
7. International Immersive Projection Technologies Workshop
9. Eurographics Workshop on Virtual Environments (2003)
J. Deisinger, A. Kunz (Editors)

Haptic Rendering of Complex Force Fields

Aleš Křenek

Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic

ljocha@fi.muni.cz

Abstract

With a particular focus in scientific applications, we propose a method of haptic rendering of virtual
environments which require rather complex calculations to evaluate their behaviour. Therefore it is not
possible to perform the calculations within a haptic loop. We specify a class of problems for which
the method is applicable, describe the designed data structure, present involved algorithms, and prove
their critical properties. The general section is followed by a case study of applying the method in
a specific application in computational chemistry. The paper is concluded with first practical results of
deployment of the method as well as preliminary quantitative assessment.

Cathegories and Subject Descriptions (according to ACM CSS): E.1 [Data Structures]: Graphs
and networks, H.5.2 [User Interfaces]: Haptic I/O, J.2 [Physical Sciences and Engineering]: Chemistry

1. Motivation

For almost hundred years of their history movies uti-
lize the human sense of sight inertion. Presenting a se-
quence of discrete frames at the rate of about 25 per
second is sufficient to create an illusion of smooth mo-
tion. Increasing the refresh rate higher does not in-
crease the perceived smoothness of motion.

On the contrary, the human sense of touch is at least
two orders of magnitude more sensitive to the refresh
rate. It has been found out6, 7 that at least 1 kHz is
required (which is a typical value for current devices),
our experiments1 show that in the case of modeling
stiff smoothly curved surfaces the human is able to
perceive increased quality to at least 5 kHz.

Consequently, the time available for a single iter-
ation of the haptic loop, i. e. to evaluate the scene
computational model based on the haptic device posi-
tion and to compute the force (or vice versa) is limited
to at most 1 millisecond. Even with current powerful
CPUs the possible computation is limited to evalua-
tion of simple model primitives, e. g. spring model of
surface penetration6.

In scientific applications, we aim at modeling com-
plex phenomena for which the haptic user interac-

tion may bring significant benefits over conventional
approaches (plain visualization). However, computer
models of such phenomena (e. g. finite element meth-
ods, quantum-chemical calculations etc.) tend to be
computationally extensive. Assuming a 1 second cal-
culation (which is still underestimation of many inter-
esting problems) on a current CPU and the Moor’s
law, it would take about 15 years before CPUs were
able to perform the calculation within the millisecond
range. In the research presented in this paper we seek
for overcoming this performance gap.

Assuming the typical case of three degrees of free-
dom of the haptic interaction a straightforward solu-
tion suggests to approximate the interaction force field
with a discrete 3D grid. The model would be evalu-
ated in advance in each point and the resulting forces
stored. Once the grid were ready the haptic interaction
could be run, interpolating among the precomputed
points.

However, we claim that a 3D grid of precomputed
points is not a sufficiently rich structure to cover inter-
esting force fields. Let’s consider trivial yet illustrative
example, derived from the real application area de-
scribed in Sect. 3: In a real-world environment (i. e.
within a gravitational field) a ball is hung on a rope,

c© The Eurographics Association 2003.

231

http://www.eg.org
http://diglib.eg.org

Aleš Křenek / Haptic Rendering of Complex Force Fields

vertically in its initial position. If the user approaches
it with another ball horizontally from the left, finally
arriving to the original position of the center of the
ball, the ball is shifted to the right. On the other hand,
if the user approaches the ball in the same way from
the right, arriving to exactly the same position, the
ball is shifted to the left (see Fig. 1). Thus we reached
two distinct states of the system, resulting in different
forces, but corresponding to the same input position.
Despite very trivial, the system is rich enough so that
its observed behaviour cannot be described completely
by a simple force field, i. e. a function mapping the
user’s position to a force interaction. Consequently,
we cannot capture it in a simple 3D grid where only
a single state is stored in each point.

�����
�����
���
���

���
���
���
���

Figure 1: When approached from opposite directions
the hung ball (white) is shifted to different positions
(system states), despite the final user position is the
same in both cases.

Our research is motivated mainly by potential appli-
cations found in computational chemistry. As virtually
any chemical process is described with rules involv-
ing energy, various complex force fields are typical for
expressing many chemical interactions. In Sect. 3 we
show a concrete example —analysis of conformational
behaviour of flexible molecules.

Our previous research3 in this area proved that the
general interaction paradigm we accepted was feasible.
However, its deployment was limited to very simple
systems due to the relative lack of computing power.
Therefore we focused on developing a technique of sep-
arating expensive model-specific calculation from the
interaction loop itself. The emerging results are dis-
cussed in the rest of this paper.

2. 3D Grid with Level Conversions

We present a method of haptic interaction with sys-
tems (or virtual environments) exhibiting the follow-
ing features and constraints:

• The modeled system interacts with the user through
an idealized single haptic interaction point8 — HIP.
The HIP is the only, two-way interface between the
user and the environment, its position is taken as an
input and the computed force feedback is applied at
this point as well.

• The computation of the system behaviour can be
virtually arbitrarily complex.
• All data required to describe the modeled system

have to be known in advance. It is not possible to
deal with environments influenced by e. g. real-time
measurements. However, this constraint does not
mean that the environment is static — we require
only that the rules of dynamic behaviour has to be
known.
• Any possible state of the modeled system can be

described by a state vector, and the force interaction
can be derived from such state vector.
• Behaviour of the system is described completely in

terms of changes of the state w. r. t. the HIP po-
sition, and is independent on time. Consequently,
we are currently not able to deal with time-related
quantities (e. g. speed), include them in the system
state, derive behaviour based on such quantities etc.

We developed a two phase approach to haptic ren-
dering of such environments. The two (off-line and on-
line) phases are as follows:

State space computation. The state space of the
interaction with the given virtual environment is
searched through systematically. The trace of the
search is stored in a suitable data structure, an en-
riched 3D grid of sufficient resolution.
This computation is performed in advance, covers
all application-specific expensive calculations, and
may take rather long time.

State space traversal. Actual interaction with the
given virtual environment is run using the precom-
puted data. Calculations required in this phase are
limited mainly to linear interpolation and straight-
forward force computation eventually. Those can be
done very fast, enabling real-time driving of the hap-
tic device, as well as synchronous visualization of
the environment.

In this section we focus on semi-formal description
of behaviour of systems we are able to model with
this approach. Then the intermediate data structure
is described in detail, as well as algorithms involved in
both the phases.

2.1. Modeled System States and Behaviour

Let’s approach the problem more formally now. We
consider a system for which an arbitrary state can be
described completely by a state vector s ∈ R

n. Let’s
denote A ⊂ R

3 the area of interest, i. e. the space of
HIP positions where an interaction with the involved
virtual environment is supposed to occur. Without any
significant loss of generality we can assume that A is
continuous and convex (it is a rectangular bounding
box in most applications).

c© The Eurographics Association 2003.

232

Aleš Křenek / Haptic Rendering of Complex Force Fields

For each x ∈ A we denote S(x) the set feasible
states, i. e. the states of the system that are possible
for a given HIP position x . To be able to compute the
state space we require that there is at least one seed
point x̂ ∈ A such that at least one state ŝ ∈ S(x̂) is
known a priori.

Behaviour of the system is described by a conver-
sion function C : (si, xi, d) 7→ sn. Given an initial HIP
position xi, initial state si ∈ S(xi) and a position shift
vector d , the conversion function computes the state
of the system to which it arrives if the HIP moves di-
rectly to xi + d . We require the following conditions
on the function C to hold:

a) Local evaluation: There is a global constant dmax >

0 such that for each x ∈ A, s ∈ S(x) and |d | ≤
dmax if x + d ∈ A then C(s, x , d) is defined.
This property guarantees that given a HIP posi-
tion and system state, it is always possible to com-
pute a state change corresponding to a small but
non-zero position change. The computed 3D grid
resolution is derived from the dmax value then (see
Sect. 2.2).

b) Completeness w. r. t. states: For each x ∈ A, s ∈
S(x), |d | ≤ dmax such that x +d ∈ A the computed
state C(s, x , d) falls into S(x +d). In other words,
as long as moving within A it is not possible to
reach an “unknown” state.

c) Finite number of levels: S(x) is finite for each x ∈
A. We are going to capture the entire state space by
a precomputed data set. Hence we have to impose
this restriction to prevent infinite computation.

t−t
−1 1

x

α1

α2

−2r
2r

0.5

−0.5

Figure 2: State space of the example in Fig. 1.

Let’s consider the example from the previous section
(Fig. 1). We assume the distance from the fixed point
to the hung ball center is 1 all the time and denote
r � 1 the radius of both the balls. We restrict the
movement of both to one dimension only. Hence the
state of the system is described uniquely by a single
value α — the angle of the rope (being zero initially).

The state space of the system is shown in Fig. 2.
As long as the user approaches from the left until x =
−2r, the ball remains in the initial position α = 0.

x α d C(α, x, d)

(−∞,−t] 0 any 0

(−t,−2r] 0 x + d ≤ −2r 0
x + d ≥ −2r α1(x + d)

[−2r, t) α1(x) x + d ≤ −2r 0
x + d ∈ [−2r, t) α1(x + d)

x + d ≥ t 0

[2r, t) 0 x + d ≥ 2r 0
x + d ≤ 2r α2(x + d)

(−t, 2r] α2(x) x + d ≤ −t 0
x + d ∈ (−t, 2r] α2(x + d)

x + d ≥ 2r 0

[t,∞) 0 any 0

Table 1: Conversion function definition for the exam-
ple in Fig. 1. The first three columns represent ranges
or values of the function arguments, the last one is the
resulting state.

Then it follows the function α1. From this point the
distance between the balls centers remains 2r, hence
α1 must be a solution of the equation

(1− cos α)2 + (x− sin α)2 = 4r
2
.

The actual analytical solution is a rather complicated
formula containing over 50 terms, and it is pointless
to present it here. For the purpose of this example we
computed it with Maple symbolic math software5.

Eventually, the user reaches a tear-off point t =
2
√

r(r + 1) (this value is derived from the fact that
the fixed point and both balls centers are collinear
at this point), and the ball drops back to the initial
position. The behaviour is symmetric when approach-
ing from the right, following the function α2 once the
balls touch each other. Exact definition of the corre-
sponding conversion function is shown in Table 1. In
order to reduce the number of cases (rows) we assume
dmax < t−2r. It can be seen that the above conditions
a–c are met.

A conversion function conforming with the three
conditions above describes completely the system be-
haviour and is sufficient to build a model of hap-
tic interaction through the HIP. We do not impose
constraints on time required to evaluate the conver-
sion function. On the contrary, it should cover all the
model-related time consuming calculations.

A force interaction between the user and the model
in the HIP is described by a force function F (x , s)
mapping the HIP position x ∈ A and a feasible model
state s ∈ S(x) to a force that should be delivered to
the user. It is convenient if the state vector is designed
in such a way that F can be evaluated inside the haptic

c© The Eurographics Association 2003.

233

Aleš Křenek / Haptic Rendering of Complex Force Fields

loop, i. e. in less than 1ms, however, we do not require
it strictly (see Sect. 2.2).

In addition, we assume that the vector s contains
enough information to visualize the model in the given
state, and it’s also possible to do it sufficiently fast to
get smooth visualization (i. e. at 25Hz). If it is not
possible for a given application, further visualization
data has to be precomputed and stored as well.

2.2. Precomputed Data

The precomputed dataset serves as a discrete approx-
imation of the described continuous conversion func-
tion. Its structure is based on a 3D grid of evenly dis-
tributed samples of the HIP position within the area
of interest A. For the sake of simplicity, we assume
further on that A is a rectangular box. Let’s denote d̄

the axial distance between adjacent grid points.

The grid is enriched with levels and conversions
among its adjacent points. In each grid point x there
are as many levels as is the number of feasible states
S(x). Then, each level l stores a record containing

• a state vector sl,
• 3× 3× 3 cube Dl of destination levels,
• force vector F (x , sl) (optional),
• visualization data (optional).

The cube of destination levels encodes the conversion
function. We ignore the centre of the cube and inter-
pret its remaining 26 elements as vectors d ∈ D where

D =
{

(d1, d2, d3) : d1, d2, d3 ∈
{

−d̄, 0, d̄
}

and |(d1, d2, d3)| 6= 0
}

.

For each such d , the corresponding value in the D

array indicates that the destination state C(sl, x , d)
is stored at the grid point x + d at level Dl[d].

The three principal requirements on the conversion
function from Sect. 2.1 are reflected in this data in the
following way:

a) Conversion function must be defined on a suffi-
ciently large surrounding of each grid point to reach
all the adjacent points, including volume diagonals.
Hence dmax ≥

√
3d̄. Or, vice versa, if the dmax value

is constrained by the conversion function proper-
ties, the grid resolution must be fine enough to ac-
complish this inequality.

b) For each grid point x , level l at this point and
a shift vector d such that x + d ∈ A, the des-
tination level Dl[d] must exist at x + d and the
state stored there must be C(sl, x , d).

c) S(x) elements are mapped 1:1 to the levels. Hence
the requirement on finiteness is obvious.

The optional force and visualization data are in-
cluded when the underlying model does not allow to
compute them sufficiently fast (i. e. 1ms in case of the
force, and about 40 ms for visualization data) from the
state vector.

2.3. State Space Computation

The algorithm computing the described enriched grid
works with a queue Q of quadruplets (s, x , d , l) —
requests to store a data record consisting of a state s at
the HIP position x , having been found by conversion
function evaluation from position x − d and level l.
Results are stored into the four dimensional array X.
The code is shown in Algorithm 1.

Algorithm 1 Compute the enriched grid

1: for all seed points x̂ do

2: l := 0
3: for all known ŝ ∈ S(x̂) do

4: X[x̂ , l].s := ŝ

5: expand state(x̂ , ŝ, l)
6: l := l + 1
7: end for

8: end for

9: while Q is not empty do

10: (s, x , d , l′)← Q

11: l := 0
12: while X[x , l] exists and X[x , l].s 6= s do

13: l := l + 1
14: end while

15: if X[x , l] does not exist then

16: X[x , l].s := s

17: expand state(x , s, l)
18: compute and store force and/or visualization

data if necessary
19: end if

20: X[x − d , l′].D[d] := l

21: end while

procedure expand state(x , s, l)

for d ∈ D do

if x + d ∈ A then

s ′ := C(s, x , d)
Q← (s ′, x + d , d , l)

end if

end for

Initially, the queue is initialized with one or more
seed points (see Sect. 2.1) for which some states are
known. Usually those are the corners of the area of
interest.

A core of the computation is the procedure
expand state. Given a HIP position x , state s ∈ S(x)
and a level l where s is stored the procedure loops over

c© The Eurographics Association 2003.

234

Aleš Křenek / Haptic Rendering of Complex Force Fields

all 26 directions and if the particular HIP position shift
does not reach beyond the area of interest, the con-
version function is evaluated in these directions, and
the reached states enqueued to be processed later.

In each iteration of the algorithm main loop (start-
ing at line 9), a queue head (s, x , d , l′) is extracted.
First, the grid point x is checked whether the state
s has been already stored there. If not, a new level
l at x is allocated and the state s stored. Then the
procedure expand state is called to compute the con-
version function (starting from s, x) and enqueue the
results.

In either case the original record in x − d at level
l′ (from where the conversion function was evaluated
and the state s reached in some iteration before) is
updated so that the destination level for the shift d is
set to the discovered level l.

The algorithm terminates when the queue is empty.
Let’s sketch a proof that it always happens. Given
a position x , state s ∈ S(x), and position shift d ∈ D
a request containing s, x , d is enqueued into Q exactly
once, upon storing s into X[x] (line 16). On all fur-
ther occurrences of s, x in the queue, no requests are
enqueued. The number of distinct x ’s (grid points) is
finite, and according to the requirement c) in Sect. 2.1
all the sets S(x) are finite as well. Hence the number
of requests ever enqueued is finite and the algorithm
terminates consequently.

Further on, we show that upon termination the
output data X are complete —accomplish the condi-
tion b) in Sect. 2.2: Let’s choose an arbitrary X[x , l].
When this record was created (line 16), the proce-
dure expand state was also called. Therefore for each
d ∈ D such that x + d ∈ A a request (s ′, x + d , d , l)
where s ′ = C(X[x , l].s, x , d) was enqueued. Eventu-
ally in a further iteration of the main loop, the re-
quest was extracted from the queue and the state s ′

either found or stored in X[x + d] at some level l′′.
In the same iteration at line 20 the destination level
X[x , l].D[d] was set to the correct value l′′ then.

In the real implementation two additional problems
have to be overcome:

• We work with finite precision floating point arith-
metics. Therefore the inequality test at line 12 has
to be implemented in a little more relaxed fash-
ion. Instead of strict vector equality we use an
application-specific tolerance function making the
decision whether two state vectors should be con-
sidered as equal.

• Usually we are not sure whether a particular conver-
sion function describing behaviour of the modeled
virtual environment accomplishes the finiteness re-
quirement. To prevent infinite computation we im-

pose a fixed limit on the number of levels. If it is ex-
ceeded the program aborts. Such a critical condition
indicates either true divergence (i. e. breaking the
finiteness requirement) or some other problems, e. g.
too strict tolerance function and/or insufficient pre-
cision of the conversion function computation etc.

We implemented the described algorithm as
a generic ANSI C program skeleton into which an
arbitrary conversion and tolerance functions can be
plugged. Moreover, the current implementation ex-
ploits a fairly straightforward potential parallelism in
processing the queue. However, detailed description of
those features is beyond the scope of this article. Prop-
erties of the parallel algorithm are subject of current
evaluation and will be reported elsewhere.

2.4. State Space Traversal

Given the precomputed 3D grid with conversions de-
scribed in previous sections the haptic device can be
driven in the real time without further need of time-
consuming model evaluations. In this section we as-
sume the simpler case that it is possible to compute
both force interaction and visual representation of the
model from a state vector sufficiently fast. If not, the
required data has to be stored in the precomputed
grid and the algorithm described in this section inter-
polates those data instead of the system state.

Algorithm 2 Haptic device driving

1: x ← read HIP position
2: initialize current cell w. r. t. x

3: loop

4: x ← read HIP position
5: if x not in current cell then

6: switch cell
7: end if

8: s ← interpolate states in cell corners w. r. t. x

9: compute and apply the force
10: end loop

Skeleton of the driving program is shown in Algo-
rithm 2. The program keeps track of the current cell
of the grid where HIP is located. For each of the eight
corners of the cell a current level and current state is
maintained. For a triplet of indices i, j, k ∈ {0, 1} rep-
resenting a corner we denote l[i, j, k] the current level
and s[i, j, k] the current state in the corner.

The initialization steps involves finding the grid cell
into which the starting HIP position x belongs, setting
current level to 0 in all cell corners, and reading the
precomputed states at level 0.

In each step of the main loop (running at the rate re-
quired to drive a haptic device, i. e. at least 1 kHz) the

c© The Eurographics Association 2003.

235

Aleš Křenek / Haptic Rendering of Complex Force Fields

HIP position is read from the device and mapped to
the precomputed grid. As long as it stays within a sin-
gle cell the current state vector is linearly interpolated
among all the corners w. r. t. the states stored in the
grid at the current corner levels. More precisely, let’s
denote x̄ = (x̄1, x̄2, x̄3) the normalized relative HIP
position within the current cell. We compute corner
weights as products

w[i, j, k] =
(

(1− i)x̄1 + i(1− x̄1)
)

·
(

(1− j)x̄2 + j(1− x̄2)
)

·
(

(1− k)x̄3 + k(1− x̄3)
)

.

It can be seen that
∑

i,j,k∈{0,1} w[i, j, k] = 1 for each
x within the cell. The interpolated state w. r. t. x is
computed as a weighted sum

s̄ =
∑

i,j,k∈{0,1}

w[i, j, k] s[i, j, k] .

It can be easily seen that s̄ becomes s[i, j, k] for
x̄ = [i, j, k]. Moreover, if a component of x̄ is 0 or 1,
the weights of all opposite vertices become 0. In other
words, for computation of an interpolated state vector
at each point on the cell boundary (face or edge) only
the precomputed state vectors in the vertices of the
face or edge are considered.

Eventually, the HIP crosses a cell boundary. In such
a case two consequent measurements of HIP position
fall into two distinct cells. Therefore the current cell
has to be switched w. r. t. the new HIP position. Fur-
ther on we assume that the two cells share at least
one common vertex. If it is not true the HIP motion
is split with interpolation into two or more steps for
which the condition holds.

On a cell switch we preserve levels (and conse-
quently state vectors) in all common vertices of the
two cells. However, it is necessary to find out levels to
be considered in the remaining vertices of the new cell.
In order to choose an appropriate strategy we classify
the cell switches in the following way (see also Fig. 3):

i) Across face. The old and new positions fall into cells
which share a common face. In this case conversions
from the common grid points in the direction per-
pendicular to the common face (i. e. along an axis)
are considered.
For example, assuming the common face consists of
vertices [1, ∗, ∗] of the original cell (i. e. the vertices
[0, ∗, ∗] of the new cell) the only considered HIP
position shift vector is d = (d̄, 0, 0). E. g. if the
vertex [1, 0, 0] of the original cell maps to a grid
point y and a level l then the vertex [0, 0, 0] in the
new cell will map to the same point y and level l.
The vertex [1, 0, 0] in the new cell will map to y +d

and its level will be assigned the value X[y , l].D[d].
ii) Across edge. The old and new cells share a single

edge. Three conversions from each of the two com-
mon vertices are considered, along the edges of the
new cell as well as its face diagonals.

iii) Across vertex. The old and new cells share a single
point. All seven conversions from the common point
to the other vertices of the new cell are considered.

i) face ii) edge

iii) vertex

Figure 3: Three ways of switching the current cell.
Change of HIP position is shown with the black arrow,
considered conversions are the white dashed arrows.

As for each point on a cell boundary only the ver-
tices of the respective edge of face are considered in
the state vector interpolation, at any common point of
the two switched cells the resulting state vector is the
same, not regarding in which cell it was actually com-
puted. Consequently, the mapping of measured HIP
position to the resulting state vector is always contin-
uous. This is a critical property when driving a haptic
device.6

The cases ii) and iii) in the above list document the
requirement to compute conversions also in the diag-
onal directions. Attempting to substitute two or three
axes-aligned steps in place of a diagonal one we might
face ambiguity —the resulting levels of the final vertex
may differ when different possible paths were consid-
ered. Hence a direct model evaluation (represented by
the diagonal steps) has to be used instead.

Simultaneous visualization of the model is done in
an independent thread of the program. The visualiza-
tion loop runs at much slower rate (about 25 Hz) reads
the current interpolated state vector (shared with the

c© The Eurographics Association 2003.

236

Aleš Křenek / Haptic Rendering of Complex Force Fields

haptic loop), and computes and displays visual repre-
sentation of the model.

3. Flexible Molecular Models

In this section we briefly present an application area
we are focused on, and show how the general method
described in the previous section is deployed.

Molecular flexibility is a chemical property that usu-
ally becomes important when biological activity of
molecules is considered. Flexible molecules are those
which are able to change their shape quite easily, with-
out changing their chemical structure, i. e. creating or
splitting a bond. Capability of a molecule to achieve
a particular shape may determine possibility of cer-
tain reaction. Protein synthesis and enzymatic reac-
tions are good examples.

Properties of flexible molecules are described in
terms of conformational behaviour. By a conforma-
tion we mean a distinct, relatively stable shape of the
molecule (i. e. a shallow potential energy minimum).
Conformational behaviour is the process of traversal
among various conformations.

Conformational behaviour analysis is a well estab-
lished area of computational chemistry. Since 80’s nu-
merous results were achieved with the aid of growing
computational power, and huge amount of data was
produced.

We claim that haptic interaction can considerably
increase the quality and speed of human perception
of those data. Conformational behaviour, like many
other chemical processes, is determined by energetic
constraints. On the other hand, with perception of
a force the human is more aware of the energy of
the examined system, as well as changes of the en-
ergy. Hence the haptic interface is capable to deliver
such information to the user more directly compared
to conventional methods.

In our prototype application we represent the
molecule with its van der Waals surface — each atom
is shown as a colored ball, and the balls are big enough
to overlap one another. The user manipulates a probe,
another ball virtually “attached” to the haptic device
(Sensable’s PHANToM). The probe and the molecu-
lar surface are not allowed to penetrate each other.
Instead, the molecule is forced to change its shape
according to the rules given by the underlying compu-
tational model of the conformational behaviour. The
user “feels” the energy required to do the particular
conformational change as a force feedback delivered
by the device, as well as sees the effect of the applied
force in a synchronous visualization of the model.

Our application considers a single conformation

(minimum of potential energy of the molecule) and
its local surroundings represented by several transition
states —other shapes which correspond to directly ac-
cessible saddle points of the potential energy. For the
sake of simplicity the reader can think of the tran-
sition states as shapes resulting from “twisting” the
molecule along one or more bonds.

Given the shape of the conformation and a tran-
sition state, and a morphing parameter t ∈ [0, 1] we
are able to compute an intermediate shape such that
the shape changes continuously from the conformation
(t = 0) to the transition state (t = 1).2 Moreover, the
morphing algorithm can be modified so that it con-
siders more transition states as well as a correspond-
ing vector of the morphing parameters. The resulting
shape is a merge of the shapes emerging from individ-
ual conformation to transition state paths. Hence the
central conformation and the several transition states
can be understood as generators of a certain space of
shapes of the molecule. The morphing parameters be-
come coordinates of a given shape within this space.

In terms of Sect. 2 we describe the entire model with
a state vector. It is composed of variables of two sorts:

• morphing parameters (as many as the considered
transition states),
• rotation and shift from an original position (6 vari-

ables in total).

The morphing parameters describe uniquely a shape
of the molecule, the others allow the molecule to rotate
and move.

We introduce a concept of hybrid energy (to be de-
scribed in more detail elsewhere). This is a virtual
quantity which unifies together:

• modeled property of the molecule, i. e. the energy
required to perform a shape change,
• behaviour of the virtual environment and rules of

the users’ interaction with it.

Potential energy of the molecular shape, as derived
from the underlying chemical calculations, is included
directly in the hybrid energy formula. The user’s in-
teraction is expressed with additional terms which
strongly penalize penetration of the molecular sur-
face with the probe, and others which stabilize the
molecule more or less at its initial position.

Given the energy, the principal physical law which
determines model behaviour is the 2nd thermody-
namic law — being given some degrees of freedom any
natural system follows its energy gradient sponta-
neously until it reaches the closest local energy mini-
mum. Presence of the 2nd thermodynamic law is ubiq-
uitous in the real world. Consequently, its presence in
a virtual environment helps the user to overcome the

c© The Eurographics Association 2003.

237

Aleš Křenek / Haptic Rendering of Complex Force Fields

gap between her real-world experience and the vir-
tual world behaviour. Then, she can concentrate on
perceiving the information the virtual model was de-
signed to deliver. Our experience shows that in this
way we achieve a high degree of intuitiveness.

Within this framework, we interpret the probe po-
sition as an external constraint and let the hybrid en-
ergy continuously minimize, treating the state vector
as free variables.

It is the hybrid energy minimization which repre-
sents most of the time consuming calculations in this
application. Therefore, according to the general frame-
work of Sect. 2, it has to be covered by the con-
version function. Evaluating the conversion function
C(s, x , d) for a feasible state s ∈ S(x) (i. e. s repre-
sents a shape of the molecule possible for the probe
position x) involves local minimization of the hybrid
energy, starting in s and constraining the probe posi-
tion to x + d .

As mentioned in Sect. 2.1 the state space calculation
needs at least one seed point and its known state to
start from. In our application we assume that a bound-
ing box is specified in such a way that no interaction
between the probe and the molecular surface occurs in
its corners. Hence we seed the computation with the
corners and a zero state vector— initial shape and po-
sition of the molecule.

Finally, the force function is expressed as a sum of
restorative forces6 —if the probe penetrates a surface
of an atom they are repelled from each other with
a force proportional to the amount of penetration.

Our experiments show that the calculation of an ac-
tual position of all atoms based on a state vector value
as well as evaluating the force interaction is simple
enough to be run within the haptic loop.

It can be shown that the force formula corresponds
to a space gradient of scalar field of the hybrid en-
ergy corresponding to the probe positions and the re-
spective system states. Again, this property meets in-
tuitive expectations on the model behaviour — in the
real world, a mechanical force is exactly the space gra-
dient of a potential energy.

4. Results and Conclusion

The ideas presented in this paper are currently re-
flected in a prototype application. Up to now it has
been tested with data on alanine amino acid (22
atoms) and a simple peptide (77 atoms).

The grid calculation is implemented in a distributed
way, it’s been successfully run on more than 100 CPUs.
We are preparing precise measurements of scalabil-
ity of the parallel algorithm. The conversion func-

tion is based on our molecular-shape morphing algo-
rithm Aida2 which in turn uses results of the Cicada4

family of programs used for computational conforma-
tional analysis. However, the system is designed in
such a way that it should be possible to plug-in any
force field (conversion and force function) satisfying
the described constraints.

The interactive part of the application is imple-
mented in Linux OS, driving the PHANToM force
feedback device, and visualizing the model through
OpenGL.

Given the resolution and space extent of our device
(the smallest 1.0 model) we found out experimentally
that 303 grid points are sufficient to create illusion of
a perfectly continuous model of the simpler molecule
(alanine), and it does not make sense extend the grid
beyond 503 for the other one. Table 2 gives an insight
into absolute numbers of output size and CPU time of
the grid computation.

Molecule avg. levels data size CPU hours

alanine 1.023 5.2 MB 11
peptide 1.035 5.2 MB 27

Table 2: Computation of the state space grid of the
two testing molecules. Done on 700 MHz Pentium III
processors. The grid resolution was 30 in both cases.
The 2nd column shows an average number of dis-
tinct levels per grid point. Output data size refers to
a Berkeley DB file.

Up to now we performed too few computations to
derive exhaustive results. However, the most impor-
tant observation is the actual number of levels per
grid point. The low numbers indicate that the phe-
nomenon of multiple distinct states per HIP position,
despite crucial from the qualitative point of view, is
very rare when counted quantitatively. From practical
viewpoint it is a positive result — we can expect that
the method will be able to deal with much larger and
more complex problems while still keeping affordable
data size and computation time.

The application was presented to a group of users
with knowledge in the field of computational chem-
istry but without prior experience with haptic com-
puter driven devices. After a very short training (only
a few minutes) the users did not find difficulties in in-
teraction with the model. The received feedback was
positive, the users claimed that the presented inter-
active model helps them understand conformational
behaviour of the molecule much faster than conven-
tional methods.

c© The Eurographics Association 2003.

238

Aleš Křenek / Haptic Rendering of Complex Force Fields

We consider the principal achievement of the work
presented in this paper to be the design of a framework
and related generic algorithms which can be used to
build haptic interactive models of complex force fields.
The strict separation of the computationally extensive
calculation of the force field properties into the off-line
phase makes the approach virtually independent on
the force field calculation complexity.

Acknowledgement

This work was supported by the Grant Agency of
the Czech Republic, grant no. 201/98/K041, and the
Czech Ministry of Education, research programme
CEZ:J07/98:143300003. Special thanks to the team of
the HCI laboratory at the Faculty of Informatics for
providing the application testing environment, the Su-
percomputer Centre Brno and the MetaCentre project
for providing computing resources, and prof. Luděk
Matyska for valuable feedback in preparation of this
manuscript.

References

1. Z. Kabeláč. Rendering stiff walls with phantom.
In Proc. 2nd PHANToM User’s Research Sym-
posium, 2000. http://www.vision.ee.ethz.ch/

~purs2000/Final_PS/Kabelac.pdf.

2. Aleš Křenek. An algorithm on interpolating be-
tween two shapes of molecule. In W. Straßer,
editor, Proc. SCCG ’97, pages 77–84. Comenius
University, Bratislava, 1997.

3. Aleš Křenek. Haptic rendering of molecular flexi-
bility. In M. Harders and S. Huber, editors, Proc.
PURS 2000, pages 19–26, 2000. ISBN: 3-89649-
579-8.

4. J. Koča. Traveling through conformational space:
an approach for analyzing the conformational be-
haviour of flexible molecules. Progress in Biophys.
and Mol. Biol., 70:137–173, 1998.

5. Maple, a symbolic mathematics system. http:

//www.maplesoft.com.

6. W. R. Mark, S. C. Randolph, M. Finch, J. M. Van
Verth, and R. M. Taylor. Adding force feedback
to graphics systems: Issues and solutions. In Proc.
SIGGRAPH, 1996.

7. D. C. Ruspini, K. Kolarov, and O. Khatib. The
haptic display of complex graphical environments.
In Proc. SIGGRAPH, pages 345–352, 1997.

8. C. B. Zilles and J. K. Salisbury. A constraint-
based god-object method for haptic display. In
Dynamic Systems and Control, volume 1, pages
146–150, 1994.

c© The Eurographics Association 2003.

239

240

