
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

Alias-Free Shadow Maps

Timo Aila and Samuli Laine

Helsinki University of Technology/TML and Hybrid Graphics Ltd.

Abstract
In this paper we abandon the regular structure of shadow maps. Instead, we transform the visible pixels P(x,y,z)
from screen space to the image plane of a light source P′(x′,y′,z′). The (x′,y′) are then used as sampling points
when the geometry is rasterized into the shadow map. This eliminates the resolution issues that have plagued
shadow maps for decades, e.g., jagged shadow boundaries. Incorrect self-shadowing is also greatly reduced,
and semi-transparent shadow casters and receivers can be supported. A hierarchical software implementation is
outlined.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, shading, shadowing, and texture I.3.3 [Computer Graphics]: Picture/Image Gener-
ation – Bitmap and framebuffer operations

1. Introduction

The presence of shadows in computer-generated images is
valuable because they both reveal information about the spa-
tial relationships of objects and increase the level of real-
ism. Shadow mapping [Wil78] is a simple and widely used
method that supports a large number of rendering primitives.

Shadow mapping generates a depth buffer from the point
of view of a light source. This depth buffer, called a shadow
map, is a discretized representation of the scene geometry
as seen by the light source. A pixel is in shadow if its depth
value, transformed into the light-space, is greater than the
corresponding depth value in the shadow map.

The regularly spaced sampling points (i.e., pixels) of the
shadow map do not correspond to pixels in screen space.
This, along with the discrete resolution of a shadow map
is a serious source of artifacts. False self-shadowing arises
when a surface incorrectly occludes itself. This problem
is primarily due to a transformed screen-space pixel land-
ing somewhere between the sampling points of the shadow
map. There is no guarantee that all features, such as dis-
continuities can be faithfully reconstructed from the sam-
pling points. A number of authors have embedded additional
data to the sampling points in order to capture the scene
more accurately, e.g., plane equation [Gra92] or multiple
surfaces per sampling point [Woo92, Gra92]. The second,
much lesser source of artifacts is the numerical error due to

the transformation between coordinate systems. This error is
independent of the scene, and can thus be fixed with a con-
stant bias.

Figure 1: The self-shadowing hair ball consists of 5000
hairs, each made of 576 triangles. The hairs act as semi-
transparent shadow casters with opacity of 10%. In total
there are 2.9M triangles, and the rendering took 12.6 sec-
onds with a software prototype running on a 1.6GHz Mobile
Pentium 4 at 1536×1088 resolution.

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


Aila and Laine / Alias-Free Shadow Maps

A local resolution mismatch between the shadow map
and the output image often causes jagged shadows, even
when the shadow map has a resolution higher than the
screen-space image. Partial solutions exist for this prob-
lem [RSC87, LV00, FFBG01, SD02, SCH03].

Overview Our idea is straightforward. Clearly, the shadow
terms are needed only for the visible pixels of the screen-
space image. We compute exactly that by transforming the
visible pixels to the image plane of the light source, and do
not discretize the projected (x,y)-coordinates. The projected
points are then used as sampling points when the geometry
is rasterized from the light source. This eliminates the con-
cept of shadow map resolution. The results correspond ex-
actly to hard shadows computed using shadow rays [Whi80].
Resolution mismatch problems are completely eliminated,
and incorrect self-shadowing is greatly reduced. The new
representation can also support semi-transparent shadow re-
ceivers and casters.

Efficient rasterization is more challenging using the new
representation due to lost coherence. We outline a hierarchi-
cal method that has a simple software implementation and
acceptable performance characteristics.

2. Related Work

This section concentrates on the problems of shadow
maps. A vast amount of literature exist about shadow
algorithms in general, and several surveys are avail-
able [WPF90, HM01, HLHS03].

Shadow mapping [Wil78] is based on generating a z-
buffer [Cat74] from the light source. In practice, up to
six shadow maps are required for an omni-directional light
source that is inside the view frustum.

Resolution mismatch The resolution mismatch between
the output image and the shadow map has been studied
by several authors. Fernando et al. [FFBG01] organize the
shadow map into a hierarchical grid. The resolution of the
shadow map is then locally increased in places where depth
discontinuities occur or the resolution of the screen-space
image is greater than the resolution of the shadow map.

Stamminger and Drettakis [SD02] propose generating the
shadow map in post-perspective space, i.e., after the pro-
jection to the view frustum. This significantly improves the
shadow quality in many scenes. Special treatment is needed
to ensure that all shadow casting objects are taken into ac-
count.

Brabec and Seidel [BS02a] shrink the frustum of the light
source to tightly enclose the visible part of the view frustum.
Sen et al. [SCH03] augment the shadow map by storing the
location of a vertex inside a shadow map pixel. This sig-
nificantly reduces jagged shadow boundaries, but only one
vertex is stored per shadow map pixel, and thus high quality
results are obtained only in a subset of scenes.

Bias problems False self-shadowing (aka bias problem) is a
severe problem caused primarily by the limited precision of
the discrete shadow map. It occurs when an illuminated sur-
face appears to reside behind its own shadow map footprint.
Williams [Wil78] proposed solving the problem by adding a
constant bias value to the transformed depth value in order to
weaken the coincidence test. Unfortunately, a constant bias
factor cannot handle all situations satisfactorily. The artifacts
can be reduced by comparing the transformed depth values
to the second closest surface [WM94], or against an inter-
mediate surface, which lies between the two surfaces that
are closest to the light source at that pixel [Woo92, Gra92].

Grant [Gra92] proposes adding a plane equation to each
sampling point of a shadow map. This helps in certain
cases, but fails when more than one polygon should be rep-
resented inside a single shadow map pixel. Hourcade and
Nicolas [HN85] assign each object or polygon a unique ID,
and augment the depth values with the corresponding IDs.
Incorrect self-shadowing is avoided by comparing the IDs
instead of depth values.

Generalizations of shadow maps Deep shadow maps by
Lokovic and Veach [LV00] generalize shadow maps to semi-
transparent surfaces while also significantly reducing the
aliasing artifacts in off-line rendering. Dachsbacher and
Stamminger [DS03] augment shadow maps with irradiance
values and normal vectors in order to approximate subsur-
face scattering. Percentage closer filtering [RSC87] creates
approximate soft shadows by blurring the shadow bound-
aries.

Ray Tracing Ray tracing [Whi80] produces high-quality
shadows by testing if the line-of-sight between the point to
be shaded and a light source is blocked. Shadow maps with
our correct sampling points give the same answer as tracing
the shadow rays.

Concurrent Work In a parallel work, Johnson et al.
[JMB04] propose the same core idea as this paper. Their pa-
per is inclined towards a possible hardware implementation,
and includes an accuracy analysis of earlier shadow map-
ping methods. Semi-transparent shadow casters or receivers
are not discussed.

3. Projection of Sampling Points

The general idea of our algorithm is illustrated in Figure 2.
First, a depth buffer is computed from the point of view of
the camera. The screen-space (x,y)-coordinates of the pix-
els along with the corresponding depth buffer values, are
the visible samples P(x,y,z) (Figure 2a). Then, the P(x,y,z)
are transformed into the image plane of the light source
(Figure 2b), producing sampling points (x′,y′) and the cor-
responding light-space depth values z′. The (x′,y′,z′) are
stored into a separate buffer. The (x′,y′) that land inside the

c© The Eurographics Association 2004.



Aila and Laine / Alias-Free Shadow Maps

a) b) c)

Figure 2: a) A simple test scene with shadows, as seen from the camera. The black dots are the pixel centers. b) The visible
pixels of (a) transformed into the image plane of the light source. The dots are used as sampling points when the scene is
rasterized to the shadow map. The large empty areas correspond to regions that are not visible from the camera, and thus need
no shadow information. c) The corresponding traditional shadow map is shown for comparison purposes only. In a traditional
shadow map algorithm, the regularly sampled map (c) would be tested exactly at the sampling points shown in (b). Clearly, the
regular structure of (c) is not suitable for accurately answering the queries.

shadow map are the optimal sampling points, and exactly
correspond to the intersections of shadow rays and the im-
age plane of the light source.

Note that the distribution of sampling points in Figure 2b
is highly irregular. The large empty areas correspond to re-
gions that are not visible to the camera. The lack of sampling
points in such regions means that no shadow computations
are performed for redundant areas.

The (x′,y′) are used as sampling points when the scene is
rasterized from the light source. Traditionally the sampling
points have been at the center of each pixel, but that is not
a requirement for rasterization. A slow brute force imple-
mentation would test all sampling points when rasterizing
a geometric primitive. A more efficient hierarchical variant
is discussed in Section 5. If a sampling point is covered by
an input primitive, the depth value of the primitive is com-
puted at the sampling point and compared to the light-space
z′ of the sample. If the comparison indicates that the sam-
ple is in shadow, the shadow term is written directly to the
corresponding screen-space sample, for example to a sten-
cil buffer or an additional color buffer. As a result, separate
shadow map queries are not needed. This is different from
traditional shadow maps, and possible only because we are
working directly with the visible samples of the output im-
age.

The numerical error caused by the floating point transfor-
mation between the coordinate systems is the only reason
why the resulting shadows might differ from the results of
tracing a shadow ray from each visible sample. This is differ-
ent than the bias value [Wil78] because the numerical value
of the error depends only on the particular implementation
of matrix functions, i.e., it does not depend on the scene.

The physical dimensions of the viewport on the image
plane of the light source are identical to the traditional

shadow maps. However, the concept of shadow map reso-
lution is eliminated because our novel shadow map formula-
tion does not require light-space discretization. The shadow
boundaries stay sharp no matter how close the camera is,
as illustrated in Figure 3. When supersampling or multisam-
pling is used for antialiasing, the shadow term needs to be
determined separately for each sample. This is accomplished
by transforming all visible samples to the image plane of
the light source. As with traditional shadow maps, multiple
maps are generally needed for modeling omni-directional
light sources.

4. Semi-Transparent Surfaces

Similarly to traditional shadow maps, semi-transparent
shadow receivers can be supported by storing all visible sur-
faces to each screen-space pixel. The visible samples are
then transformed to the image plane of the light source in
order to get sampling points for the shadow map rasteri-
zation. Finally, the output image is obtained by composit-
ing the correctly shadowed semi-transparent surfaces to the
opaque background.

Semi-transparent shadow casters that modulate the per-
centage of light that passes through the surface can also be
supported. Each sampling point of a shadow map is assigned
an RGB color, which is initially white. A semi-transparent
surface that is rasterized to the front of the light-space depth
of a sampling point modulates the corresponding RGB color.
Opaque surfaces set the color to black. After all surfaces
have been rasterized to the shadow map, the RGB values in-
dicate the color of the shadow. Figure 1 shows an example of
semi-transparent shadow casters. Deep shadow maps [LV00]
store the light attenuation as functions to each shadow map
pixel. We do not need such functions to get the same result,
but it deserves to be pointed out that deep shadow maps have

c© The Eurographics Association 2004.



Aila and Laine / Alias-Free Shadow Maps

a very broad range of applications. For example, efficient
rendering of volumetric effects certainly benefits from the
attenuation functions, and ideally deep shadow maps would
be combined with our sampling points. Also, deep shadow
maps support high quality filtering. Section 6 discusses this
and other important extensions.

5. Hierarchical Implementation

Ideally, only the sampling points that are covered by a geo-
metric primitive would be tested during rasterization. With
regularly spaced sampling points this is achievable, but an
irregular structure poses challenges. A brute force imple-
mentation would test all sampling points for every primitive,
resulting in tremendous performance penalty. We present a
hierarchical method that finds the necessary sampling points
in logarithmic time. As a comparison, this is a constant-time
operation in traditional rasterization.

5.1. Light-Space Hierarchy

After the sampling points have been transformed to the im-
age plane of the light source, they are organized into an axis-
aligned 2D BSP tree (Figure 4). A quadtree or any other sub-
division algorithm could also be used, but an axis-aligned
BSP tree adapts to irregular points very well, and has an easy
and fast implementation. We use alternating splits along the
x- and y-axes so that the set of sampling points is always
divided in half. The quickselect algorithm [Hoa61] finds the
position of each splitting plane in expected linear time. The
nodes are subdivided until each leaf node contains less than a
predetermined number of sampling points; we currently use
64.

Once the hierarchy has been constructed, the shadow
casting primitives are rasterized using the subdivision. The
traversal starts from the root node, and proceeds to subnodes
that are at least partially covered by the input primitive. The
sampling points in the leaf nodes are then tested individually.
Finally, the depth value is computed for each covered sam-
pling point, and compared to the stored light-space depth
value.

We have additionally incorporated occlusion culling into
our hierarchical rasterization. Once all the sampling points
belonging to a node have been determined to be in shadow,
the consecutive rasterization to the node is skipped for all
subsequent primitives. Additionally, each node stores the
maximum light-space depth value. If a primitive is farther
than the maximum depth value, the primitive cannot cast
shadows to the output image and can thus be skipped.

The performance and scalability results of our prototype
software implementation are shown in Table 1. The tests
were run on a 1.6GHz Mobile Pentium 4 with 512MB of
memory. The scenes are particularly difficult for shadow al-
gorithms, as can be observed from Figure 3. The sizes of

#Triangles 1K 10K 100K 1M

#2D BSP nodes 16K 16K 16K 16K

#2D BSP nodes visited 91K 471K 3.2M 23M

#nodes occlusion culled 5.3K 5.4K 5.8K 6.8K

#sampling points tested 458K 513K 506K 501K

Transformation of samples 130

BSP construction 400 402 391 408

Rasterization of blockers 145 381 1568 8102

Total time (ms) 675 913 2089 8640

Table 1: Scalability statistics from four scenes with 1K-1M
random triangles. The resolution was 1024× 768, and the
viewpoint corresponded to the middle figure on the top row
of Figure 3. All timings are in milliseconds.

the triangles were adjusted so that their total area is ap-
proximately constant in all the scenes, thus eliminating the
effect of occlusion culling. As can be seen, the prototype
scales well with scene complexity. The cost of BSP construc-
tion depends only on the screen resolution (1024× 768). In
the simplest scene the cost of BSP construction dominates,
whereas in the more complex scenes its cost becomes neg-
ligible. Increasing the average size of the triangles creates
more occlusion, and the execution time drops significantly.
As a conclusion, the performance numbers are promising
when compared to the quality of the resulting shadows.

6. Open Issues and Future Work

The new irregular representation of shadow maps has highly
desirable properties, but there are several open issues and
possible extensions that present interesting avenues for fu-
ture work.

It seems obvious that the simplicity of filtering the shadow
boundaries [RSC87, BS02b] or shadow map extensions that
are more physically-based [LV00, CD03, WH03] are at least
partially lost. However, this does not mean that something
similar would not be feasible in conjunction with the new
representation.

Interactive and real-time use of shadow maps requires
hardware support. It seems that the algorithm cannot be ef-
ficiently implemented on currently available hardware. The
minimal amount of necessary modifications is an important
question, and calls for a careful analysis of the entire spec-
trum of possible implementations with respect to their limi-
tations. A dialogue with hardware vendors should be fruitful
in formulating the hierarchies and traversal in a maximally
hardware-friendly way.

c© The Eurographics Association 2004.



Aila and Laine / Alias-Free Shadow Maps

7. Conclusions

We have introduced a new representation of shadow maps
that completely abandons the previously used regular struc-
tures. The resulting shadow quality equals that of shadow
rays, and thus the resolution problems of shadow maps are
solved. We believe that the results presented in this study
open new interesting possibilities for developing aliasing-
free shadow map-related algorithms. We have outlined and
tested a hierarchical implementation. Our test results indi-
cate that the algorithm performs very well with fine geomet-
ric detail that would otherwise need excessively high shadow
map resolutions.

Acknowledgements

We would like to thank Jukka Arvo, Jaakko Lehtinen, Ville
Miettinen and Lauri Savioja for their helpful comments. This
work has been partially funded by the National Technology
Agency of Finland, Bitboys, Hybrid Graphics, Nokia and
Remedy Entertainment.

References

[BS02a] BRABEC S., SEIDEL H.-P.: Practical shadow
mapping. Journal of Graphics Tools 7, 4 (2002),
9–18. 2

[BS02b] BRABEC S., SEIDEL H.-P.: Single sample soft
shadows using depth maps. In Proceedings of
Graphics Interface (2002), pp. 219–228. 4

[Cat74] CATMULL E.: A Subdivision Algorithm for
Computer Display of Curved Surfaces. PhD the-
sis, University of Utah, 1974. 2

[CD03] CHAN E., DURAND F.: Rendering fake soft
shadows with smoothies. In Proceedings of the
Eurographics Symposium on Rendering (2003),
Eurographics Association, pp. 208–218. 4

[DS03] DACHSBACHER C., STAMMINGER M.:
Translucent shadow maps. In Proceedings of
the 14th Eurographics workshop on Rendering
(2003), Eurographics Association, pp. 197–201.
2

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow maps. In
Proceedings of ACM SIGGRAPH 2001 (2001),
ACM Press, pp. 387–390. 2

[Gra92] GRANT C.: Visibility Algorithms in Image Syn-
thesis. PhD thesis, University of California,
1992. 1, 2

[HLHS03] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F.: A Survey
of Real-Time Soft Shadows Algorithms.
Computer Graphics Forum, 22, 4 (2003).
State-of-the-Art Report. 2

[HM01] HAINES E., MÖLLER T.: Real-Time Shadows.
In Proceeding of Game Developers Conference
(March 2001), pp. 335–352. 2

[HN85] HOURCADE J. C., NICOLAS A.: Algorithms for
antialiased cast shadows. Computer Graphics 9,
3 (1985), 259–265. 2

[Hoa61] HOARE C. A. R.: Algorithm 65: Find. Com-
munications of the ACM 4, 7 (1961), 321–322.
4

[JMB04] JOHNSON G. S., MARK W. R., BURNS C. A.:
The Irregular Z-Buffer and its Application to
Shadow Mapping. Tech. rep., The University of
Texas at Austin, Department of Computer Sci-
ences, April 2004. 2

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In
Proceedings of ACM SIGGRAPH 2000 (2000),
ACM Press, pp. 385–392. 2, 3, 4

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.:
Rendering antialiased shadows with depth maps.
In Computer Graphics (Proceedings of ACM
SIGGRAPH 87) (1987), pp. 283–291. 2, 4

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:
Shadow Silhouette Maps. ACM Transactions on
Graphics, 22, 3 (2003), 521–526. 2

[SD02] STAMMINGER M., DRETTAKIS G.: Perspec-
tive shadow maps. In Proceedings of ACM SIG-
GRAPH 2002 (2002), ACM Press, pp. 557–562.
2

[WH03] WYMAN C., HANSEN C.: Penumbra maps: Ap-
proximate soft shadows in real-time. In Proceed-
ings of the Eurographics Symposium on Render-
ing (2003), Eurographics Association, pp. 202–
207. 4

[Whi80] WHITTED T.: An improved illumination model
for shaded display. Communications of the ACM
23, 6 (1980), 343–349. 2

[Wil78] WILLIAMS L.: Casting Curved Shadows on
Curved Surfaces. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 78) (1978), ACM,
pp. 270–274. 1, 2, 3

[WM94] WANG Y., MOLNAR S.: Second-Depth Shadow
Mapping. Tech. rep., The University of North
Carolina at Chapel Hill, 1994. 2

[Woo92] WOO A.: The shadow depth map revisited.
Graphics Gems III (1992), 338–342. 1, 2

[WPF90] WOO A., POULIN P., FOURNIER A.: A Survey
of Shadow Algorithms. IEEE Computer Graph-
ics and Applications 10, 6 (1990), 13–32. 2

c© The Eurographics Association 2004.



Aila and Laine / Alias-Free Shadow Maps

Figure 3: Top row: The zoom sequence demonstrates that jagged shadows are completely avoided because the concept of
shadow map resolution has been eliminated. While crisp shadow boundaries can be obtained by using traditional, adaptive or
perspective shadow maps, the resolution requirements are completely dependent on the light source position, viewing parame-
ters, and especially the scene geometry. On the contrary, our representation always gives accurate results in all scenes due to its
one-to-one correspondence with shadow rays. The number of sampling points equals the screen resolution, 1024× 768 in this
example. Bottom row: A particularly challenging scene with 100K small random triangles. The two-frame zoom sequence again
demonstrates the shadow quality resulting from our method. The shadow computation time using our prototype implementation
was 1.8−2.8 seconds per frame, depending on the viewpoint. The resolution was 1024×768.

Figure 4: Left: the pixels of leftmost scene in Figure 3 (top row) transformed to the image plane of the light source. For
illustration purposes, only 1

64 th of the sampling points are shown. Right: The axis-aligned BSP built from the sampling points.
In this visualization, every leaf in the BSP tree contains at most 256 sampling points.

c© The Eurographics Association 2004.


