
A Framework for Performance Evaluation of Model-Based
Optical Trackers

F. A. Smit1 and R. van Liere1,2

1Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
2Eindhoven University of Technology, The Netherlands

Abstract
We describe a software framework to evaluate the performance of model-based optical trackers in virtual environ-
ments. The framework can be used to evaluate and compare the performance of different trackers under various
conditions, to study the effects of varying intrinsic and extrinsic camera properties, and to study the effects of
environmental conditions on tracker performance. The framework consists of a simulator that, given various input
conditions, generates a series of images. The input conditions of the framework model important aspects, such as
the interaction task, input device geometry, camera properties and occlusion.
As a concrete case, we illustrate the usage of the proposed framework for input device tracking in a near-field
desktop virtual environment. We compare the performance of an in-house tracker with the ARToolkit tracker under
a fixed set of conditions. We also show how the framework can be used to find the optimal camera parameters
given a pre-recorded interaction task. Finally, we use the framework to determine the minimum required camera
resolution for a desktop, Workbench and CAVE environment.
The framework is shown to provide an efficient and simple method to study various conditions affecting optical
tracker performance. Furthermore, it can be used as a valuable development tool to aid in the construction of
optical trackers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Virtual Reality H.5.2
[Information Interfaces and Representation]: Input Devices and Strategies

1. Introduction

Tracking in virtual and augmented reality is the process of
identifying the pose of an input device in the virtual space.
Model-based optical tracking achieves this by using input
devices augmented by markers for which the 3D features
of these markers are known in advance. The set of known
3D features is called the model. Pose estimation is then
performed by detecting these features in one or more two-
dimensional camera images. Optical tracking is an impor-
tant technology as it provides a cheap tracking solution that
does not require any cables in the virtual space. Further-
more, given sufficient camera resolution, the accuracy of op-
tical tracking is very good. However, a common and inherent
problem in optical tracking is that line of sight is required:
if the input device is partially occluded a pose can often not
be found. Various implementations of optical trackers exist
(eg. [KB99, WS07, SvRvL07, vR06]).

An important issue in optical tracking is an objective way
of measuring performance. The user’s performance for an
interactive task often depends on the performance of the op-
tical tracking system. Tracker accuracy puts a direct upper-
bound on the level of accuracy the task can be performed
with. Particularly in cases where the tracker cannot detect the
input device, for example due to occlusion, interaction per-
formance is reduced significantly. Therefore, many aspects
must be taken into account when evaluating the performance
of an optical tracker. These aspects include the type of inter-
action task that is performed; the intrinsic and extrinsic cam-
era parameters, such as focal length, resolution, number of
cameras and camera placement; environment conditions in
the form of lighting and occlusion; and end-to-end latency.
Furthermore, performance can be expressed in a number of
different ways, such as positional accuracy, orientation ac-
curacy, hit:miss ratio, percentage of outliers and critical ac-
curacy, among others. Most optical tracker descriptions do

EGVE Symposium (2008)
B. Mohler and R. van Liere (Editors)

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


not take all these aspects into account when describing the
tracker performance.

In this paper, we present a framework for evaluating the
performance of optical trackers in a systematic way. The pre-
sented framework allows us to quantitatively:

• Evaluate and compare the performance of different opti-
cal trackers under various conditions. This is useful for
deciding which optical tracker implementation to use for
a specific virtual environment, under different constraints.

• Study camera properties for various virtual environments.
In this way, we can evaluate how many cameras are re-
quired to perform a specific task, what the minimum re-
quired quality of the cameras should be in terms of reso-
lution, distortion and focal length, and where they should
be placed.

• Study environment conditions for various virtual environ-
ments. This allows us to study the effects of device oc-
clusion, which is an important aspect for optical tracking.
Also, different lighting conditions can be studied, such as
infrared, office or day light.

2. Related Work

Van Liere and van Rhijn [vLvR04] examined the effects of
erroneous intrinsic camera parameters on the accuracy of a
model-based optical tracker. They recorded a real, interac-
tive task and subsequently ran three different optical track-
ing algorithms on these images, providing them with varying
intrinsic camera parameters to simulate errors in the camera
calibration process. They showed how these parameters af-
fect the accuracy, robustness and latency of the tested optical
tracking algorithms. The framework presented in this paper
is more general in the sense that it enables us to study many
more parameters than just the intrinsic camera calibration.
Since we generate virtual camera images, it is possible to
realistically study effects such as lighting conditions, occlu-
sion and varying camera placements.

In the past, several techniques have been proposed to
study the properties of multiple camera setups and camera
placements for general optical tracking. Two examples are
the Pandora system by State, Welch and Ilie [SWI06] and
the work by Chen [Che00] on camera placement for robust
motion capturing. The Pandora system [SWI06] allows the
user to set varying extrinsic and intrinsic camera parame-
ters and projects a visualization of these parameters on a vir-
tual scene. Every virtual camera projects a resolution grid on
the scene using shadow mapping. In this way, the user can
explore the virtual scene and examine, for example, which
parts of the scene are visible and at which resolutions for dif-
ferent camera placements. Chen [Che00] proposes a quanti-
tative metric to evaluate the quality of a multi-camera con-
figuration in terms of resolution and occlusion. A probabilis-
tic occlusion model is used and the virtual space is sampled
to determine optimal camera placements. The focus lies on

finding a robust multi-camera placement for general motion
capturing systems.

These methods share the property that they take into ac-
count only the camera placements and the virtual space, but
do not provide any performance measures for specific opti-
cal trackers or tasks. A typical strategy is to maximize the
amount of space coverage while maintaining a pre-specified
minimum resolution. Our framework is focused on model-
based device tracking in virtual environments, as opposed to
the larger problem of general optical tracking and space cov-
erage. We seek to provide quantitative data for real tasks so
we can compare the actual, measured performance of differ-
ent optical trackers under varying conditions, which are not
limited to camera placement alone.

3. Methods

In this section we provide a detailed description of our pro-
posed framework for the performance evaluation of model-
based optical trackers. First, the various components of the
framework are discussed, along with some examples of typ-
ical usage scenarios. Next, a brief description is given of the
implementations of two optical trackers. These optical track-
ers will be used in Section 4 as examples to illustrate how the
presented framework can be used in practice.

3.1. Framework Description

An overview of the proposed framework is given in Fig-
ure 1. The framework consists of three major components:
the simulator, the optical tracker and the analysis compo-
nent. Solid arrows between varying components represent
the flow of data. The simulator is responsible for generating
two-dimensional image files, which are then used as input
for the optical tracker. Next, the optical tracker calculates
a pose based on these input images. Finally, the calculated
pose is fed to the analysis component and compared to a
ground truth resulting in various kinds of performance met-
rics.

Each major component accepts one or more input data
streams generated by supporting components, which are
shown in Figure 1 to be environment conditions; an occlu-
sion model; camera parameters, both intrinsic and extrinsic;
a ground truth in the form of a task; and a device model.
By varying the output of the supporting components we can
evaluate the performance of optical trackers under a wide
range of different conditions. We will now describe each of
the three main components and their inputs in more detail.

The purpose of the simulator component is to output a se-
ries of two-dimensional images representing captured cam-
era frames. In order to achieve this, several input data are
required:

• A device model that is recognized by the optical tracker.

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers34



Figure 1: An overview of the presented framework for the performance evaluation of model-based optical trackers. The three
main components are the simulator, optical tracker and analysis components. Each of these components receive one or more
input data streams from supporting components. The input data provided by these supporting components can be varied to
evaluate tracker performance under a wide range of conditions. Data flows are indicated by solid arrows between components.

This enables us to render a simulation of the input de-
vice, which can then subsequently be tracked by the opti-
cal tracker.

• Intrinsic and extrinsic parameters for N virtual cameras.
For each of the input cameras an image is rendered as if
the device model was captured with such a camera. In this
way, we can modify camera placements and the number
of cameras, along with camera properties such as focal
length and resolution.

• Simulated environment conditions used for rendering. By
altering environment conditions we can modify the ren-
dered images in various ways. Some examples of envi-
ronment conditions are lighting models, such as infrared,
office or day light; background images, which can com-
plicate the required image processing; and different types
of generated image noise.

• An occlusion model where the input device is partially
occluded for different cameras. Occlusion is an important
aspect for optical trackers, as line-of-sight is always re-
quired to determine a pose. Examples of occlusion models
are the user’s hands on the input device, or even people’s
bodies in larger, CAVE-like virtual environments. Simu-
lated occluders can be rendered in addition to the input
device, making it more difficult to detect.

• Ground truth data of where exactly the input device is lo-
cated. A ground truth position and orientation allows us
to render the device in that exact location, resulting in
an animation sequence of M ground truth device poses.
A number of different ways are possible to generate this
ground truth location data. A synthetic signal can be used
to evaluate different positions and orientations in the envi-
ronment; however, it is also possible to record and replay
a real-life interaction task. Several different types of in-
teraction tasks can be recorded in this manner, such as po-
sitioning or pointing. Finally, different sampling schemes
can be used to simulate varying camera update rates.

The output of the simulator component is a series of NxM
images: for each of the M ground truth poses, N camera im-
ages are rendered. Rendering is performed using standard
OpenGL functionality; a 3D polygon mesh of the occlus-
sion model is rendered, along with a texture mapped cube
representing the input device. The six textures for the ren-
dered input device are obtained through digital photographs
of a real input device. The extrinsic and intrinsic parameters
for the virtual camera are modelled by the OpenGL mod-
elview and projection matrix, respectively. The camera focal
length is represented by entries (0,0) and (1,1) of a 3x3 pro-
jection matrix, with the principal point at entries (0,2) and
(1,2). Focal length values are computed in such a way as
to match those of actual 35mm equipment. The virtual cam-
era’s principal point is set to ((w + 1)/2,(h + 1)/2), where
w and h represent the camera’s horizontal and vertical res-
olution, matching the principal point used by OpenGL for
rendering. The modelview matrix is a standard 4x4 trans-
formation matrix for camera orientation and position. These
values are similar to the calibration values of a real camera.
Given this virtual camera setup and a rendered simulation
image, the tracker component can subsequently reconstruct
a 3D ray in the simulated interaction space from the virtual
camera through a given a 2D image point.

The optical tracker component is responsible for calcu-
lating a device pose based on the images rendered by the
simulator component. In order to achieve this, the tracker re-
ceives additional input consisting of the same device model
description that was provided to the simulator, and also with
the same intrinsic and extrinsic camera parameters. This is
equivalent to the situation where calibrated, real cameras
provide captured images. Alternative approaches may re-
strict this input, for example, in the case of evaluating mark-
erless tracking, structure from motion approaches or camera
calibration. The optical tracker component itself can be im-
plemented by many different types of optical trackers that

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers 35



Figure 2: The simulated input device for GraphTracker. The
graph markers are rendered in white to simulate infra-red
lighting. The 3D hand occlusion model is also shown.

we wish to evaluate under certain conditions. The output of
the optical tracker component is a device pose, which can be
compared to the ground truth pose.

The purpose of the analysis component is to provide var-
ious performance metrics based on the pose reported by
the optical tracker component and the known ground truth.
Therefore, the input to the analysis component consists of
the same ground truth animation sequence that was provided
to the simulator component and the sequence of poses gen-
erated by the optical tracker. The output of the analysis com-
ponent can be a wide range of performance metrics, such
as position and orientation accuracy, for different animation
frames or cameras, either per frame or averaged over the en-
tire sequence, hit/miss ratios or processing time. Addition-
ally, the animation sequence may contain weights to describe
specific frames where accuracy is deemed to be much more
important than at other frames, for example at interaction
locations near a target. The output of this analysis can be
compared for different settings to determine which setting is
best suited for a specific task.

3.2. Tracker Implementations

In order to test the presented framework, we have made use
of two different optical trackers in Section 4. In this section
we will briefly describe the technical details of these two
optical trackers; the reader is assumed to be familiar with
optical tracking techniques. Both trackers are structured in
such a way that they consist of two components: a 2D-to-3D
point correspondence component and a 3D pose reconstruc-
tion component. The correspondence component is responsi-
ble for detecting 2D image features and mapping them to 3D
device model features. The pose reconstruction component
uses this correspondence information to calculate a device
pose.

The first optical tracker is an implementation of Graph-
Tracker as presented by Smit et al. [SvRvL07]. The corre-
spondence component operates by detecting projection in-
variant graph structures in a 2D image. A sample input de-

Figure 3: The cubical input device for the optical tracker
based on ARToolkitPlus. The 3D hand occlusion model is
also shown.

vice is shown in Figure 2. The vertices of these detected
graphs are considered to be image features and are mapped
to 3D model points. Since feature correspondence is estab-
lished in a projection invariant manner, only a single camera
is required, but more cameras are allowed. In fact, corre-
spondence is established for every input camera image, and
the combination of these correspondences is used as input to
the pose reconstruction component.

The pose reconstruction component first determines a de-
vice pose for each camera individually using the efficient
perspective-n-point algorithm [MNLF07], modified to use
Horn’s absolute orientation method [Hor87]. For each pose
found in this way, the reprojection error is determined and
the pose with the smallest error is used as a starting pose
to an iterative procedure using all cameras. This iterative
procedure is an extension for multiple cameras by Chang
et al. [CC04] to the iterative pose reconstruction by Lu et
al. [LHM00]. Further enhancements would be the use of
Micheals-Boult absolute orientation determination [Mic99]
and a modification of the iterative procedure to support the
robust planar pose algorithm [SP06]; however, these en-
hancements are currently not implemented.

The second optical tracker is a modified version of AR-
ToolkitPlus by Wagner and Schmalstieg [WS07], which
in turn is based on ARToolkit by Kato and Billinghurst
[KB99]. ARToolkitPlus is capable of detecting different,
square markers in a single camera image. We have con-
structed a cubical input device with different markers on
each of the six cube sides as shown in Figure 3. Next, AR-
ToolkitPlus is used to establish feature correspondence be-
tween the four 2D corners of each square marker and the 3D
positions of these corners as given by the device model. For
each individual camera image, the set of 2D to 3D feature
correspondences is provided to the same pose reconstruc-
tion component that was described previously in the case of
GraphTracker.

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers36



0

10

20

30

40

50

60
GraphTracker ARToolkitPlus

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001 1051 1101

Figure 4: Positional accuracy in millimeters for all animation frames. Gaps indicate a pose could not be found.

Hit% Position Err. Orientation Err.

ARToolkitPlus 45% 3.4 mm 3.2 deg
GraphTracker 97% 7.0 mm 10.8 deg

Table 1: Summarized results for the first experiment. The ta-
ble shows the percentage of hits and the median positon and
orientation errors for the entire task. GraphTracker detects
a pose more often; however, ARToolkitPlus is often more ac-
curate when it detects a pose.

4. Results

In this section we show three sample uses of our framework
to evaluate different aspects of optical tracker performance.
In the first experiment, the accuracy of two different opti-
cal trackers is compared, given a fixed environment. In the
second experiment, we try to determine the optimal camera
placement by varying the extrinsic camera parameters. Fi-
nally, in the third experiment, we evaluate the effect of cam-
era resolution and distance by varying the intrinsic camera
parameters as well. These experiments provide answers to
interesting sample problems for optical trackers; however,
the framework presented is not limited to these experiments
alone.

We want to stress the fact that the presented results are not
intended to provide an answer to the question of which op-
tical tracker performs strictly better than the other. Instead,
these results should be looked upon as examples of the us-
age of the presented framework to determine and compare
the performance of optical trackers over a broad spectrum of
conditions. Each optical tracker has its own pros and cons,
and the decision of which optical tracker is better suited for
a particular task at hand should be based on the combination
of relevant metrics and properties, rather than on a single
statistic. This will be discussed further in Section 5.

4.1. Experiment 1: Tracker comparison in a fixed
environment

The first experiment is a comparison between the two opti-
cal trackers, GraphTracker and ARToolkitPlus, described in

Section 3.2. For this experiment, we will vary the implemen-
tation of the optical tracker component and, thus, the device
model. All other components are kept constant. In both cases
the virtual input device consists of a cube with edges of 7cm.
The question asked for this experiment is, "Which optical
tracker should be used for this particular environment and
task?"

For the camera parameters we use a setup typically used
for the PSS [MvL02], a near-field virtual environment. We
use a dual camera setup above the virtual working space,
pointing at the origin at a distance of approximately 55cm.
The focal length of the cameras is set to 28mm wide angle
in terms of 35mm full-frame photographic equipment. En-
vironment conditions are set for infrared lighting. To simu-
late this, the device markers are rendered in black and white.
To simplify processing, the background is kept strictly black
and no image noise is added. The occlusion model consists
of a fixed 3D model of a human hand that is attached to the
cubical input device, simulating the user holding the input
device. This was shown in Figure 3. The hand model remains
static with respect to the cube’s orientation. The task, or
ground truth, is a pre-recorded animation sequence of a user
executing a real-life task in a near-field virtual environment
with a similar cubical input device. This task was recorded
using a magnetic tracker so occlusion has no effect in estab-
lishing the ground truth. The animation sequence consists of
1146 frames sampled at regular intervals. The combination
of all these conditions provides a reasonable simulation of a
real near-field virtual environment.

Figure 4 shows the positional accuracy in millimeters for
each of the 1146 animation frames and for both optical track-
ers. Summarized results are given in Table 1. For this fixed
camera setup, the percentage of hits for GraphTracker is rel-
atively high at 97% despite the occlusion, whereas the hit
percentage for ARToolkitPlus is only 45% due to occlusion.
However, whenever a pose is detected by ARToolkitPlus, the
reported pose is generally more accurate than the pose re-
ported by GraphTracker. These results suggest that Graph-
Tracker is the better choice for this particular task and en-
vironment; however, this may no longer be the case when
we are free to reposition the cameras. Furthermore, if we are

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers 37



willing to sacrifice hit:miss ratio in favour of enhanced ac-
curacy, then ARToolkitPlus would be the tracker of choice.

4.2. Experiment 2: Determining optimal camera
placement

The second experiment uses a similar setup as the first ex-
periment, only this time the extrinsic camera parameters and
the number of cameras will be varied. All other conditions,
such as the occlusion model and task, are kept constant as
before. By varying the extrinsic camera parameters we can
determine an optimal camera placement for this particular
task and setup. The question here is, "Which camera place-
ment is best for the execution of this particular task?"

To answer this question we have randomly generated 200
sets of camera placements. This was done by taking the cam-
era distance to the origin of the near-field camera setup of
experiment 1, and randomly placing cameras on the quarter
sphere on top and in front of the workspace defined by this
distance. In this way, we generated four different batches
of 50 camera sets. The first batch consists of stereo pairs
of two cameras. For every set the two cameras were con-
strained to have a distance between 5 and 15cm. The sec-
ond batch consists of two cameras per set as well; however,
the distance constraint was changed so the cameras must be
further than 30cm apart. The third batch consists of sets of
two stereo-pairs at a distance greater than 30cm. Finally, the
fourth batch consists of four cameras, all at a distance larger
than 30cm from each other.

Next, for all camera placements, the 1146 frame task was
executed. For every camera placement we registered the av-
erage position and orientation accuracy for the task, as well
as the hit:miss ratio. These results are shown in Figure 5
for the batches of two cameras. In Table 2 all data is sum-
marized by calculating a subsequent average over specific
batches of camera sets for the position and orientation ac-
curacy. A number of observations can be made from this
data. For two cameras in stereo-setup (N<50 in Figure 5),
ARToolkitPlus achieves very poor hit:miss ratios due to oc-
clusion. GraphTracker achieves somewhat better hit:miss ra-
tios; however, the pose accuracy is generally worse than that
of ARToolkit in the case it does detect a pose. For two in-
dependent cameras (N>50 in Figure 5) the his:miss ratios
improve for both ARToolkitPlus and GraphTracker, but the
pose accuracy is often reduced, especially for GraphTracker
and the position accuracy of ARToolkitPlus. This leads us to
believe that stereo camera setups are generally more accu-
rate due to the difficulty of robust pose reconstruction in a
single camera, but result in worse hit:miss ratios due to the
smaller coverage of space. In the case of four cameras in the
form of two stereo-pairs (see Table 2), ARToolkitPlus still
shows some poor camera placements with respect to hit:miss
ratio. However, for four independent cameras the occlusion
problem is reduced significantly due to the large coverage
of space. In this case both ARToolkit and GraphTracker are

capable of finding a pose in most circumstances, and AR-
ToolkitPlus achieves a much higher accuracy in doing so. It
can also be seen that four cameras are generally more accu-
rate than two cameras. These results suggest that if we are
free to choose a specific camera placement, then ARToolkit
would be tracker of choice for this particular task and envi-
ronment.

4.3. Experiment 3: Determining minimum camera
resolution requirements

In the third experiment we vary the intrinsic camera param-
eters by changing the resolution; furthermore, the extrinsic
parameters will be modified by placing the cameras at dif-
ferent distances from the origin. These camera distances are
representative for different types of virtual environments.
The other conditions remain constant. This experiment may
help in answering the question, "What is the minimum re-
quired camera resolution for optical tracking in this virtual
environment?"

To determine camera positions for this experiment, we
used the results of the second experiment for optimal cam-
era placement of four cameras and chose the camera position
set where the positional error was smallest. It turned out that
these positions also provided good orientation accuracy, as
well as a good hit:miss ratio. Next, we scaled these positions
in such a way that we obtained three sets of cameras for
distances of 0.75m, 1.5m and 3.0m from the origin. These
distances are representative for near-field, Workbench- and
CAVE-like virtual environments. Due to increased camera
distance we increased the focal length of the cameras to
a standard 50mm in terms of 35mm full-frame photogra-
phy equipment. We then executed the 1146 frame task for
each of these camera sets at camera resolutions of 512x384,
640x480, 800x600, 1024x768 and 1280x960.

The results of these measurements are given in Table 3.
This table shows the hit percentage, average task accuracy in
millimeters and the average orientation accuracy in degrees.
It can be seen that the performance of GraphTracker is re-
duced significantly for larger viewing distances. The perfor-
mance of ARToolkitPlus decreases with distance as well, but
not as quickly as for GraphTracker. Generally, an increase of
resolution results in increased accuracy and better hit:miss
ratios. In order to use these trackers in a CAVE-like envi-
ronment, with cameras placed at 3m distance, a minimum
camera resolution of 800x600 is required for ARToolkitPlus
(preferably 1024x768) and for GraphTracker a resolution of
1280x960 is still not sufficient. This shows that when design-
ing optical trackers for such environments special consider-
ations have to be taken into account. For environments like
the Workbench, with camera distances of 1.5m, both trackers
can be used; however, GraphTracker requires higher resolu-
tions. Both trackers show comparable behaviour in near-field
environments, where higher camera resolution is apparently
an inefficient use of resources.

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers38



30

40

50

60

60

80

100
Hit Percentage (%) Posi!on Error (mm) Orienta!on Error (deg)

0

10

20

30

0

20

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

20

30

40

50

60

40

60

80

100
Hit Percentage (%) Posi!on Error (mm) Orienta!on Error (deg)

0

10

20

0

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Figure 5: Top: GraphTracker for sets of two cameras. Bottom: ARToolkitPlus for sets of two cameras. The first 50 sets consist
of stereo pairs, whereas the second 50 sets consist of two independent cameras.

ARToolkitPlus GraphTracker
Placement Strategy Stereo Free Stereo Free
Number of Cameras 2 4 2 4 2 4 2 4
Hit Percentage (%) 41% 76% 74% 95% 54% 90% 89% 96%
Average Position Error (mm) 6.7 2.9 17.6 6.8 21.1 4.2 59.8 7.7
Average Orientation Error (deg) 3.4 1.8 2.1 1.4 7.6 5.1 18.7 6.1

Table 2: Summarized results for the 2nd experiment. The rows show, respectively, the average percentage of hits, position
accuracy in mm and orientation accuracy in degrees, over all camera sets. The colums represent two and four cameras, both in
stereo pairs and in a free setup.

5. Discussion

In Section 4 we have shown a sample evaluation of two dif-
ferent optical trackers under varying conditions. By using
the presented framework, it was possible to acquire perfor-
mance metrics for different situations, such as varying cam-
era placements, that would be difficult to acquire rapidly in
practice. However, care must be taken not to judge tracker
performance too rapidly based on a single experiment.

The accuracy for GraphTracker was shown to be gener-
ally worse than that of ARToolkitPlus. This may be due to
the fact that the tested device model for GraphTracker has
been constructed from a real input prop, using digital pho-
tographs as textures for the simulated device. Next, an auto-
mated model training step [SvRvL07] was performed using
the presented framework to acquire the 3D model descrip-
tion. Therefore, the model description for GraphTracker is
likely to contain small errors, whereas the model descrip-
tion for ARToolkitPlus was constructed in a purely synthetic,
error-free manner. This illustrates that all factors must be
considered when comparing trackers.

In the first experiment, GraphTracker showed a much bet-

ter his:miss ratio for the given environment than ARToolk-
itPlus. If we are free to change the number of cameras and
their placements, it can be seen from the second experiment
that ARToolkit can be made to perform equally well in terms
of hit:miss ratio for certain camera placements. However,
these specific camera placements may only be valid for the
particular task animation that was executed. For example, a
right-handed user holding the input device in such a way that
the left side is always completely visible probably benefits
most from a camera placement with cameras on the left side.
Now, if this user is replaced by a left-handed user, the same
setup is likely to perform very poorly in terms of hit:miss ra-
tio. The framework can be used to test many different types
of tasks and determine a robust camera placement.

In the third experiment it could be seen that GraphTracker
performed relatively poor for larger camera distances. This
is due to the fact that GraphTracker has been specifically
designed for near-field environments, while ARToolkitPlus
was designed as a general marker tracking system. It may be
possible to improve the image processing of GraphTracker to
allow for larger camera distances. This shows that the frame-
work can also be used as a valuable development tool: poor

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers 39



ARToolkitPlus GraphTracker
0.75m 1.50m 3.00m 0.75m 1.50m 3.00m

512x384 96 / 1.11 / 0.88 93 / 3.29 / 3.76 0 / - / - 96 / 1.97 / 4.24 43 / 1220 / 103 0 / - / -
640x480 96 / 0.86 / 0.69 95 / 1.94 / 1.61 58 / 22.28 / 25.0 97 / 1.43 / 3.83 66 / 23.0 / 15.5 0 / - / -
800x600 97 / 0.68 / 0.54 95 / 1.52 / 1.30 86 / 9.20 / 12.95 97 / 1.34 / 3.60 94 / 5.97 / 9.09 16 / 2725 / 94.8

1024x768 98 / 0.52 / 0.42 96 / 1.15 / 0.97 93 / 3.51 / 4.0 98 / 1.26 / 3.25 97 / 2.86 / 4.84 38 / 2531 / 97.9
1280x960 98 / 0.41 / 0.33 96 / 0.89 / 0.76 95 / 1.98 / 1.71 98 / 1.14 / 2.90 98 / 1.53 / 3.91 67 / 23.75 / 16.8

Table 3: Results for the 3rd experiment on camera resolution and distance. The rows represent the different resolutions, while
for each tracker the columns represent the different camera distances to the origin. Every table cell shows the percentage of
hits, the average position error in mm and the average orientation error in degrees, respectively. When the percentage of hits
equals zero, accuracy information is not available.

tracker performance can be detected for specific conditions,
after which the tracker software can be updated to resolve
these issues.

Most optical trackers have their own pros and cons, and
the decision of which tracker to use should be based on a
number of required factors, some of which may not have
been tested. For example, GraphTracker is designed in such
a way that it can handle any convex shaped input device,
whereas ARToolkitPlus is restricted to planar surfaces. On
the other hand, GraphTracker currently requires infrared
lighting, while ARToolkitPlus is capable of operating in
normal daylight. Before deciding on a specific tracker, one
should carefully consider the requirements and the available
environment.

The presented framework does not take end-to-end la-
tency into account. While it is possible to measure execu-
tion times for the optical tracker component, the framework
is unable to measure real, observed latency. In order to do
so a number of additional factors need to be simulated, such
as the cameras’ CCD fill rates, data transmission times, ap-
plication/simulation update rates and scene graph rendering
rates. To be accurate, even the display refresh rate needs to
be modeled, along with the difference in update rates be-
tween various application components. Since this informa-
tion varies greatly among different applications, and in some
cases may not be available, we chose not to provide any la-
tency modeling in the presented framework.

6. Conclusion

We described a framework to evaluate optical tracker per-
formance under various conditions. Three examples were
shown where the framework was used to compare the per-
formance of two different trackers under similar conditions,
to determine optimal camera placements and to determine
the minimum required camera resolution in various environ-
ments. The presented framework provided an efficient and
simple method to study various conditions affecting optical
tracker performance. Furthermore, it proved to be a valuable
development aid for the construction and improvement of
future optical trackers.

References
[CC04] CHANG W.-Y., CHEN C.-S.: Pose estimation for multi-

ple camera systems. In ICPR (2004), pp. 262–265.

[Che00] CHEN X.: Camera Placement Considering Occlusion
for Robust Motion Capture. Tech. rep., CGL Stanford, 2000.

[Hor87] HORN B.: Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
4, 4 (1987), 629–642.

[KB99] KATO H., BILLINGHURST M.: Marker tracking and
HMD calibration for a video-based augmented reality conferenc-
ing system. In Proc. of the IWAR (Oct. 1999).

[LHM00] LU C.-P., HAGER G. D., MJOLSNESS E.: Fast and
globally convergent pose estimation from video images. IEEE
Trans. PAMI 22, 6 (2000), 610–622.

[Mic99] MICHEALS R.: A new closed-form approach to the ab-
solute orientation problem. Masters thesis, Lehigh University,
1999.

[MNLF07] MORENO-NOGUER F., LEPETIT V., FUA P.: Accu-
rate non-iterative O(n) solution to the PnP problem. In Proc. of
the ICCV (2007).

[MvL02] MULDER J. D., VAN LIERE R.: The Personal Space
Station: Bringing interaction within reach. In Proc. of VRIC
(2002), pp. 73–81.

[SP06] SCHWEIGHOFER G., PINZ A.: Robust pose estimation
from a planar target. IEEE Trans. PAMI 28, 12 (2006), 2024–
2030.

[SvRvL07] SMIT F. A., VAN RHIJN A., VAN LIERE R.: Graph-
tracker: A topology projection invariant optical tracker. Comput-
ers & Graphics 31, 1 (2007), 26–38.

[SWI06] STATE A., WELCH G., ILIE A.: An interactive camera
placement and visibility simulator for image-based VR applica-
tions. In Proc. of the SPIE (Feb. 2006), vol. 6055, pp. 640–651.

[vLvR04] VAN LIERE R., VAN RHIJN A.: An experimental com-
parison of three optical trackers for model based pose determina-
tion in virtual reality. In Proc. of EGVE (2004).

[vR06] VAN RHIJN A.: Configurable Input Devices for 3D Inter-
action using Optical Tracking. PhD thesis, Eindhoven University
of Technology, 2006.

[WS07] WAGNER D., SCHMALSTIEG D.: ARToolkitPlus for
pose tracking on mobile devices. In Proc. of the CVWW (Feb.
2007).

c© The Eurographics Association 2008.

F. A. Smit & R. van Liere / A Framework for Performance Evaluation of Model-Based Optical Trackers40


