
Anti-aliasing and Continuity with Trapezoidal Shadow Maps

Tobias Martin and Tiow-Seng Tan

School of Computing, National University of Singapore

Abstract
This paper proposes a new shadow map technique termed trapezoidal shadow maps to calculate high quality
shadows in real-time applications. To address the resolution problem of the standard shadow map approach, our
technique approximates the eye’s frustum as seen from the light with a trapezoid to warp it onto a shadow map.
Such a trapezoidal approximation, which may first seem straightforward, is carefully designed to achieve the goal
of good shadow quality for objects from near to far, and to address the continuity problem that is found in all
existing shadow map approaches. The continuity problem occurs mainly when the shadow map quality changes
significantly from frame to frame due to the motion of the eye or the light. This results in flickering of shadows. On
the whole, our proposed approach is simple to implement without using complex data structures and it maps well
to graphics hardware as shown in our experiments with large virtual scenes of hundreds of thousands to over a
million of triangles.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation–Anti-aliasing, bitmap and framebuffer operations; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–Color, shading, shadowing, and texture

1. Introduction

Real time shadow generation has been gaining a lot of atten-
tion recently due to the growing support of programmable
graphics processing units in PCs and game consoles. In
many applications, shadows are important because they add
further realism to scenes and provide additional depth cues.
Finding ways to calculate shadows started a few decades
ago; see the survey by [WPF90]. We note that in most of
these techniques, there is a tradeoff between shadow quality
and rendering time. Recent approaches, including our work
here, are based on the standard shadow map algorithm orig-
inally proposed in [Wil78]. This two-pass algorithm is neat
and easy to understand. In the first pass, the scene is ren-
dered from the viewpoint of the light with depth buffer en-
abled. This buffer is then stored into an image called shadow
map. In the second pass, the scene is rendered from the view-
point of the eye incorporating shadow determination for each
pixel. A pixel is in shadow if the z-value of its correspond-
ing surface point when transformed into the light’s view
is greater than its corresponding depth value stored in the
shadow map.

The standard shadow map algorithm is easy to implement
and is also fast in its calculation. It is well-suited for all

kinds of geometric primitives as well as complex and curved
objects. Additionally, its operations can be mapped well to
graphics hardware where the depth buffer and projective tex-
ture mapping are used to calculate shadows [SKvW∗92].

On the other hand, the approach has two well-known
drawbacks. Its first drawback is the resolution problem
where it works well when the light is close to the scene
and to the viewpoint of the eye, but produces aliases around
shadow boundaries when the light is far away. This is caused
by low shadow map resolution (i.e. an under-sampling) in ar-
eas where a higher resolution is needed. Besides the practi-
cal scenario where only a small texture is available to capture
the shadow map, this problem can also arise when the visible
region of the eye’s frustum occupies only a small fraction in
the shadow map. There are approaches that address this is-
sue (see [BAS02], [FFBG01], [SD02] as discussed later in
Section 2). However, for real-time interactive applications
(with little or no restriction on the motion of the eye, lights
and objects), there is no satisfactory shadow map approach
that addresses the resolution problem while also bearing in
mind the polygon offset problem and the continuity problem
discussed subsequently.

Its second drawback is the polygon offset problem. Due to

c© The Eurographics Association 2004.

Eurographics Symposium on Rendering (2004)
A. Keller, H. W. Jensen (Editors)

http://www.eg.org
http://diglib.eg.org


T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

the image-based nature, shadow determination is performed
with finite precision which can cause surface acne effects.
This can be addressed by finding an offset which is added
to the depth values of the shadow map to move the z-values
and hence the shadows slightly away from the light [Wil78].
Additionally, in [WM94], the depth values of surfaces that
are second nearest to the light source are sampled to address
this problem.

The first contribution of this paper is a new approach of
calculating shadows using trapezoidal shadow maps which
are derived from trapezoidal approximations of the eye’s
frusta as seen from the light. It addresses the resolution prob-
lem of the standard shadow map approach to result in en-
hanced shadow map resolution for both static and dynamic
objects from near to far and with no constraint on the relative
positions and motions of the eye and the light. At the same
time, it does not worsen the polygon offset problem as it uses
the programmable graphics pipeline to confine the problem
to be as manageable as that in standard shadow maps. The
approach is efficient as only the eight corners of the eye’s
frustum plus the centers of the near and the far plane, rather
than the scene, are needed to compute a good trapezoidal
approximation. It thus scales well to large scenes. Figure 1
shows an example of our approach.

light’s post−perspective space trapezoidal space

(a) (b)

Figure 1: (a) The shadow map of the scene with 225 reg-
ularly spaced plant models is computed directly from the
light’s view. As the light is far away, shadow aliasing ap-
pears in the view of the eye. (b) The shadow map is computed
from the light’s view after applying trapezoidal transforma-
tion to focus on the region (of only 15 plant models) which is
potentially visible to the eye. As a result, high quality shad-
ows are obtained.

The second contribution of this paper is the recognition
and a treatment of the continuity problem where the shadow
map quality changes significantly from frame to frame re-
sulting in the flickering of shadows. This occurs in all ex-
isting shadow map approaches that generate shadow maps

of significantly different quality for small differences in the
views of the eye or the light. Our approach computes a trape-
zoidal approximation so that there is a continuous change in
the shape and size of trapezoid from frame to frame in order
to control the transition in the shadow map resolution. See
Figure 2 for an illustration.

Frame i Frame i + 1
Bounding Box Approximation

Trapezoidal Approximation

(a)

(b)

Figure 2: (a) Flickering of shadows from one frame to
the next generated by a bounding box approximation. (b)
A smooth shadow transition generated with the use of our
trapezoidal approximation. In each of the four pictures, the
post-perspective space of the light is on the top left, the gen-
erated shadow map on the top right, and the shadow of a
plant (as in the scene of Figure 1) on the bottom.

The paper is organized as follows: Section 2 presents pre-
vious work; Section 3 discusses our reasons in choosing
trapezoid to approximate the eye’s frustum as seen from the
light; Section 4 addresses the polygon offset problem; Sec-
tion 5 describes the continuity problem; Section 6 details
the computation of our trapezoidal approximation; Section
7 shows our results; and Section 8 concludes the paper with
possible future works and limitations of our approach. With-
out loss of generality, our description assumes that there is a
single light in the scene and the eye’s frustum is completely
within the light’s frustum. It is straightforward to apply our
approach to multiple lights (as used in Figure 7); Section 6.4
discusses the extension of our approach to the general case
of eye and light.

2. Previous Work

In the following, we review works that are most relevant to
ours in improving standard shadow maps.

The adaptive shadow map approach [FFBG01] addresses
the resolution problem by using a hierarchical grid structure

c© The Eurographics Association 2004.

154



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

instead of the standard “flat” shadow map. A great improve-
ment to the shadow quality is gained, but it is currently not
possible to map this approach to graphics hardware. There-
fore, this approach is slow and not suitable for real-time ap-
plications.

The perspective shadow map approach (PSM) [SD02]
tackles the problem of insufficient shadow map resolution
in regions near to the eye by a non-uniform parameteriza-
tion: A single (perspective) shadow map is generated to pro-
vide high resolution for objects nearby and low resolution
for objects far away. To achieve this, the shadow map is
calculated in the post-perspective space of the eye. This ap-
proach fundamentally improves shadow quality for some re-
stricted cases (depending on the relative positions of the eye
and the light) but meets a number of technical difficulties
that hinder its applications to interactive and dynamic envi-
ronments. First, the implementation of PSM is rather non-
trivial with many tradeoffs to consider. For instance, it needs
a robust implementation of a 3D convex hull algorithm to-
gether with union and intersection operations. Second, the
polygon offset problem is worsened as depth values in the
post-perspective space of the eye are distributed differently
for various configurations between the eye and the light. As
a result, a constant polygon offset may not be sufficient to
avoid surface acne effects while maintaining good shadow
quality.

The work of [BAS02] addresses the polygon offset prob-
lem with the linear distribution of depth values. In addition,
it addresses the resolution problem by using the smallest box
to bound objects in the eye’s frustum as seen from the light.
We argue in the next section that this parameterization is not
necessarily ideal.

The recent work termed shadow silhouette maps [SCH03]
attempts to combine the strengths of shadow volumes
[Cro77] and shadow maps. It, however, also inherits the
weaknesses of both techniques. Its reported frame rates does
not seem to be good for interactive applications with moder-
ate sizes of over tens of thousands triangles.

3. Increasing Shadow Map Resolution

A shadow map can be viewed simply to consist of two por-
tions: one within and the other outside the eye’s frustum.
It is clear that only the former is useful in the determina-
tion of whether pixels are in shadow. Thus, to increase the
shadow map resolution in one way is to minimize the en-
tries, collectively termed as wastage, occupied by the latter.
In other words, a good way to address the resolution prob-
lem is to better utilize the shadow map for the area within the
eye’s frustum as seen from the light, denoted as E; Figure 3,
left. This requires the calculation of an additional normaliza-
tion matrix N to transform the post-perspective space of the
light to an N-space in general; see Figure 3, right, where N
refers to the trapezoidal space and the bounding box space,

respectively. Then, the shadow map is constructed from this
N-space. With this, we need a minor modification to the stan-
dard shadow map algorithm: during shadow determination,
a pixel is transformed into the N-space, rather than into the
post-perspective space of the light, for the depth comparison.
Except for the calculation of N which may be computation-
ally expensive for some approaches, the shadow map gen-
eration and shadow determination still map well to graphics
hardware.

Naïvely, the tighter the bound of the approximation to the
area of interest, the better the resolution of the shadow map.
The smallest such area is the 2D convex hull C of E. How-
ever, it is not clear how to transform efficiently C (which is a
polygon of up to six edges) to some N-space while minimiz-
ing wastage. The next natural choice is to use the smallest
bounding box B of C for the purpose (Figure 3, middle, bot-
tom). A variant of this idea is presented by [BAS02] where
C is the convex hull of those pixels in E occupied by objects
in the scene. This approach trades the slow process of read-
ing back pixels from the frame buffer for the high utilization
of the shadow map memory. On the other hand, such bound-
ing box approximation may not always result in minimizing
wastage, as shown in Figure 3, right.

post−perspective space
light’s

trapezoidal space

bounding box space

bounding box

trapezoid

Figure 3: An example of the trapezoidal approximation
(middle, top) and the smallest bounding box approximation
(middle, bottom) of the eye’s frustum as seen from the light
(left). The wastage in the shadow map generated by the for-
mer is much smaller than that by the latter in this case
(right).

In view of this, the next plausible choice is then to con-
sider a general quadrilateral Q to approximate C. Low and
Ilie [LI03] show a heuristic to compute Q deriving from the
edges of the convex hull of C and having the smallest area
bounding C. Such a Q is an approximation of the smallest
area quadrilateral bounding C. The paper indicates but does
not explicitly present and demonstrate a solution to the conti-
nuity problem. It does not seem straightforward to adapt the
substantial calculation (from computer vision) of Low and
Ilie to map specific regions in Q to a specific portion of the
shadow map to control the continuous change in the shadow
map resolution from frame to frame. In contrast, our pro-
posed trapezoidal approximation of C discussed next uses

c© The Eurographics Association 2004.

155



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

simple calculations, and it has a powerful control to address
the continuity problem.

A trapezoid is recognized to be the most similar shape to
E. Our work shows that the two parallel lines containing the
top and the base edge of a trapezoid form a surprisingly pow-
erful mechanism to control the shadow map resolution from
frame to frame. This successfully addresses the continuity
problem (see Section 6.1). Equally important and interest-
ing for our choice of trapezoid are its two side edges in ad-
dressing another kind of “implicit” wastage not mentioned in
the above discussion. Such wastage is the over-sampling of
near objects in the shadow map where a lower sampling rate
would suffice. We develop an efficient mechanism to decide
on the two side edges to spread the available resolution to
objects within a specified focus region (see Section 6.2). In
comparison, the transformation used in the smallest bound-
ing box does not have such flexibility in stretching a shape.
As a result, the smallest bounding box has a deteriorating ef-
fect on the shadow map resolution when the depth of view
increases.

The rest of this section formalizes the use of trapezoidal
approximation in our approach. Consider a vertex v in the
object space. Then, the vertex of v in the post-perspective
space L of the light is vL = PL ·CL ·W · v where PL and CL
are the projection and camera matrices of the light and W is
the world matrix of the vertex. The eight corner vertices of
E are obtained from those corner vertices of the eye’s frus-
tum in the object space multiplied by PL ·CL ·C−1

E where
C−1

E is the inverse camera matrix of the eye. We treat E as a
flattened 2D object on the front face of the light’s unit cube.
We use a trapezoid T to approximate (and contain) E; see
Figure 3, middle, top. The normalization matrix NT is con-
structed such that the four corners of T (as computed in Sec-
tion 6) are mapped to a unit square. By applying NT to L,
we transform the scene to the trapezoidal space T . We call
vT = NT ·vL a vertex in T , NT a trapezoidal transformation,
and the shadow map derived from T a trapezoidal shadow
map.

4. Handling Polygon Offset Problem

The intent of NT is to transform only the x and y values of
those vertices of objects within T . This transformation, how-
ever, also affects the z value of each vertex depending on its
x and y values. As such, a good offset for each vertex de-
pends on its x and y values, and thus the usual single offset
for all vertices (as in the standard shadow map approach) is
not adequate to remedy surface acne effects.

This problem can be solved with the idea of transforming
only the x,y and w values of each vertex by NT to T , while
maintaining the z value in L. In this way, the polygon offset
problem is not worsened and can be handled as in the case of
a standard shadow map. As discussed in the next two para-
graphs, this can be efficiently mapped to current graphics
hardware supporting a programmable fragment stage.

In the first pass (shadow map generation), the vertex stage
transforms each vertex v to vT = (xT ,yT ,zT ,wT ) and assigns
vL = (xL,yL,zL,wL) as its texture coordinate. Note that tex-
ture coordinates over a triangle are obtained by linearly in-
terpolating the vL/wT values of the vertices of the triangle.
Next, the fragment stage replaces the depth of the fragment
with zL/wL and adds to it an offset. In effect, we have set the
z value of the vertex in T as zL with the necessary polygon
offset.

In the second pass (shadow determination), the vertex
stage transforms each vertex to the post-perspective space
of the eye as the output vertex. It also computes, for the ver-
tex, two texture coordinates vL = (xL,yL,zL,wL) and vT =
(xT ,yT ,zT ,wT ). Then, the fragment stage processes each
fragment to determine shadow by comparing zL/wL to the
value in the shadow map indexed by (xT /wT ,yT /wT ).

We have two notes. First, a simpler and more efficient ap-
proach (to implement the idea of maintaining the z value
in L) to only keep vT as (xT ,yT , zL·wT

wL
,wT ) in the vertex

stage (in both passes) does not always work. This problem
is prominent in cases where, for example, the eye or light
frusta contain large triangles. The reason is that such z is not
correctly interpolated over each triangle as z is no longer ex-
pressible as some affine mapping of vertices in the world
space. Second, the above vertex and fragment stages do
slightly more work than that needed in the standard shadow
map. Our experience with them for over 100K triangles re-
main highly interactive.

5. The Continuity Problem

As mentioned, the continuity problem is a consequence of a
significant change in the shadow map quality from one frame
to the next, resulting in flickering of shadows. For the small-
est bounding box approach, the shadow map quality changes
if there is a sudden change in the approximation of the eye’s
frustum as seen from the light. Figure 2(a) shows from frame
i to frame i+1 that the orientation of the approximation of E
with the smallest bounding box is changed. As a result, there
is a drastic change to the resolution in different parts of the
shadow map. In general, the problem can often occur when
E transits from one shape to another different shape (where
the number of side planes of the eye’s frustum visible from
the light’s view is different). Additionally, the problem ex-
ists in [BAS02] as the smallest bounding box, enclosing all
those pixels in E occupied by objects in the scene, changes
drastically when some visible object is added or removed.

The continuity problem occurs in the perspective shadow
map approach [SD02] as it relies on the convex hull of all ob-
jects that can cast shadows. This convex hull and the result-
ing shadow quality can change suddenly. In one case, this oc-
curs when objects move into or out of the light’s frustum in
a dynamic environment. In another case, it can be observed
when the algorithm virtually moves the position of the eye

c© The Eurographics Association 2004.

156



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

to avoid, for example, the inverted order of objects due to the
perspective projection. The continuity problem can occur in
our trapezoidal approximation of E, too. However, we show
in the next section that there exists an efficient and effec-
tive way to control the changes in trapezoids to address the
problem.

6. Constructing Trapezoidal Approximation

Our aim is to construct a trapezoid to approximate E with
the constraint that each such consecutive approximation re-
sults in a smooth transition of the shadow map resolution.
Our strategy is to rely on a smooth transition in the shape
and size of trapezoid to result in a smooth transition of the
shadow map resolution. Section 6.1 discusses the computa-
tion to obtain the base and the top line. From these, the base
and the top edge of the trapezoid are defined when the two
side lines are computed as discussed in Section 6.2. Section
6.3 analyses the coverage of the focus region in the shadow
map, and Section 6.4 extends our approach to handle scenar-
ios where not all the eight vertices of the eye’s frustum are
inside the light’s frustum.

6.1. Base and Top Lines

This step is to find two parallel lines in L to contain the base
and the top edge of the required trapezoid. The aim is to
choose the parallel lines such that there is a smooth transi-
tion when the eye moves (relative to the light) from frame
to frame. We first present the algorithm and then discuss its
rationale.

Step 1 Transform the eye’s frustum into the post-
perspective space L of the light to obtain E.

Step 2 Compute the center line l, which passes through the
centers of the near and the far plane of E.

Step 3 Calculate the 2D convex hull of E (with at most six
vertices on its boundary).

Step 4 Calculate the top line lt that is orthogonal to l and
touches the boundary of the convex hull of E. lt intersects
l at a point closer to the center of the near plane than that
of the far plane of E.

Step 5 Calculate the base line lb which is parallel to (and
different from) the top line lt (i.e., orthogonal to l too)
and touches the boundary of the convex hull of E.

The above algorithm is such that the center line l governs
the choices of lt and lb, with the exception for the case when
the centers of the far and near planes (almost) are coinci-
dent. The algorithm handles that separately to result in the
smallest box bounding the far plane as the desired trapezoid.

Imagine the eye’s frustum is drawn within a sphere with
the center of the sphere at the eye’s position and the radius
equal to the distance from the eye to each corner of the far
plane. Suppose the eye’s location does not change. Pitching
and heading of the eye from one frame to the next can be

encoded as a point (which is the intersection of l with the
sphere) on the sphere to another nearby point, while rolling
of the eye does not change the encoded point but results in a
rotation of the eye’s frustum along l. More importantly, with
a smooth eye motion from frame to frame, the four corners
of the far plane of the eye’s frustum lying on the sphere also
have a smooth transition on the sphere. As the positions of l
and the mentioned four corners uniquely determine lb, it also
transits smoothly from frame to frame. Similarly, lt transits
smoothly from frame to frame, too.

Next, suppose the eye’s location does change relative to
the light from one frame to the next but maintains its orien-
tation. In this case, it is only a matter of scaling E and the
lb and lt computed are parallel to the previous ones. In other
words, both lb and lt again transit smoothly from frame to
frame under a smooth translation of the eye’s frustum.

6.2. Side Lines

Before describing the computation of the side edges, we first
analyze the effect of transforming a given trapezoid in Figure
4(a) by its NT to T . Note that NT has the effect of stretching
the top edge into a unit length. In this case, the top edge is
relatively short compared to the base edge, and therefore the
stretching results in pushing all the shown triangles towards
the bottom of the unit square as in Figure 4(b). This means
that the region near to the top edge (i.e., close to the near
plane) eventually occupies a major part of the shadow map.
This results in an over-sampling in the shadow map for ob-
jects very near to the eye while sacrificing resolution of the
other objects (such as the second to the fourth triangle from
the top). This is the kind of wastage due to over-sampling as
mentioned in Section 3.

80% line

0%

(a) (b) (c)trapezoidal
approximation in L

trapezoidal space trapezoidal space
due to the 80% rule

Figure 4: For the trapezoid in (a), its corresponding T is
shown in (b). In this case, we obtain an over-sampling for
a small region of E. (c) For a different trapezoid computed
with the 80% rule (having the same top and base lines), its
trapezoidal transformation maps the focus region (the upper
part of the trapezoid) to within the first 80% in the shadow
map.

Conversely, a small part of the shadow map is occupied
by near objects when a “fat” trapezoid (having top and base
edges of almost equal length) is transformed by its trape-
zoidal transformation. As our approach aims to achieve ef-
fective use of available shadow map memory by “important”

c© The Eurographics Association 2004.

157



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

objects in the eye’s frustum, we have designed our first ver-
sion of the algorithm to compute the side lines and thus the
required trapezoid as follows.

Assume the eye is more interested in objects and their
shadows within the first δ distance from the near plane. That
is, the region of focus, or simply the focus region, of the eye
is the eye’s frustum truncated at δ distance from the near
plane. Let p be a point of δ distance away from the near
plane with its corresponding point pL lying on l in L; see
Figure 5. Let the distance of pL from the top line be δ′. We
design a trapezoid to contain E, so that NT maps pL to some
point on the line of 80% or what we refer to as the 80% line
in T (see Figure 4(c)). Such an approach is termed the 80%
rule.

To do this, we formulate a perspective projection problem
to compute the position of a point q on l with q as the cen-
ter of projection to map pL to a point on the 80% line y = ξ
(i.e. ξ = −0.6), and the base and the top line to y = −1 and
y = +1, respectively. Let λ be the distance between the base
and the top line. Then, the distance of q from the top line, de-
noted as η, is computed through the following 1D homoge-
nous perspective projection:





−(λ+2η)
λ

2(λ+η)η
λ

1 0



 ·





δ′ +η

1



 =





ξ̃

ω



 ,

and ξ =
ξ̃
ω

. So, η =
λδ′ +λδ′ξ

λ−2δ′−λξ
.

Next, two lines passing through q and touching the convex
hull of E are constructed to be the side lines containing the
side edges of the required trapezoid.

map to

l

l

E

q

η

λ

δ

b

lt

pL

y= −1
map to

y= ξ
map to

y=+1

Figure 5: A 1D homogenous perspective projection problem
to compute q.

For some situations (such as E of a dueling frusta case),
the 80% rule can also result in a significant wastage of

shadow map memory. We thus modify the above algorithm
to an iterative process. Suppose the shadow map is a map
with x horizontal lines of entries. (In our experiments, x is
1024 or 2048.) In the first iteration, pL is mapped to the
80% line (or 0.8x), and in each subsequent iteration, pL is
mapped to an entry one line before that of the last iteration to
compute q. With each computed q, we have a corresponding
trapezoid and its trapezoidal transformation NT computed as
before. From all the iterations, we adopt the trapezoid with
its NT that transforms the focus region to cover the largest
area (though other metrics are possible) in the shadow map.
Note that the above computation is not expensive as it in-
volves simple arithmetic and only a small number of itera-
tions. In fact, for a given up vector of the eye and a given
angle between the eye’s and the light’s line of sight, the best
ξ to where pL is mapped is independent of the scene and can
thus be pre-computed. Therefore, all these best ξ (and thus
η) can be stored in a table with the parameter of the angle
between the eye’s and the light’s line of sight, for each pos-
sible up vector of the eye. Thus, a simple table lookup can
also replace the above iterative process.

6.3. Focus Region in the Shadow Maps

To understand our 80% rule, we generate a plot (as shown
in Figure 6) of the total area covered by the focus region in
the shadow map by varying the angle (represented as a data
point on the xy-plane) between the eye’s and the light’s line
of sight while keeping the up vector constant. We have also
experimented with a series of the same kind of plots with
different up vectors. We observe that consecutive plots of
slightly different up vectors are surfaces of very close val-
ues. These plots indicate that there is a smooth transition
on the area occupied by the focus region (though one could
possibly attempt to prove it formally). This is a strong in-
dication that our approach addresses the continuity problem
well. From our experience, we noted that the 80% rule is ef-
fective. Nevertheless, one can adjust this percentage accord-
ing to the need of the application.

6.4. General Case of Eye and Light

The above discussion assumes that the eye’s frustum lies
completely within the light’s frustum, such as in an outdoor
scene where the sun is the main light source. If this is not the
case, one naïve adaptation is to enlarge the light’s view to
include the eye’s frustum. This is not an effective use of the
shadow map. Also, this can be delicate to handle and may
not always be feasible: there are situations where the ver-
tices of the eye’s frustum lie behind or on the plane passing
through the center of projection of the light and parallel to
the near plane of the light. Such vertices have inverted order
or are mapped to infinity in L. Instead, the next two para-
graphs discuss a simple extension without such undesirable
situations.

Specifically, it suffices to only transform the portion of

c© The Eurographics Association 2004.

158



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

x

y

area

Figure 6: A plot of the areas occupied by the focus regions
in the shadow map with a constant up vector of the eye while
varying the angle between the eye’s and the light’s line of
sight. The focus regions occupy small areas for the dueling
frusta case, but large areas when, for example, one side face
of E is visible in the light’s view.

the eye’s frustum that is inside the light’s frustum to L.
The remaining portion which is not inside the light’s frus-
tum is clearly not illuminated and hence cannot have shad-
ows. Therefore, our approach only needs to process the in-
tersection I between the light’s frustum and the eye’s frus-
tum (with no more than 16 intersections as its vertices). This
conveniently avoids the above problem due to the perspec-
tive transformation. Our algorithm is also adapted accord-
ingly to take care of the following issues while maintaining
a good control of the continuity problem.

First, the line l passing through the centers of the near and
the far plane of the eye’s frustum may no longer be the cen-
ter line for the computation of the base and the top line. One
approach is to compute the center point e of the vertices of I,
and use the line passing through the position of the eye and
e to be the new center line l for the computation. Second, a
new focus region has to be defined, because the focus region
may not be completely within I. One approach is to geomet-
rically push the near and the far plane of the eye (closer to
each other) to tightly bound I in the world space to obtain f ′

as the distance between those planes. Let f be the distance
between the original far and near planes of the eye in the
world space. Then, the new focus region lies within the new
near plane and its parallel plane, where the distance between
the planes is (δ · f ′/ f ). Note that δ is the distance originally
chosen to set the focus region (as defined in Section 6.2).

With the above, our approach is now suited for a wider
range of applications: near to far lights, and both indoor and
outdoor scenes. The accompanying video (available at our
project webpage: www.comp.nus.edu.sg/∼tants/tsm.html)
shows an animation of such cases with two lights illumi-
nating a fantasy character (Figure 7). The video shows that
our approach can achieve high shadow quality for the close

Figure 7: On the left, the character is lit by two nearby lights
as viewed from outside the lights’ frusta. On the right, the
character is lit by a nearby light (left shadow) and a far light
(right shadow).

light situation suitable for the standard shadow map as well
as for the transition to the far light situation unfavorable to
the standard shadow map.

7. Implementation and Results

We have implemented the proposed trapezoidal shadow
maps using GNU C++ and OpenGL under Linux environ-
ment on an Intel Pentium 4 1.8GHz CPU with a nVidia
GeForce FX5900 ultra graphics controller. We use ARB ver-
tex/fragment programs to address the polygon offset prob-
lem. The shadow maps are rendered into a pbuffer using
GLX_SGIX_pbuffer. Note that our approach uses various
geometric yet simple operations such as convex hulls, line
operations etc. in 2D. Robustness issues are easy to handle
in our 2D cases. The standard shadow maps (SSM) [Wil78],
a version of the smallest bounding box approximation (BB)
(see [BAS02]), and the perspective shadow maps (PSM)
[SD02] are implemented for purposes of comparison. De-
tails of our PSM implementation are provided in our project
webpage (see [Koz04] for possible improvements to PSM,
and also [WSP04]).

7.1. Fantasy World

Our first experiment is on a fantasy world with over 100K
triangles, and uses a shadow map size of 1024x1024. All
objects can cast shadows where the only light source is set
at a far distance from the scene. Figure 8 (as shown in the
color plates) shows snapshots of our scene rendered by the
various approaches. The objects in the scene include a static
tree, three mushrooms, a pergola, dynamic objects inclusive
of a dragon and a few characters, and a lotus.

The accompanying video contains flythroughs of the
scene by the various approaches. All the approaches run
smoothly with an average of 28 frames per second without
any special culling and optimization. With SSM, shadows
of static objects do not flicker while shadows of dynamic
objects often flicker. With BB, the flickering occurs for both
static and dynamic objects. The quality of the shadows is not
good in general, and the flythrough experience is not accept-
able. With PSM, it produces better shadow quality than that

c© The Eurographics Association 2004.

159



T. Martin & T.-S. Tan / Trapezoidal Shadow Maps

of BB for its favorable cases. It, however, converges to the
SSM for those unfavorable cases such as when the position
of the eye needs to be moved back so that all objects cast-
ing shadows into the eye’s frustum are included in the new
“virtual” eye’s frustum. With TSM, the animation is smooth
with only occasional flickering of shadows. The experience
of the flythrough is very pleasant.

7.2. Urban Model

Our second experiment is on an urban model with approxi-
mately 1.4 million triangles from 79 objects of buildings, ve-
hicles etc. where the only light source is set at a far distance
from the scene. We use a shadow map size of 2048x2048
pixels with the eye having a large depth of view to test the
quality of shadows of objects from near to far. Such a setting
is unfavorable to BB (as mentioned in Section 3), and com-
parison with BB is thus not necessary and not shown here.

The accompanying video shows flythroughs of the scene
and comparisons between PSM and TSM. See also Figure
9 (as shown in the color plates) for comparisons of shad-
ows between PSM and TSM. We observe that both far away
and nearby shadows generated by TSM are of better qual-
ity than those by PSM. Our program for this scene uses
ARB_occlusion_query for a simple occlusion culling in the
shadow map generation step. On the average, TSM renders
only about 56 objects during the shadow map generation. In
contrast, SSM has to render all of the 79 objects, and BB
and PSM about 61 and 72 objects on the average, respec-
tively. The frame rates for all approaches are small due to
the large number of triangles in the scene while there is no
sophisticated optimization in our implementation.

8. Concluding Remarks and Limitations

We propose the novel trapezoidal shadow maps for real-time
interactive applications. Our implementation shows that it is
practical and maps well to graphics hardware. We note that
our approach is only one way to address the resolution and
the continuity problem. It is a reasonable heuristic to gener-
ate shadow maps of good resolution, but the issues on over-
and under-sampling remain for various situations such as in
the dueling frusta case where the trapezoidal approximation
does not have any particular advantage over other approx-
imations. The possibility to compute an optimal resolution
by using only one shadow map remains an open question.
Also, the approach addresses the continuity problem due to
the motions of the eye and the light but not that of objects
per se. Nevertheless, we take comfort in a good overall con-
trol of the shadow map resolution and its smooth transition,
so that shadows blend well into the scenes without attracting
special (undesirable) attention!

Acknowledgements

We would like to thank John Cannon for helpful discussions.
The character models used in our experiments are obtained
from www.planetquake.com. This research is supported by
NUS under grant R-252-000-181-112.

References

[BAS02] BRABEC S., ANNEN T., SEIDEL H.-P.: Prac-
tical shadow mapping. Journal of Graphics
Tools 7, 4 (2002), pp. 9–18.

[Cro77] CROW F. C.: Shadow algorithms for com-
puter graphics. In Proceedings of SIGGRAPH
(1977), pp. 242–248.

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K.,
GREENBERG D. P.: Adaptive shadow
maps. In Proceedings of SIGGRAPH (2001),
pp. 387–390.

[Koz04] KOZLOV S.: Perspective shadow maps: Care
and feeding. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time
Graphics (2004), pp. 217–244.

[LI03] LOW K.-L., ILIE A.: Computing a view frus-
tum to maximize an object’s image area. Jour-
nal of Graphics Tools 8, 1 (2003), pp. 3–15.

[SCH03] SEN P., CAMMARANO M., HANRAHAN P.:
Shadow silhouette maps. In Proceedings of
SIGGRAPH (2003), pp. 521–526.

[SD02] STAMMINGER M., DRETTAKIS G.: Perspec-
tive shadow maps. In Proceedings of SIG-
GRAPH (2002), pp. 557–562.

[SKvW∗92] SEGAL M., KOROBKIN C., VAN WIDENFELT

R., FORAN J., HAEBERLI P.: Fast shadows
and lighting effects using texture mapping. In
Proceedings of SIGGRAPH (1992), pp. 249–
252.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. In Proceedings of SIG-
GRAPH (1978), pp. 270–274.

[WM94] WANG Y., MOLNAR S.: Second-Depth
Shadow Mapping. Tech. Rep. TR94-019, De-
partment of Computer Science, University of
North Carolina at Chapel Hill, 1994.

[WPF90] WOO A., POULIN P., FOURNIER A.: A sur-
vey of shadow algorithms. IEEE Computer
Graphics and Applications 10, 6 (1990), pp.
13–32.

[WSP04] WIMMER M., SCHERZER D., PURGATH-
OFER W.: Light space perspective shadow
maps. In Proceedings of Eurographics Sym-
posium on Rendering (2004).

c© The Eurographics Association 2004.

160




