the general framework supports other sampling methods.

Regardless of the sampling strategy used, light paths that
are difficult to find randomly lead to image artifacts in Monte
Carlo rendered images. In Photon Mapping this tends to
manifest itself as smooth but incorrect results, while in a
pure Monte Carlo framework the result is noise. Frequently
the difficult paths are obvious to a user: light may have to
pass through a small opening or be focused by a particu-
lar scene element. Our second contribution enables a user to
provide a small set of important light transport paths that the
sampling process uses to reduce variance. No bias is intro-
duced to the result. User defined paths help when sampling
from difficult geometric arrangements, and also give a user
local control over variance in the image. For instance, in Fig-
ure1 the user suggested 10 paths that carry light through the
doorway from the neighboring room. Ours is the first tech-

nique in the rendering literature for including specific user-
defined sample paths in a Monte Carlo framework.

2. Related Work

The rendering equation [Kaj86,PH04] is the physical foun-
dation for image synthesis. Here we concentrate on Monte
Carlo methods for solving the equation; while finite element
methods for general scenes have been proposed [ICG86,
SP89,WCG87], they are not widely used due to high com-
putation time and memory requirements. The first unbiased
Monte Carlopath tracingalgorithm was introduced by Ka-
jiya [Kaj86]. Path tracing builds random ray trees rooted at
the eye and considers each valid transport path as a sample.
Bi-directional path tracing [LW93,VG94] forms paths from
both the eye and a light and joins them. This has the ad-
vantage of combining both visual importance and the lights’
power, but the disadvantage that each path is independent;
while a difficult path may be located by random chance, it
cannot be further exploited. Kollig and Keller [KK00] ad-
dress this problem with quasi-Monte Carlo methods, which
can exploit coherence in random number space under the as-
sumption that paths generated with similar random choices
are similar paths, which is not necessarily the case in even
mildly complex scenes.

Veach [VG97] presentedMetropolis Light Transport
(MLT), which is a Markov chain Monte Carlo (MCMC) al-
gorithm designed to exploit coherence in path space. MCMC
views sampling as a Markov process, and hence a good
sample found in one step can improve subsequent samples.
MCMC also allows multiple sampling strategies to be com-
bined without introducing bias, which enables us to incor-
porate user-guided sampling. Veach’sMultiple Importance
Sampling[VG95] also combines different strategies, and it
could also support user input of the form we propose. An al-
ternate MCMC approach to rendering has been proposed by
Kelemen et al. [KSKAC02]. Rather than sampling in path
space, they sample on a high-dimensional unit cube. MLT
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was extended to support participating media by Pauly et
al. [PKK00].

A single sample may be representative of illumination
over a large region if radiance varies slowly, as is often
the case in scenes with significant indirect diffuse illumi-
nation.Particle tracingalgorithms, of which Photon Map-
ping is one, exploit this to re-use light paths. Arvo [Arv86],
Heckbert [Hec90] and Collins [Col94] proposed algorithms
that useillumination-mapsto store irradiance arriving along
sampled paths. Like Photon Mapping, particles are traced
from the lights, but they require parameterized geometry for
the maps. The method of Shirley et al. [SWH∗95] traces
particles and builds a polygonal mesh representation that
can be rendered in real time for varying viewpoint. Chen
et al. [CRMT91] also worked with 2D maps but in addi-
tion offered a progressive refinement solution. Our sampling
method could be used with any of these prior techniques,
with some modification to particle storage. Ward’sRADI-
ANCEsystem [WRC88,War94] traces rays from the eye and
caches diffuse contributions for use in subsequent estimates.
The irradiance cachingtechnique [WH92] is used to deter-
mine if the cached samples provide an adequate estimate.

Many rendering algorithms have been developed to ex-
ploit visual importance; see Christensen [Chr03] for a sur-
vey. Specific to particle tracing,importon techniques trace
particles from the eye to construct animporton mapthat is
used to estimate visual importance. Peter and Pietrek [PP98]
used the importon map to construct importance sampling
distributions for each scattering event of the particle trac-
ing phase. The algorithm is expensive due to the cost of
computing distributions at every particle bounce, its local
decisions may not produce a globally important path, and
the importance sampling produces photons with highly vari-
able power. Keller and Wald [KW00] used importon maps to
avoid photon storage in areas that contribute little to the final
image. Their technique reduces memory usage and main-
tains roughly uniform photon power, but gives no control
over the generation of the samples in the first place. Suykens
and Willems’ [SW00] algorithm considers the current sam-
ple density in the photon map when storing a new sample
and redistributes its power if it would result in excess den-
sity (without modifying photon generation). Unlike existing
methods, our algorithm samples from complete paths join-
ing the light to the eye and thus efficiently accounts for vi-
sual importance without using importons. Complete paths
also provide information about important photon storage lo-
cations and hence reduce redundant photons.

Variance is typically controlled by using more samples, or
designing new algorithms (not a natural tool for most end-
users). Ward [War94] allows users to specify surfaces as im-
portant secondary light sources, and the system builds their
outgoing irradiance functions for use in indirect illumina-
tion. The technique is targeted at large secondary sources,
such as windows, but fails if the secondary source itself is

not easy to reach from the light or no one surface is signifi-
cant enough to warrant the attention. Our approach allows a
user to specify paths through multiple reflections, and places
no restrictions on the surfaces or pieces of surface affected.
A related idea to user input is sampling based on pilot paths
that are found in a random initial pass (or in the previous
frame of an animation). Dmitriev et al. [DBMS02] discuss
this approach in the animation context, but it relies on sim-
ilarity in random number space to compute path perturba-
tions. With user input, there are no random variables associ-
ated with the paths, so this approach cannot be applied.

3. Light Paths To Photons

We incorporate visual importance into photon map construc-
tion by extracting photons fromcompletelight paths that join
a point on a light source to the eye through some number
of scattering (reflection or transmission) events. Complete
paths also allow us to identify the point on the path at which
a photon should be stored. Assume for the moment that we
can produce sample light paths. In this section we address
the way in which photons are extracted from the paths.

3.1. Photon Locations

Given a light path, we wish to identify the point or points
along it that will be accessed during a photon map lookup.
This clearly depends on how the final gather is performed.
We use a standard Photon Mapping final gather as described
by Jensen [Jen01], to whom we refer the reader for motiva-
tion and details. Estimation of radiance from the global pho-
ton map takes place at points that lie at the second diffuse
bounce on paths traced from the eye (possibly with interven-
ing specular bounces). Hence, we store a photon at the sec-
ond diffuse point for each path that our sampler produces.
Estimation from caustic photons occurs at the first diffuse
bounce, so we store in both the global and caustic map at the
first diffuse point along caustic paths. In any case, we refer
to the photon storage location on a path as thestorage point.

The nearest neighbors around a point of interest,p, are
used when estimating radiance from the maps. The neigh-
bors are assumed to be representative of the incoming radi-
ance atp, which requires that radiance vary slowly in the re-
gion from which they come. This assumption is more likely
to be true, and hence the estimate better, as the density of
photons aroundp increases and the neighbors fall within
a smaller region. Our algorithm ensures that most stored
photons lie around points where final gather estimates are
formed, and hence optimizes the quality of the estimate for
a given map-building effort and memory footprint.

The use of akd-tree for photon storage removes the need
for a surface parameterization (allowing for a wider range
of surfaces and fast neighbor lookup) but this also decou-
ples photons from surface properties. Severe light bleeding
can occur due to the breakdown of the slow varying radiance
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assumption, which is hard to detect without surface informa-
tion. This is a major problem in scenes where a light is on
the back side of a thin divider, as in Figure1.

A common practical solution is to store a normal vector
with each photon and require that it be similar to the normal
at the point where the estimate is being taken. This reduces
bleeding in concave corners, but fails in our scenes. For in-
stance, the floor is oriented the same on both sides of the
wall in Figure 1. Importon based methods (Section2) fail
to address the energy bleeding through walls problem be-
cause importance can leak just as energy does, allowing pho-
tons to be stored in unimportant regions. However, points on
the back side of a wall are almost never the second diffuse
bounce on a path from the eye, so our method automatically
avoids storing them and hence significantly reduces energy
bleeding in from unimportant areas of the scene.

3.2. Photon Storage

As with standard Photon Mapping, for each photonj ,
we store the location,x( j), incoming ray direction,θ( j),
and radiant flux (power),Φ( j). In this section we describe
how Φ( j) is computed for a sampled path. Our discussion
is based on the particle tracing framework introduced by
Veach [Vea97, §4.A] and applied to Photon Mapping by
Pharr and Humphreys [PH04]. Expressed in terms of sam-
pling from path space, we require that each photonj have
power such that

E

[

∑
R

Φ( j)

]

=

Z

ΩR

fmap(x)dµ(x) (1)

where the sum is over the set of photons within a region of
area and solid angle,R. The integral is overΩR, the set of
light transport paths that begin on a light and end within the
region,µ(x) is the surface area measure for the pathx, and
fmap(x) is defined as

fmap(x) = Le(x0,x1)G(x0,x1)

·
m−1

∏
i=1

fs(xi−1,xi ,xi+1)G(xi ,xi+1)

in whichxi is a point on the pathx, Le(x0,x1) is the radiance
emitted by a light pointx0 toward x1, fs(xi−1,xi,xi+1) is
the bidirectional scattering distribution function for surface
pointxi , andG(xi ,xi+1) is the geometry term between points
xi andxi+1:

G(xi ,xi+1) = V(xi ,xi+1)
|cos(θi)cos(θ′i )|
‖xi − xi+1‖2

θi and θ′i are the angles betweenxi→xi+1 and the sur-
face normals atxi andxi+1 respectively. The visibility term
V(xi ,xi+1) has value 1 ifxi can seexi+1 and 0 otherwise.

If we consider the region of interest,R, to be all the
points accessed during the final gather, Equation1 takes the

form of a Monte Carlo estimate of an integral. The sum
on the left is over all the photons in the map, and the in-
tegral on the right evaluates to the total power arriving in the
map,Bmap. If we sample paths according to the distribution
pmap = fmap(x)/Bmap, each one of theN photons should
have the same power:Φ = Bmap/N.

We only store photons at points relevant to the final gather,
so the above discussion assumes we are sampling over paths
terminating at such points. However, the designation of stor-
age points relies on having the complete path to the eye, in
order to count the number of diffuse bounces on the sub-
path from the eye. To obtain this information, MPS samples
from the space of all paths that join the light to the eye and
stores photons only for the desired sub-paths. We sample ac-
cording to the probability distribution function (pdf) given
by peye(x) = feye(x)/Beye, where

feye(x) = W(x)Le(x0,x1)G(x0,x1)

·
m−1

∏
i=1

fs(xi−1,xi ,xi+1)G(xi ,xi+1) (2)

The functionW(x) takes the value 1 if the path passes
through the image plane, and 0 otherwise.Beye is the nor-
malizing constant, in this case the total power arriving at the
image, and should satisfy

Beye=

Z

Ωeye

W(x) feye(x)dµ(x)

whereΩeye is the space of all paths that join a light to the
eye. Following Veach [Vea97], we use path tracing to es-
timate this integral. Not many path tracing samples are re-
quired because we are averaging across all pixels.

When we usepeye as the target distribution the result-
ing samples will no longer be distributed according topmap

as required for correct photon map estimation (Equation1).
This is accounted for using standard importance sampling
re-weighting:

Φ( j) =
1
N

fmap(x
( j)
map)

peye(x( j))
=

Beye

N

fmap(x
( j)
map)

feye(x( j))

wherexmap is the sub-pathL(D|S)∗D from a sampled path of
the formL(D|S)∗DS∗DS∗E for which a photon is stored in
the global map, or the sub-pathLS∗D of anLS∗DS∗E path
for caustic photon storage. Note that we no longer require
Bmap. Furthermore, when sampling according topeye(x) we
may generate paths that do not result in photon storage (i.e.
not of the formL(D|S)∗DS∗DS∗E or LS∗DS∗E). In this
case,fmap= 0 and no photon is stored.

The Metropolis-Hastings sampler we use may provide
many paths with the same storage point,x( j), and incoming
ray direction,θ( j). This is due either to rejection of candi-
date paths, in which case the entire path is repeated, or a
proposal that retains the storage point while changing some
other part of the path (see Section4). Instead of generating a
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new photon in such cases, we accumulate the power in a sin-
gle photon and hence reduce photon storage cost and look-
up time. In practice, few paths contribute to any one photon
and the resulting per-photon power variation does not create
artifacts.

The scattering functionfs(xi−1,xi,xi+1) is wavelength
dependent. We evaluatefs for the standard RGB channels,
and use them to computefmap,R, feye,R, etc. For the sampling
process we must attach a single probability to each path. We
use the luminance channel,feye,Y, computed with the RGB
to XYZ color conversion. With this path probability, the red
power for the stored photon (green and blue are similar) is

Φ( j)
R =

Beye,Y

N

fmap,R(x( j)
map)

feye,Y(x( j))

The framework developed to this point does not depend
on the method for finding sample paths, or even on their pdf,
peye. Any sampling technique capable of generating paths
from the light to the eye, such as bi-directional path tracing,
could be used. We chose a Metropolis-Hastings sampler be-
cause it can both exploit coherence in path space and support
user input.

4. Sampling Paths

Metropolis-Hastings algorithms use a Markov process de-
signed to obtain a sequence of samples whose distribution
converges to a target pdf. Following Veach [Vea97], to esti-
mate radiometric quantities we want each sample path,x, to
come from the space of all transport paths joining the light to
the eye,Ωeye. The target pdf ispeye(x). Each pathx with m
segments is parameterized by the surface intersection points
at which a scattering event occurs,xi , i ∈ [1, . . . ,m− 1],
along with the final point,xm, and the point on the light
source from which the particle is emitted,x0.

The Markov process generates each sample in the se-
quence,Xt , by proposing a candidate,X′

t , based on the pre-
vious sampleXt−1, and either accepting this candidate asXt

or rejecting it and repeatingXt−1. In pseudo-code:

X0← initialSample()
for t = 1 to N

X′
t ← propose(Xt−1)

r ← uniformRandom[0,1)
if ( r < α(X′

t |Xt−1) ) then
Xt = X′

t
else

Xt = Xt−1

The procedureinitialSamplechooses one of the paths gen-
erated by the path tracing computation forBeye, accord-
ing to the distributionpeye. The initial sample chosen in
this way is unbiased, so there will be no start-up bias in
the Markov chain [GRS96, Vea97]. The proposal function,

propose(Xt−1), produces a new light path by applying a ran-
dom modification to the current sample. While the correct-
ness conditions placed on the modifications are not difficult
to satisfy, the strategies employed are the primary factor in
determining the efficiency of the algorithm (the number of
samples required for a good estimate). We describe our mu-
tation strategies below.

The functionα(X′
t |Xt−1) computes theacceptance prob-

ability for X′
t given the current sample.

α(X′
t |Xt−1) = min

{

1,
feye,Y(X′

t )T(Xt−1|X
′
t )

feye,Y(Xt−1)T(X′
t |Xt−1)

}

(3)

The function feye,Y(X′
t ) is proportional to the target pdf

peye(x) (and the normalization constant cancels out).

T(X′
t |Xt−1) is the transition function (or proposal dis-

tribution) which gives the probability of choosing, by any
means,X′

t givenXt−1. Note that the reverse transition func-
tion, T(Xt−1|X

′
t ), is also required, and in a Metropolis-

Hastings sampler it need not equalT(X′
t |Xt−1).

4.1. Proposal Strategies

The techniques used in thepropose(Xt−1) procedure of the
MCMC algorithm are the key to its efficient and correct
operation. There are two conflicting goals in designing a
good proposal. The candidate path,X′

t , should be as differ-
ent as possible from the current path,Xt−1, to rapidly move
around the sample state space. At the same time it should
be sufficiently similar toXt−1 to exploit coherence in high-
power paths. The technical conditions onpropose(Xt−1) en-
sure that there is some non-zero probability way to move
between any two non-zero probability paths (see Gilks et
al. [GRS96]). The acceptance probability,α(X′

t |Xt−1), is
specifically designed to takeanyproposal strategy that meets
the conditions, properly encoded in the transition functions
T(Xt−1|X

′
t ) and T(X′

t |Xt−1), and create an unbiased sam-
pler.

We introduce two novel mutation strategies.User Path
(UP) proposals make use of user hints about which paths
are likely to be important to the final result (Section5). The
variance of any estimate is reduced around the given paths.
Photon Map (PM) proposals explore paths that will con-
tribute to the global photon map (Section5.3). They change
the sample path while retaining theDS∗E sub-path to the
eye.

In addition, four other proposal types previously de-
scribed for MLT are suitable for use here [VG97]. Bi-
Directional (BD) proposals modify sub-paths of the cur-
rent path, with the aim of rapidly exploring the sampling
space.Caustic Perturbation (CP) andLens Perturbation
(LP) proposals also modify sub-paths, but this time with the
aim of exploiting coherence in high-power, localized fea-
tures. Finally,Lens Sub-path (LS)proposals stratify sam-
ples across the image, which ensures that enough samples
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are captured in darker regions of the scene. We implement
each of these strategies in the same manner as MLT.

Each time thepropose(Xt−1) procedure is called we
choose one of the above strategies at random according to
a fixed distribution. That is,proposetype(Xt−1) is selected
with probability Ptype wheretype is one of the above op-
tions and∑typePtype= 1. In computing the transition func-
tion, T(X′

t |Xt−1), all possible proposals that might generate
X′

t from Xt−1 should be considered:

T(X′
t |Xt−1) = ∑

type
PtypeTtype(X

′
t |Xt−1) (4)

However, it is also acceptable to consider only the func-
tion derived from the proposal strategy chosen to generate
X′

t [Tie98,AD99]:

T(X′
t |Xt−1) = Tchosen(X

′
t |Xt−1) (5)

We use a combination of both strategies: Equation5 avoids
the computation of unnecessary transition functions, but
Equation4 is required for user path proposals (Section5.2).

5. User Path Proposals

The user path proposal strategy increases the proportion of
candidate paths around those supplied by the user. This re-
sults in variance reduction for any estimate based on the
paths, such as photon map evaluation. There are several ap-
plications:

Difficult Paths: Transport paths that are particularly hard to
find randomly lead to large variance, because they may be
found and give a high contribution, or not found and give
no contribution. Among our images, the caustic caused by
light bouncing off the mirror and through the glass ball in
the Box scene of Figure5 best fits this description. Light
shining through a keyhole is perhaps the most commonly
thought of example, if not the most common in practice. A
user can supply paths that meet the geometric constraints
and thus ensure the feature is adequately sampled.

User Control of Variance: Some regions of an image may
be more important than others, such as those toward the
center or in some other perceptually important region. A
user can supply paths leading to the region of interest and
it will be sampled with lower variance than other regions
(Figure3).

Resampling: Rather than a user defining paths, they could
be taken from some previous sampling operation. Our ear-
liest experiments used paths taken from the initial path
tracing pass to estimateBeye. Alternatively, a user could
identify paths from a coarse run of the algorithm and re-
use them in a final render. Resampling should also enable
adaptive, unbiased Monte Carlo rendering and provide
a handle on low-variance, physically-accurate animation
rendering, but we leave these topics for future work.

Figure 3 compares image rendered with the Metropolis
Light Transport algorithm: one with user paths and one with-

Figure 3: An example of variance control due to the user
path proposal strategy. Top is the image rendered with no
user paths, while center is the result when the user specified
ten paths passing through the doorway. Bottom are zooms of
the wall intersection and table regions, with no user paths on
the left and user paths on the right. These are MLT images
that directly visualize the sampled light paths. The improve-
ments after a final gather, while present, are less apparent.

out. Each image used 3 million iterations, producing a vari-
ance measurement ofVAR(E) = 1.04 (Section6) for the im-
age with user input. It requires 4.8 million samples, or about
60% more time, to achieve similar results without the user
input.

Reducing variance in one area of the image may lead to
increased variance elsewhere, but it is not a zero-sum game.
User paths can lead to a global reduction in variance if they
increase the average acceptance probability, and hence the
number of different paths sampled. This was the case in Fig-
ure3, where the acceptance rate rose from 58% to 65% with
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the introduction of user paths. In any event, users can choose
to make a trade-off based on their own situation.

The user path proposal is not essential to achieving good
results with Metropolis-Hastings sampling. It is a way to en-
hance control of the algorithm. The image in Figure4 did
not use the proposal, and the result in Figure1 is almost as
good without the user paths.

5.1. Candidates from User Paths

Each path provided by the user must start at a light and end
at a diffuse surface. To obtain paths, we built a simple inter-
face for the Box scene which allowed a user to interactively
vary the origins and directions of rays from the light which
were then traced through the scene and extracted as user
paths. Tools like this could readily be included in modeling
packages. For Figure3 we specified paths by hand based on
knowledge of the geometry.

Each path is input to the system as a sequence of surface
points at which scattering occurs. These are stored as a set,
{u1, . . . ,uNUP}, containingNUP paths. The first step of a pro-
posal is to choose, uniformly at random, one of the input
paths,u = 〈x0, . . . ,xm〉. This path forms a skeleton that we
perturb to form the candidate path. The perturbation explores
the space around the user path while avoiding the accumula-
tion of a large power at a single photon.

The candidate path,
〈

x′0, . . . ,x
′
m
〉

, is built starting at the
light: x′0 = x0. We randomly generate a direction within a
cone about axisx0→ x1 by samplingθ, the angle between
the axis and the direction, uniform in[0,β) and φ, the az-
imuthal angle, uniform in[0,2π). The surface point struck in
this direction,x′1, is the next point on the candidate path. We
repeat the processm times, using the directionx′i−1→ xi as
the axis of the sample cone. To form a complete path to the
eye, the sub-path of sampleXt−1 joining the eye to the first
diffuse hit point is appended to the candidate. The candidate
is rejected if there is no such diffuse point. When settingβ,
lower values are good for exploring tightly constrained paths
while higher values give more variation around the user path
and hence reduce variance over a larger area. The user can
also specify a differentβ for each path segment.

The candidate path may pass through an opaque surface,
in which case a visibility term infeyeis zero and the path will
be rejected. If the user path contains specular interactions, a
specular surface must be found at the same index on the per-
turbed path. If it is, we follow the specular bounce rather
than sampling a perturbed direction. If the user path specu-
larity is not matched in the perturbed path, or the perturbed
path intersects an unmatched specular surface, the candi-
date is rejected. These restrictions ensure that the specular
bounces “cancel out” in computing the acceptance probabil-
ity (see Veach [Vea97, §10.3.5]).

5.2. User Path Transition Functions

The transition probability must consider all the possible
ways a UP proposal may have generated the candidate:

TUP(X′
t |Xt−1) =

1
NUP

NUP

∑
i=1

C(ui)
m−1

∏
j=0

p j
G(x′j ↔ x j+1)

cosθ′j
(6)

C(ui) is 1 if the candidate could have been generated from
pathui , otherwise 0. The product of terms accounts for the
probability of each perturbed bounce. If the bounce atx j

was non-specular, thenp j = 1/2πβ j . For a specular bounce,
p j = 1 because there is no random choice. The geometry
terms are still required to convert from solid angle measure
to surface area measure. The geometry and cosine term con-
vert the direction sampled according to solid angle measure
into one sampled using the surface area measure.θ′j is the
angle between the normal atx′j and the directionx′j → x j+1.

To computeC(ui), we perform the procedure for building
a candidate fromui , but rather than creating the new candi-
date we check that the pointx0 is common toX′

t andui and
that each ray direction inX′

t lies within the sample cone of
ui . Finally, the resulting number of path segments must cor-
respond. The reverse transition probability,TUP(Xt−1|X

′
t ), is

is similarly computed.

The UP proposal generates a path,X′
t , close to a user given

path regardless of the previous path,Xt−1. However, in most
cases the pathXt−1 could not have been generated fromX′

t
in the same manner; most paths are not close to user defined.
Hence,TUP(Xt−1|X

′
t ) will be zero in almost all cases. This

leads to a zero acceptance probability, which is a problem
because the proposed path will never be used. It is, how-
ever, possible to generate a UP proposal candidate using a
BD proposal because the latter gives any path a non-zero
transition probability. Hence, we combine the UP and BD
proposal strategies when computing transition functions:if
chosenis eitherUP or BD, then

T(X′
t |Xt−1)=

PUPTUP(X′
t |Xt−1)+PBDTBD(X′

t |Xt−1)

PUP+PBD
(7)

Thus we have a two tiered proposal selection process.
First, we decide if the proposal will be a UP-BD hybrid (with
probabilityPUP+PBD) or one of the others. We apply Equa-
tion 5 for this selection. If the hybrid is chosen, we decide
between UP and BD, and apply Equation7.

The combination of UP and BD proposals in computing
the transition functions is the key idea for enabling user input
samples, and is possible because the acceptance probability
mechanism of a Metropolis-Hastings sampler allows differ-
ent sampling processes (proposal strategies) to be combined.
Furthermore, the acceptance criteria ensures that the final
distribution is unbiased provided the transition functions and
target pdf values are correctly computed. Intuitively, theal-
gorithm rejects just the right proportion of UP candidates to
ensure that the final result is not biased toward them.

c© The Eurographics Association 2005.



S. Fan, S. Chenney and Y-C. Lai / Metropolis Photon Sampling with Optional User Guidance

The values forPUP andPBD will influence performance of
the algorithm. Assume that the reverse transition function,
TUP(X′

t−1|Xt), is very small or zero and considerPUP/PBD,
the ratio of UP to BD proposals. AsPUP/PBD increases, the
acceptance probability (Equation3) will decrease, resulting
in the chain repeating the same path more often. This results
in fewer photons stored away from the user path (fewer can-
didates for these paths are proposed), but increases the power
of those photons, resulting in a noisier image away from the
user path. This effect is counter-balanced by the ratio of the
feye,Y terms, which favors transitions to important paths, in-
cluding user paths, regardless of how they were proposed.

When using user paths to overcome hard-to-find paths, the
ratioPUP/PBD should be higher to provide many user candi-
dates which will be accepted due to their highfeye,Y. In the
context of user-guided variance reduction, the ratio should
be smaller to avoid frequent rejection of user path candidates
and the higher variance that would result in regions away
from the user paths. Varying the ratio gives the user control
over how much influence their paths have on the distribution
of variance over image.

Rather than users providing paths, the user-path proposal
could be extended to include hints about important sur-
face patches or reflectance directions. To use important sur-
face patches, for instance, the candidate path would be con-
structed by randomly choosing points on the patches and
joining them up. The terms inside the product in Equation6
must be modified to account for the new probabilities of
choosing the points. Otherwise the algorithm is unchanged.

5.3. Photon Map Proposal

The PM proposal generates complete paths with eye sub-
paths that are similar to those used in the final gather phase.
Photons derived from the complete paths will thus be at lo-
cations later useful for gathering. Tracing back toward the
light from the last diffuse surface point,xd, (that closest
to the eye) we find a sub-path〈xd−k, . . . ,xd〉 of the form
(L|D)DS∗D. That is, the sub-path back through any num-
ber of specular bounces (possibly 0) followed by a diffuse
bounce and ending at the next diffuse surface, or the light.
The candidate path keepsxd and modifies the direction back
to xd−1, similar to the way a final gather operation dis-
tributes rays to estimate indirect illumination.

We modify the centralDS∗ portion of the sequence by
perturbing the direction of the rayxd → xd−1 by an an-
gle θ uniform in [0, γ) and φ uniform in [0,2π) (as in
the UP proposal). For all examples in the paper we set
γ = 30◦, and the precise value seems not to impact the re-
sults. This ray is traced back through zero or more specular
bounces until the next diffuse hit, forming a newDS∗ se-
quence which is inserted in place of the original, resultingin
〈

xd−k,x
′
d−k′−1, . . . ,x

′
d−1,xd

〉

. The diffuse (or light) points
on the end of the modified segment allow for non-zero prob-
ability that the candidate path will carry some power.

Figure 4: A Jack-o-Lantern scene demonstrating MPS’s ef-
ficient placement of samples. The Photon Mapping scene
(lower) stores excess photons inside the box and an insuf-
ficient number on the walls of the room, resulting, respec-
tively, in significant energy bleeding around the base of the
box on the table and noise throughout the image.

The transition probability is similar to that of the UP pro-
posal, except that there is only one perturbed choice fol-
lowed by a number of specular bounces:

TPM(X′
t |Xt−1) =

G(xd,xd−1)

2πγcosθd

d−k′−2

∏
j=d−1

G(x′j ,x
′
j+1)

cosθ′j

6. Results and Discussion

Our rendering system uses libraries and code from the PBRT
toolkit [PH04] wherever possible, including for the final
gather operation. There are a variety of parameters to the al-
gorithm. Those for the MLT-style proposals were taken from
Veach [Vea97]. Of the Photon Mapping final gather param-
eters, the formula for computing the maximum search dis-
tance for photons,dmax, was taken from Suykens [Suy02, Pg.
159] (with the parameterα = 0.1) while the maximum num-
ber of photons in an estimate,n, was set at 60. We introduced
new parameters for the probability of choosing a proposal
strategy,Ptype, which are given below on a per-image basis.
We also introduced parameters for controlling the perturba-
tion of a user path,β, which we varied per image, and the
perturbation of a photon map sub-path,γ = 30◦.
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Scene Resolution tB (s) tmap (s) tFG (s) Totalt (s) # Photons RMS Error
MPS PM MPS PM MPS PM MPS PM MPS PM

Rooms 720×405 21 40 9 419 469 480 478 81004 300000 0.036 0.4239
Lantern 684×513 11 10 4 185 198 206 202 8675 37160 0.0728 1.165

Box 640×480 9 26 12 208 230 243 242 47798 250000 0.0214 0.0227

Table 1: Statistics for images in the paper. Timing is given for MPS and Photon Mapping: tB is the time to estimate Beye, tmap

is the photon sampling time and tFG is final gather time. While MPS spends more time sampling, thefewer, well-distributed
photons reduces the time required for the final gather. We also give the number of photons stored. Memory usage for the maps
is linear in photon number, with 49 bytes per photon in the PBRT implementation that we use [PH04]. Finally, we give RMS
errors for the images compared against path tracing solutions that ran for several days (Figure6).

Timing results and other statistics for the images in the
paper are provided in Table1. All images for comparison be-
tween methods were generated with nearly equal total com-
putation time. All were reconstructed with a Gaussian ker-
nel of width 2 pixels andσ = 1. Irradiance caching [WH92]
was used to speed up photon map estimation [Jen01]. For
tone reproduction we used Reinhard et al. [RSSF02], with
the parameterymax= 100. We implemented one further op-
timization borrowed from MLT. Rather than storing nothing
for rejected paths, we store a photon with power reduced ac-
cording to the acceptance probability, and reduce the power
of the repeated path to compensate [Vea97]. This increases
the number of photons stored and extracts some benefit from
rejected paths, but at the cost of increased variance in pho-
ton power. We have found the benefits of increased usable
photons to outweigh the variance.

We also computed error measurements with respect to a
long running path tracing estimate of each image. For each
pixel, we computed the relative error (before tone mapping):

E(x,y) =
I(x,y)− Ire f(x,y)

Ire f(x,y)

whereIre f is the pixel luminance value from the path trac-
ing reference image. In Table1, we report the RMS value
of these errors over the entire image, for MPS sampling and
standard photon map sampling. MPS out-performs PM in all
cases (although by a negligible amount in the Box example).
Note that we cannot expect zero error here – even the refer-
ence image contains noise.

The Rooms scene of Figure1 contains about 42,000 prim-
itives. Both the Photon Mapping and MPS images used 4
samples per pixel and 40 final gather rays per sample for
estimating indirect illumination. The scene contained user
paths specified by hand but no caustics, and we setβ = 5◦

in the user path mutation. The proposal probabilities were:
PUP=0.1,PBD=0.3,PPM=0.2,PCP=0, PLP=0.2 andPLS=0.2.
These, like all our proposal probabilities, were chosen to
give roughly equal proportion to each strategy that was use-
ful for the scene. While MPS spent significantly more time
than Photon Mapping in sampling photons, it was regained
in the faster final gather phase; MPS’s smaller number of
well-distributed photons improved the performance of near-
est neighbor searching in the photon map. We also rendered

this scene with Photon Mapping using 6 million photons,
which took almost an hour and reduced the noise in the re-
sult, but failed to remove the energy bleeding problems and
used two orders of magnitude more memory than MPS.

Apart from managing difficult transport paths, a signifi-
cant advantage of MPS is its ability to store photons only
where relevant. Figure4 demonstrates a scene in which Pho-
ton Mapping stores almost all photons inside the lantern,
where they remain unused when gathering for wall pixels.
In contrast, MPS places almost all samples on the walls of
the room. This results in reduced energy bleeding on the ta-
ble around the box and far less noise in the image overall.
These images used 30 samples for each indirect illumination
estimate, and 4 samples per pixel. This scene contained no
user paths (the important transport paths are not too hard to
sample) nor caustics, hence the proposal probabilities were:
PUP=0, PBD=0.4,PPM=0.2,PCP=0, PLP=0.2 andPLS=0.2.

Figure5 shows a variant on the Cornell Box scene with
complex caustic paths (the right wall and rear ball are mir-
rors, and the front ball is glass). We used ten user paths in this
scene, five for each caustic under the ball. These were per-
turbed usingβ = 1◦ for segments between the light and mir-
ror wall, andβ = 5◦ for segments from the light direct to the
glass ball. We setPUP=0.1, PBD=0.3, PPM=0.2, PCP=0.12,
PLP=0.08 andPLS=0.2. Photon Mapping requires many pho-
tons to resolve the small caustic due to light bouncing off
the mirror through the glass ball. Furthermore, the mirror
wall subtends a large area at the light, so it is difficult to
concentrate photon sampling toward the caustic producing
region, and caustic photons sparsely stored on the rear wall
cause excess noise due to their high power. Even with more
photons, the caustic is not as good as that from MPS.

6.1. Limitations and Extensions

MPS is slower per photon than standard Photon Mapping,
but a greater proportion of the stored photons are typically
useful. The increase in per-photon cost is because more
terms must be evaluated to determine the acceptance prob-
ability for each candidate. A path tracing phase is also re-
quired and its cost should be amortized over the stored pho-
tons. However, the significant improvement in photon distri-
bution achieved with MPS allows for fewer photons overall
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Figure 5: The Box scene has a mirror ball at the rear and a mirror right wall, while the front ball is glass. The left image
included ten paths specified by the user: five contribute to the large caustic under the glass ball, while the others bounceoff
the mirror and through the ball to contribute to the smaller caustic. The center scene had no user paths, and consequentlythe
caustics show high variance. Right is a Photon Mapping imageof the Box scene computed in equivalent time. The large number
of photons cast to resolve the small caustic result in slightly greater noise in the right-rear of the box.

Figure 6: Reference images for the scenes in the paper, gen-
erated using path tracing.

and typically reduces the cost of the final gather, giving bet-
ter images for a given computational effort. We have also lost
the view invariance of standard photon map construction, as
would any method using visual importance. If the viewer’s
path were known, the eye location could be a variable in-
cluded in the sampling process, just as locations on an area
light source can vary.

Samples from a Metropolis-Hastings algorithm are corre-
lated due to the Markov process, so the chain needs some
time to explore the space adequately, whereas independent
particles traced from the light will show no spatial correla-
tion, and can be stratified across the light surface and outgo-
ing direction. This may be important in scenes with very few
photons. Parallel Markov chains could be used to generate
samples, which would improve the distribution of samples
over very short runs. We found this made no difference to
the results for the photon counts required in our scenes.

Alternate methods could be used to sample paths, such
as bi-directional path tracing or path tracing from the eye.
These would be simpler to implement, and less computa-
tionally expensive, but lack the ability of MPS to exploit
correlation in power between neighboring paths. A produc-
tion system should support multiple algorithms for populat-
ing photon maps and share the final gather code and many
other modules, including those for ray-tracing and BRDF
sampling. Our system is built this way.

We store photons only at a single point along a sampled
path — the point most relevant to a final gather operation.
However, other points along the path may also be useful,
as is the case in the Box scene where any diffuse surface
point may be called upon to compute a radiance estimate. We
choose not to store additional points because of the memory
overhead and the energy bleeding problem. An alternative
is to use an importon map to measure the visual importance
of surface points, and store photons at any sufficiently im-
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portant point along the path [KW00]. This would probably
reduce the number of iterations required for MPS on simple
scenes, at the cost of an importon map construction phase.

The target pdf we use,feye, considers all paths that carry
power from the lights to the image as important. We could
support other forms of importance, such as perceptual met-
rics or shading discontinuities, simply by modifying the
Weye(x) component of feye. The only potential downside
would be an increase in the variability of power stored at the
photons,Φ( j), which can increase noise in the final image.

The user path proposal can be used, unmodified, for
Metropolis Light Transport (Figure3). Its impact is even
greater because the variance in MLT is not disguised by the
final gather operation. Conversely, MLT offers a variance re-
duction technique that we did not implement: the brightness
of image pixels is estimated in a first pass and used to mod-
ify the path probabilities to make all pixels equally probable.
This could be implemented in MPS through importon maps
that modified the probability of paths, but it may result in
large variance in photon powers.

Finally, our work could be extended to atmospheric scat-
tering by combining Photon Mapping for participating me-
dia [JC98] with Pauly et al.’s [PKK00] MCMC sampler.

7. Conclusion

Metropolis Photon Sampling succeeds in generating photon
map samples that meet the needs of the final gather phase,
without wasting storage or computation time on unnecessary
photons. It achieves this by sampling only over light trans-
port paths that reach the image, and storing photons only
at appropriate points along the path. The photon distribu-
tion that results has more photons that contribute to visually
important locations, and fewer in irrelevant places. This not
only improves estimates from the map due to higher pho-
ton density, but also reduces the chance that inappropriate
photons will be used and hence reduces energy bleeding ar-
tifacts. At the same time, MPS allows users to supply infor-
mation to the sampler in the form of important paths, some-
thing not achievable in most Monte Carlo algorithms.

The new sampler is best suited to scenes in which only
a small portion of the lights’ power arrives in visually im-
portant areas. Our method does not require any modification
to the final gather phase of photon mapping, so it can be
used in conjunction with a standard particle tracing sampler.
Depending on the scene, one or other sampler could be used,
but there is nothing preventing the use of both methods to fill
the same map in scenes with multiple light sources that con-
tribute differently to the image. Furthermore, any improve-
ments to the final gather phase of Photon Mapping apply
equally well to Metropolis Photon Sampling.
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